
If T << 1, then the f i r s t  t e r m  in (A. 7) can be neglected. 
In the opposite limiting case n << 1 / 2 ~ ' / '  we have 

1 Rri[A(Rr) 1'' exp (- - - 
t / z n ~  2R,'T 2T 

and accordingly the ionization rate constant is de te r -  
mined a t  n << 1 / 2 ~ ' / ~  by the expression 

4n2 g, T 
K(n)=--- 

a  ex^ ( - - - 
37 g~g,. n3 3 , ;T 4n2T 

~ { ( l + t ) ~ p - z  (f) ( f ) "'(2n1)-1/3+ (i) "b-2  (-5) ( 2 n z ) ~ )  

(A. 10) 

 he integration is carried out by the stationary-phase 
method, as was done for the case of collisions of the second 
kind.' In our case I A F  I = I dA/dR I R = ~ ,  " yA (R,) , A F  is the 
difference between the slopes of the curves of the potential 
energy at the resonance point R ,  . 
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On vibrational energy exchange between strongly excited 
polyatomic molecules 

V. T. Platonenko and N. A. Sukhareva 
M. K Lomonosov Moscow State University 
(Submitted 1 November 1979) 
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Processes involving the exchange of vibrational energy in collisions between strongly excited polyatomic 
molecules are studied. Relaxation equations are obtained in the dipole-dipole approximation for the 
vibrational energy in a nonequilibrium molecular gas and also a kinetic equation for the distribution function 
of the vibrational states. The relation between the dynamic relaxation characteristics and the spectral 
properties of the gas is found. A comparison of the V-V relaxation time with the experimental data gives 
satisfactory results in the region of high excitation (T,, 2 600 K). 

PACS numbers: 34.50.Ez, 34.50.H~ 

The development of r e s e a r c h e s  on the laser separat ion 
of isotopes by  the method of photodissociation of poly- 
atomic molecules in a s t rong  infrared (IR) field makes  
timely the investigation of p r o c e s s e s  of exchange of 
vibrational energy in the collisions of s t rongly excited 
molecules. 

The problem of the r a t e  of collisional exchange of the 
vibrational energy has  been studied in the example of 
diatomic and weakly excited polyatomic 

An important  fea ture  of the vibrational spec t rum in 
these  cases is i t s  d i sc re teness ;  therefore,  the calcula- 
tion of the transition probabilities reduces to the prob- 
lems of the excitation of an osci l la tor ,  o r  of t ransi t ions 
in  a two-level s y s t e m  or  in a sys tem of two weakly in- 
teract ing osci l la tors .  In polyatomic molecules, the den- 
s i ty  of the vibrational spec t rum increases  rapidly with 
increase  in the vibrational energy and can  exceed the 
duration of the collision process  a t  energies  lying sig- 
nificantly below the dissociation threshold. It should be 
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expected that in this region of the spectrum, the rate of 
exchange increases appreciably, while the main con- 
tribution to the transition probability will be made not 
by the short- range forces, which appear in hard colli- 
sions and play a fundamental role in essentially nonreso- 
nant transitions, but the long- range, especially dipole- 
dipole, forces. 

As was shown in Refs. 3 and 4, the role of these forces 
can also be decisive in quasi-resonant transitions in a 
discrete spectrum. In the case of a quasi-continuous 
spectrum, on the one hand, the satisfaction of practical- 
ly strict  resonance i s  facilitated, which should lead to an 
increase in the transition probability. On the other 
hand, the matrix elements of the interaction Wamiltonian 
should decrease, limiting this increase. In the general 
case, the calculation of the matrix elements of the inter- 
action Hamiltonian is a complicated problem. 

Experiments and theoretical investigations carried 
out in recent years on the collisionless photodissociation 
of polyatomic molecules in an intense infrared radiation 

have furnished qualitative information on the d s  
pendence of the matrix elements of the dipole moment 
of the molecules on the energy of the transitions in the 
region of quasi-continuous spectrum. These investiga- 
tions have revealed two important circumstances. First, 
the interaction even of monochromatic radiation with an 
isolated molecule that had already absorbed several 
quanta has a noncoherent character, so that the energy 
absorbed in what follows i s  practically independent of 
the intensity and is determined by the energy of the ra -  
diation passing through a unit area: 

where E ( t )  is the amplitude of the electric field of the 
wave. Second, the resonance of such an interaction i s  
relatively weakly expressed; in any case, the width of 
the resonances is significantly greater than the recipro- 
cal of the interaction time of the colliding molecules. 

Taking these circumstances into account, we shall il- 
lustrate the effectiveness of the dipole-dipole interac- 
tion of molecules A and B by means of the following 
qualitative arguments; being interested only in the 
change of the state of the molecule A, we shall consider 
molecule B a s  a classical dipole that produces near it- 
self a field with amplitude , / ~ ~ ( t )  and frequency w ,. 
In analogy with the previous formula, we shall assume 
that the action of this field on the passing molecule A 
is determined by the quantity 

where u is the relative velocity of the molecules, and 
b is the impact parameter, 

Let JL,' =n,po12, where n, is the number of quanta of 
excitation in the dipole-active mode of molecule B, pol 
is the matrix element of the dipole moment for the 
transition 0-1 in this mode. Setting po12=10'37 cgs 
esu, n, = 1, u = 2.7 x l o4  cm/sec, b = 5.5 x cm (SF,, 

CF4 and othersTv8), we find E,= 0.1 ~/crn', which is 
identical in order of magnitude with the threshold value 
for the dissociation, cO, in the experiments of Refs. 6, 
9 and 10 with radiation whose frequency is detuned 
slightly to the red side of the resonance frequency of 
the molecules. 

This estimate shows that the dipole-dipole interaction 
of molecules is very effective and can play an important 
role, for example, in the experiments on collisionless 
photodissociation of molecules in an infrared radiation 
field. 

In the present work, the study of the process of trans- 
f e r  of vibrational energy in the case of collisions of 
polyatomic molecules, due to dipole-dipole interaction, 
is carried out on the basis of analysis of the equation 
for the density matrix of the colliding molecules under 
the assumption that the energy distribution function of 
the molecules changes little during one collision. 

We consider the collision of molecules A and B in 
states (Y and p, specifying the interaction Bamiltonian 
in the form 

jLAiiB-3(njLl) (n& 
U ( t )  = 

R 3 ( t )  

where the distance R(t) i s  a known function of time. 
The equation for the density matrix of a system of two 
molecules in the interaction representation has the 
form 

where 

U.s,.s. ( t )  =lia, , . , .( t)  e x p [ i ( o w . f  @@pr)t1, 

oaa.=(ea--&')/A, aap=.p.=am'r~n@.. 

Using the relation 
1, 

i 
o( t . )=  -- j [U( t , - , ) ,  o( t , - , )  1dt.-,, 

A 
-= 

for the determination of the nondiagonal matrix ele- 
ments, we can represent the equation for the diagonal 
matrix elements in the form of a series in powers of 
the perturbation, the terms of which contain only the 
diagonal elements of the density matrix 

where S,, is a term of degree 2n in the perturbation 
(the odd powers drop out if U,,,.,, a r e  real quantities). 
We shall assume all  these terms to be small, The 
problem of the applicability of such an assumption is 
discussed in the concluding part of the paper. 

In subsequent discussions, we shall assume the 
dipole moment of the molecule to be localized a t  the 
center of mass, so  that in the summation in (2) over 
0' and 0' the quantities ~ - ~ ( t l  and ~ - ~ ( t , )  can be taken 
out from under the summation sign. 

Taking into account the complicated structure of the 
spectrum in the region of the quasicontinuum, we shall 
assume the orientations and magnitudes of the matrix 
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elements of the dipole moment pa,. and pBB,  to be ran- 
dom functions of the quantum numbers. Let the summa- 
tion of the product Ua,.B.(t)UaB.aB(t,) over a' and B be 
carried out in the intervals from c: to E: + A&: and 
from to E ;  + A&;, which contain a large number of 
states; then the formula 

is valid, since averaging over the mutual orientations 
of the dipole moment takes place in the summation pro- 
cess. 

Substituting (3) in (2) and discarding all  terms on the 
right side of (2) except the first, we obtain 

Carrying out the averaging over the energy intervals 
A& containing a large number of vibrational levels, but 
small in comparison with the quantity E / T ,  where r is 
the time of the interaction, we introduce the notation 

where p(c )  is the density of the vibrational spectrum. 

Making use of the assumption that the mean of the 
product a , , ~ , ,  1 pa,. 1 over a is equal to the product 
of the means: 

~ . ~ I p . ~ . l ~ = n ( e . )  y2(e. ,  e . ' )p(e.)p(en')Ae.  Aer', 
D a' 

an assumption satisfied, for example, if the popula- 
tions a,, a r e  constant over the interval (& E +A&,), 

"'1: or  do not correlate with the sums 2,. (paa l  we sum 
(4) over all  levels p and over the levels a lying in the 
range of energies (c,, E ,  + A&,). Transforming from 
summation over a', P', P to integration over EL, E L ,  &,, 

we get 

In the time scale determined by the width of the spec- 
trum of the allowed transitions, the change in the quan- 
tities R-3(t,),n(c, t,) is a very slow one and we can set  
them equal to ~ - ~ ( t )  and n(&, t). Then, after integration 
over the time ti and over the energy c;, Eq. (6) can be 
written down in the form 

In correspondence with the derivation, Eq. (7), to- 
gether with the analogous equation for  n(&,), describes 
the change in the distributions n(&,) and n(c,) of a spe- 
cific pair of interacting molecules. It i s  seen from the 
structure of this equation that the change in the dis- 
tribution of the energy in a single collision 6n(&) can be 
small even if the probability of exchange of a quantum 
a t  the given parameters of the collision is comparable 
with unity, but the distributions n(&) a r e  sufficiently 
smooth o r  close to equilibrium (at equilibrium distribu- 
tion, 6n(&) a0 in the latter case). It can be assumed 
here that in the right side of (7), only the quantity 
R-6(t) depends on the time, and we can change over 
to the equation for the energy distribution function of an 
ensemble of molecules A, calculating the change 6n(&) 
of the distribution by integration of (7) over t , averaging 
the result over the collision parameters b and u, and 
multiplying by their frequency. This procedure does 
not change the structure of the equation and is equiva- 
lent to averaging over ~ - ~ ( t )  in (7) under the assumption 
that the quantities n(&,, t ) ,  ~ - ~ ( t ) ,  and 

do not correlate. 

Without introducing new notation, we shall henceforth 
assume that the functions n(&,) and n(cb) in (7) describe 
the energy distributions of ensembles and not of a spe- 
cific pair of molecules, while R - ~  is taken to be a quan- 
tity defined by the relation 

where w(r)dV is the probability that the molecule B be 
located in the volume element dV at  a distance r from 
the molecule A, while N ,  is the number of molecules 
B in a unit volume. The quantity R,,, defined by the 
relation (8), is identical in the hard-sphere model with 
the gaskinetic diameter of a pair of molecules. 

Multiplying (7) by E, and integrating over c,, with ac- 
count of (8), we find the following for the rate of change 
of the mean energy E,: 

16n2 
- 

tA  = - R;; NB S x2 . [ IA+ ( 5 )  I,- ( x )  -Ig+ ( x )  Irl- (x) I dx. 
9h o 

With accuracy to constants, the quantity x[It(x) 
- I-(x)] determines the contribution of the molecule to 
the light absorption coefficient a t  the frequency x /K ,  
and x41'(x) is the spectral power radiated by the mole- 
cule a t  this frequency. 

We simplify (9) under the assumption that the forms 
of the functions I+&)  and I-(x) a r e  identical, intro- 
ducing a single functional representation for them: 

where F(w) is the shape of the absorption spectrum, where 
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normalized to unity. The quantities C +  and C- can be 
estimated with high accuracy with the use of the har- 
monic model: 

where j is the number of the vibrational mode; of, gj, 
and p j  a r e  i t s  frequency, degree of degeneracy, and 
matrix element of the dipole moment for the transition 
0- 1, and gjcj  is the average vibration energy for this 
mode. 

With account of (10) and (l l) ,  Eq. (9) is transformed 
to the form 

X ~ g ~ , g n , p ~ ~ C L a ~ ( h o ~ ~ e n , - h o a , e ~ , ) .  (I 2) 
c,i 

In the general case of a multicomponent mixture, the 
right side Of (12) must be summed over all the ensem- 
bles B. 

If the absorption bands of the molecules a r e  clearly 
resolved, we can replace the functions F, (w) and F,(w) 
by the absorption bands FAi(w), FBj(w) normalized to 
unity. The equation remains valid, while the essential 
contribution to the sum i s  made only by terms for which 
W A ~ "  W B ~ .  Assuming, moreover, that we can take o in 
the denominator of the integrand to be equal to WA,  

= w ~ ~ ,  and subtracting the similar equation for the 
mean energy of the ensemble of molecules B from (12), 
we obtain for the two-component mixture 

where 

Equation (13) can be solved if the parameters of the 
functions FAi(w), Fej(w) and the energies E A ~ , E B ~  can 
be expressed in terms of the mean energies c, and c,. 

Having in mind a comparison with the results of the 
experiments of Ref. 11, we estimate roughly the rate of 
exchange of energy between two ensembles of molecules 
of SF,, one of which (A) i s  subjected to excitation by 
laser radiation. The introduction of 'hotJ' and "cold" 
ensembles is justified by the presence in the absorption 
spectrum of the gas of two maxima that coalesce in 
time. A quasi-equilibrium within the ensemble can be 
realized more rapidly than the redistribution of energy 
between them, since the overlap of the spectra of the 
molecules within the ensemble is better than the over- 
lap between the ensembles. 

In the considered case, the basic contribution to the 
sum over i ,  j in (13) i s  made by the term with i=j =3, 
g,, =gB3 = 3. For  carrying out the estimates, we as- 
sume that in the relaxation process: 

1 )  the energy distribution over the vibrational modes 
of each ensembles is  an equilibrium one; 

2) FA@) and F,(o) a r e  Lorentzian functions with 

FIG. 1. Dependence of the relaxation time of a mixture of hot 
and cold ensembles of SF6 on the initial mean vibrational en- 
ergy of the "hot" molecules. 0-experimental values of the re- 
laxation time." 

halfwidths 6, and 6, and maxima a t  the points w, , w,, 

Then Eq. (13) is integrated together with the equation 

NAer+ NBea=.const, 

while the form of the solution depends on the ratio NA/ 
N, and a t  N, =N, the difference c, - E, decreases by a 
factor of e within a time 

where the values of the quantities depending on c, and 
c, must be taken a t  the initial instant of time. 

The figure shows the dependence, computed for the 
ensemble SF, from Eq. (14), of the relaxation time on 
the initial energy c,(t= 0) a t  a pressure p = 0.18 Torr  
and initial energy &,(t = 0) corresponding to a tempera- 
ture 300 K. The parameters A = 2.92 cm-', 60 = 3.5 
cm-', 61 = 1.1 cm-I were obtained by linear extrapola- 
tion of the experimental data.'2"3 

Numerical estimates show that the assumptions 2)- 
4) introduce a negligibly small e r ro r  in the value of the 
right side of (12) if only assumption 1) is true. Yet as- 
sumption 1) can be violated. In the hot ensemble, the 
molecules of which a r e  in the region of quasi-continu- 
ous spectrum, the energy distribution over the vibra- 
tional modes of the molecule i s  obviously always in 
equilibrium; in the cold ensemble, in the process of 
transfer of the vibrational energy, overheating of the 
active mode v, in comparison with the remaining modes 
is possible, so  that the difference &A,- E B 3  turns out to 
be small a t  a significant difference c, - c, .  Then the 
ra te  of energy redistribution of the energy between the 
ensembles is limited by the rate of i ts  redistribution 
over the vibrational modes of the cold molecules, which 
falls off with decrease in the level of excitation. But if 
the initial energy c, i s  sufficiently large and NA is not 
small in comparison with M,, the molecules of the cold 
ensemble fall into the region of the quasi-continuous 
spectrum before this overheating can be significant. 

The agreement of the results of the given calculation 
with the experimental values of Ref. 11 at high levels of 

1068 Sov. Phys. JETP 51(6), June 1980 V. T. Platonenko and N. A. Sukhareva 1068 



excitation indicates the validity of the initial equation 
(7). It can be established basically in the investigation 
of the collision stage of dissociation, which i s  observed 
in the laser excitation of polyatomic molecules. The 
distributions realized in these experiments a r e  rela- 
tively smooth, i.e., the distribution functions n(c) vary 
little upon change of c by the value of a vibrational 
quantum. Under these conditions, we can obtain from 
Eq. ('7) for the ensembles an equation of the Fokker- 
Planck type which is valid in the region of high ener- 
gies. 

Using the relatively accurate approximate relations 

n ( e . ) n ( e s ) - n ( e . * z ) n ( e b ~ ~ ) = *  ' /%z[n(~~)n'(eb)  

[p (e.+z) n' (e.+z) M- (e.+z; z )  -p (e.) n' (8.) M- (e.; z)  ]I+ (z) 
+ [p (e.) n' (e.)M+ (8.; z )  -p (e.-z) n' (e.-z) M+ (e.-z; z )  ]I- (z) 

where M* (c; X) =p(& ~ X ) ~ ~ ( C ,  E f x )  and the relation ob- 
tained from (15) by the replacement of nr(&,+X), 
nr(ca- x )  and nr(ca) by n(c, + z ) ,  n(c,- x) and n(&,) re- 
spectively, and of the quantities I* (%) by - 

K*(z) =- 5 nr (eb)p(eb)Mf (es; z)der, 
0 

we obtain 

where 

2n - 
 DAB(^.) = %R-* I zZ[M-(e.; z )  I.+ (z) +M+ (e.; z )  I.-(z) I&, 

0 

If n(cb) i s  a Boltzmann distribution, then TAB(&,) i s  con- 
stant and equal to the temperature of this distribution. 

For a single-component system, the indices A and B 
define the same ensemble of molecules; therefore they 
can be omitted, For a multicomponent system, i t  is 
necessary to carry  out summation over a l l  the indices 
B on the right side of Eq. (16). 

Using the same assumptions and the same procedure 
a s  in the transition from Eq. (7) to (12), (13), we can 
represent the diffusion coefficient in the form 

where 

us,=ee/hosj, vet =e.,/ho., , 

E,, is the energy share of the i-th mode of molecule A 
with vibrational energy c,, and Fi(ca; w) is the form of 
the i- th absorption band of an individual molecule. 

The validity of (17) is not violated if we replace the 
shapes of the bands Fi(ca; w) ,  F ,  (w) by the shapes of the 

spectra F(&,; w), F,(o). 

The shapes of the bands I;,(&,; w) a r e  unknown and 
should be constructed on the basis of additional con- 
siderations. In cases of practical interest, these func- 
tions a r e  narrower than FBj(w); therefore, if the loca- 
tion of the center of mass of the function Fi(ca; W) 
- wi(&,) is known, we can assume roughly that - 

JF,(e.; ~ ) F B ,  (m)dmr~F~, (o~(e . ) ) .  
0 

The quantities rij-'(ca)[ua ivBj +v,, /2 +vBj/2] in (17) 
have the meaning of the probability of exchange, per 
unit time, of a quantum Rw,, rr EwBj between the mole- 
cule A and the ensemble B. In such an exchange, the 
rotational energy of the molecule also changes, i.e., a 
redistribution of the energy takes place between the 
vibrational and rotational degrees of freedom. The 
diffusion coefficient D,,(J) of molecule A in the space 
of rotational numbers, determined by the interaction 
with the ensemble B, can be obtained by replacing the 
factor (Ew,)(Ew,) = (Ew,)' in the sum (17) by the mean 
square of the change in the rotational number in a single 
transition (AJ)* and averaging the result over the dis- 
tribution n(&,): 

where uAi = E ~ , / & W ~ ~  and T,,-' is determined from 
formula (13), in which we must replace NA + N, by N,. 

The estimates carried out for SF, show that the mecha- 
nism considered here guarantees that the rate of vibra- 
tional- rotational exchange of energy is smaller by an 
order of magnitude than that observed e ~ p e r i r n e n t a l l ~ , ' ~  
i.e., i t  is not the basic mechanism of such an exchange. 

We recall that Eq. (7) and, consequently, (19) can be 
used for the description of a single collision of mole- 
cules A and B with impact parameter b and velocity u 
if by R - ~  we mean not the mean value of (8) but the in- 
stantaneous value R ' ~  (u, b, t) .  Replacing (~/~)TR,,-~N, 
by R - ~ ( u ,  b,t) on the right side of (la), we denote the 
resultant quantity by w,,(c,; u, b,t). The sum 

has the meaning of the transition probability per unit 
time, averaged over the interval (c,; c, +A&,), of mole- 
cule A from any state in this interval to all other states 
when it  interacts with the molecule B. 

Integrating this quantity over time, we obtain the 
Born probability of transition per collision: 

- 
x j R-'(u, b, t )dt[2~. ,v , ,+v.~+v~~].  
-- 

The value of w(c,;u, b) calculated from Eq. (19) can 
significantly exceed unity. For example, for the mole- 
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cule SF,, setting &,,= cB3 =Pius, b rn RO = 5.5 X cm, 
u= 2.7 x lo4 cm/sec, and - 

F ( . )F, , (o)do=lO-'3  sec, J 3 .a, 0 

0 

we obtain the result w(&,; u, b) = 2. 
Naturally, in this case the quantity w(c,;u, b) cannot 

be treated as a transition probability. We can treat  i t  
a s  the number of transitions per collision. The mean 
free path of a molecule in energy space per collision is 
then approximately equal to the square root of this num- 
ber, multiplied by the value of the vibrational quantum. 

We note the the quantities T i,-i(ca) and wit(&,; U, b) a r e  
connected by the obvious relation 

N B  5 uf ( a )  j2nbluij(ca; U ,  b ) dudb .  
T * ~ - i ( E a ) =  [ ~ u . j i . j + i . , + v B , ~  

0 

In conclusion, we carry  out a qualitative discussion 
of the assumptions underlying the derivation of the 
kinetic equations (12) and (16). The transition from the 
initial equation (1) to (7) is equivalent to an assumption 
the action of the field created by one molecule on an 
other molecule is incoherent. The incoherence of the 
action of monochromatic field on a strongly excited 
molecule and, consequently, the high density of the 
spectrum of dipole-allowed transitions in such mole- 
cules, is confirmed by the experimental  result^.^^"^ 
Unfortunately, the experiments have been performed 
only with pulse whose length is at  least two orders of 
magnitude greater than the duration of the interaction 
of the molecules in the collision. For the latter interac- 
tion to be incoherent it is also necessary that the width 
of the spectrum of the allowed transitions be sufficiently 
great. The set of experimental data on photodissociation 
of polyatomic molecules in an infrared radiation field 
shows that the width 6 a15 cm-I of the absorption spec- 
trum of each molecule (and not of the ensemble, since 
almost all the molecules can exceeds at 
high levels of excitation the reciprocal time of interac- 
tion of the molecules in the collisions by a t  least an 
order of magnitude (7: = 2 cm-I). 

The validity of the assumption used in the transition 
from (2) to (4), that the terms SZ, a r e  small, also de- 
pends on the value of the interaction energy. In this con- 
nection, we note that in the experiments of Ref. 15, the 
interaction energy of the molecules with the resonance 
field d.  E reaches values exceeding the energy of dipole- 
dipole interaction of such molecules. Here the number 
of dissociated molecules did not change by more than 
30% when the intensity changes by two orders of mag- 
nitude and the laser  pulse energy is constant. 

Thus the action of the light field and, a s  was to be ex- 
pected, of the field created by the other molecule, on 
the molecule i s  determined by the term in Eq. (2) that i s  
quadratic in the perturbation. For an estimate of the 
limits within which this assertion remains valid, we 
have compared the contribution of the term S4 of the 
right side of (2) and the term quadratic in the perturba- 
tion in the equation for the averaged populations. In the 
calculation of the mean value of S , ,  we have assumed a 
slow change of the perturbation and of the populations, 

and also that the dependence of the products UiI U,,U, Up, 
on i, 1 ,  k , P  is determined by the function 

Then the average of S,is calculated analytically and 
contains the factor u2/E2ij2, which determines the rela- 
tion between S4 the quadratic term. Estimates show 
that under conditions for which the calculations of the 
rate of the V - V relaxation were carried out above, 
this factor does not exceed lo-'. 

The large width of the spectrum of the allowed transi- 
tions i s  also the necessary condition for the validity of 
the assumption used above that the energy distribution 
over the vibrational modes of the molecule i s  almost in 
equilibrium. This question must be discussed specially, 
since in all  cases the molecules exchange preferential- 
ly quanta of a single mode. 

Let & be the basis of harmonic functions (V is the 
vector (ui,. . . , v,)); cp,, i s  the basis of real functions of 
the molecule (for simplicity, we assume the states with 
energies c, to be nondegenerate). The functions &and 
cp,, a r e  connected by the unitary transformation & 
- - C, ,,cp,,; cp,, =C,,,,$+. We assume that the state of 
the molecule Il, at the initial instant of time (t=O) is 
identical with the harmonic state hO, i.e., $(t=O) 
= C,,, ,,cp,,. In correspondence with the schrzdinger 
equation, a t  the subsequent instants of time $(t) 
- - CV,, ,,cp,* exp(- i&,t/~). 

We calculate the contribution of the harmonic state 
to the state Il,(t): 

1 ($*+l$( t )  ) ~ 2 = ( ~ ~ ~ o ,  c n 1 2  exp(-ient/h) 1'. 
At high density of states on a bounded time interval we 
can replace summation over n by integration over the 
energy. Let 1 Cvo,, 1' be the mean value of / Cq, ,, 1 on 
the small interval ( E ,  & +A&). Assuming that IC.vo,Enlzp(&) 
i s  a Lorentzian function of the energy with halfwidth 6,, 
we find that over the small time interval Il,(t)) 1' 
= exp(- 26,t). The width 26, is of the same order of 
magnitude a s  the width of the spectrum of allowed tran- 
sitions. Thus, the discussion just given illustrates the 
fact, although it  doesn't explicitly prove it, that the 
vibrational energy of the molecule is redistributed 
among the modes during a time of the order of the 
reciprocal of the spectrum width. 

We note that the kinetic equations (12) and (16) were 
obtained without assuming an equilibrium energy dis- 
tribution over the modes. To use these equations, how- 
ever, some other assumption on the energy distribution 
must be made, The agreement of the theoretical esti- 
mates, obtained above for sulfurhexafluoride under the 
assumption of an equilibrium energy distribution over 
the modes of a strongly excited molecules and, conse- 
quently, of the practically instantaneous (in the time 
scale of collisions) establishment of such a distribu- 
tion, with the experimental data shows that just such 
an assumption i s  correct. 

The next fundamental step is the averaging of Eq. (7), ., 
which is valid for the uncorrelated quantities I,*(%), 
R-6(t) and n(&,). The assumption of noncorrelation of 
I,'.(%) and ~ - ~ ( t )  means forgoing the allowance for the 
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reaction of molecule A on the field that induces transi- 
tions in it. This can be correct either a t  low transition 
probabilities o r  if the reserve of energy in the mole- 
cules B i s  s o  large that its change during the collision 
has little effect on the characteristics of the field cre- 
ated by these molecules. The estimates carried out 
above for sulfur hexafluoride show that the mean free 
path of the molecule in energy space is actually rela- 
tively short. The assumption of the noncorrelated 
nature of the quantities n(&,) and ~ - ~ ( t )  in (7) can be 
violated if the distribution n(&,) is not sufficiently 
smooth. Such a situation can in principle be realized 
in the region of the dissociation energy in the collision- 
less stage of excitation of the molecules by the radia- 
tion. But it is of low probability, inasmuch a s  the ex- 
citation by radiation also has a diffusion character. In 
this connection, we note that in Eq. (16) we can also take 
into account the transitions induced by the field by 
setting one of the indices of B in correspondence with 
the radiation. 

Finally, i t  was assumed above that the vibrational 
dipole moment of the molecule is localized a t  i ts  center 
of mass. In the general case, this is not true. More- 
over, if the molecule does not possess the necessary 
symmetry, the dipole moments corresponding to the 
different transitions cannot be regarded a s  localized a t  
one point. Then Eqs. (12) and (16) a r e  incorrect and 
their generalization requires special consideration. 
Nevertheless, in many cases we can use them a s  ap- 
proximate: for example, if one band of the absorption 
spectrum of the molecules considerably exceeds the 
others in intensity, we can assume approximately that 
the dipole moment is localized a t  some point of the 
molecule and use the equation obtained above, intro- 
ducing the corresponding correction in the definition of 
the quantity R-6. 
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