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A model is proposed which makes it possible to obtain analytic expressions for the cross section and for the 
rate constant of the ionization of highly excited atoms in their own gas. The velocity distribution of the 
emitted electrons is obtained. Good agreement is observed between theory and experiment. 

PACS numbers: 34.50.H~ 

1. Collision processes with participation of highly rate constant on n. A comparison of our calculations 
excited atoms have recently become the subject of in- with the experimental data3.' has shown sufficiently 
tensive experimental and theoretical research, since good agreement between theory and emeriment. - 
they play an important role in gas-discharge physics 
and in astrophysics.' The ionization of the highly ex- When the condition (3) is satisfied, the highly excited 

electron has practically no influence on the energy of cited states of an a tomd* whenit collides withits ownatom 
the interaction between the atoms. Therefore, first, proceeds via two channels: 
we a re  justified in using perturbation theory to solve - - 

( la)  our problem (since R/n4 << 1/72,) and, second, we ex- 
(lb) clude this electron from consideration when determin- 

The channel ( lb)  is called associative ionization and ing the behavior of the curves of the potential energy of 

predominates in slow collisions. Inasmuch a s  in the the interaction of the atoms in the initial state. Then 

initial state one of the colliding atoms is a state with a the course of the potential curves describing the initial 

large quantum number n(n >> I), we can assume that the and final states of the system is determined by the be- 
havior of the potential curves of the molecular ion A,'. process (1) takes place a t  large distances R between the 

nuclei. This in turn allows us to introduce a number of We confine ourselves for simplicity to the case when 
assumptions that simplify greatly the solution of the the atom in the ground state has only one valent s elec- 
problem connected with determining the cross section tron. Then the main contribution to the cross section 
and the rate constant of the reaction (1). of the process (1) is made by a system initial state whose 

First ,  we a re  justified in using the asymptotic 
theory2 to describe the behavior of the terms of the 
system (1) in the initial and final states. Second, we 
can introduce two small parameters: 

l / y Z R t 1 ,  (2) 
R / n Z t l ,  (3) 

where y2/2 =I, I is the binding energy of the electron in 
the atom A in the ground state, and R is the distance 
between the colliding partners. In addition, the states 
of an electron in a highly excited atom will be regarded 
a s  hydrogenlike states of an electron with the principal 
quantum number n and orbital angular momentum 1,  
moving in the Coulomb field of an effective charge 
Z,,, -1. Here and below we use the atomic system of 
units: e = m = E = l .  

The calculation of the cross section of the process 
(1) is a rather complicated quantum-mechanical prob- 
lem, and the previously obtained results were mainly 
estimates and did not always describe correctly the be- 
havior of the rate constant of the reaction (1) a s  a func- 
tion of the various observable parameters when com- 
parison was made with experiment. 3-5 In the present 
paper, on the basis of the assumptions made above, we 
have succeeded in finding, within the framework of per- 
turbation theory, an analytic expression for the ioniza- 
tion cross section (1) in a wide range of variation of the 
relative collision rate v, and this has made i t  possible 
to determine the rate constant of the process (1) and to 
obtain limiting expressions for the dependence of the 

evaluation is determined by the behavior of the repul- 
sion term 2Z,+ of the molecular ion A,', since the other 
terms have no intersection points with the term that 
describes the final state of the system 'Z,', and transi- 
tions from these terms a re  adiabatically unlikely. 
Within the framework of the asymptotic theory2 the po- 
tential energies of the terms in the initial and final 
states can be expressed in the form 

Ui(az ,+)  =-alu14+A ( R ) / 2 ,  

u, ('z,+) =-a12R4-A ( R )  12, 

where (Y is the polarizability of the atom in the ground 
state and 

is the energy of the exchange interaction of the ion with 
i t s  atom. 

Knowing the behavior of the terms of the molecules 
A,' and A *, we can draw the conclusion that a t  collision 
energies E < U,(R,,,), where R,,, is the term intersec- 
tion point, the probability of the reaction (1) is deter- 
mined by the penetrability of a potential barrier of 
height U,(R,,,), and is exponentially small, s o  that the 
contribution of energies E < U,(R,,,) to the reaction (1) 
can be neglected. If U,(R,,,) < E I 1/2nz,, , then the 
quasimolecule A*, decays via the channel (1b)-asso- 
ciative ionization. At E > 1/2n:,,, besides the asso- 
ciative ionization process, the other channel ( l a )  is 
opened-ionization of the excited atom with production 
of an atomary ion. Here 1/2n2,,, =En, where En is the 
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binding energy of the highly excited electron. 

2. In first-order perturbation theory, the probability 
of the decay of the quasimolecule A *, per unit time with 
transition of the electron into the continuous spectrum 
is determined by the expression7 

where @i,f and Eif are  the wave functions and energies 
of the initial and final states, p ,  i s  the density of the 
final-states of the electron in the continuous spectrum, 
and V is the perturbation operator. 

Within the framework of the Born-Oppenheimer ap- 
proximation, the motions of the nuclei and of the elec- 
trons separate, so  that the wave functions of the sys- 
tem in the initial and final states a re  determined by the 
product of the nuclear ( x )  and electronic (cp) wave func- 
tions: 

Here r, and r2 are  the coordinates of the electrons of 
the atoms relative to their atomic residues, and R is 
the vector that determines the positions of the nuclei of 
the colliding partners relative to one another. 

In the initial state, the nuclear wave function xTUC(R) 
is a distorted plane wave7 normalized to a unit flux den- 
sity: 

where j ,  is the angular momentum of the motion of the 
nuclei, Pjl(cosB,) is a Legendre polynomial corre- 
sponding to this momentum; 0, is the angle between 
the R axis joining the nuclei and the relative velocity v; 
@Ejl(R) is the radial wave function, which is a solution 
of the SchrGdinger equation for the nuclear motion in a 
central potential 

and is normalized to a delta-function of ( 2 p ~ ) " ~ / 2 n ; p  
is the reduced mass of the colliding atoms, E = p1?/2; 
Ui(R) is defined in (4). 

In the final state there a r e  two channels of the reaction 
(I), which differ in the total nuclear-motion energies. 
The reaction of the associative ionization is described 
by a discrete energy spectrum cf =c,, wherein E,, which 
is reckoned from the end point of the continuous spec- 
trum, is less than zero, c,<O, and in accordance with 
the energy conservation law the channel (lb) is open a t  
collision energies 

where k2/2 is the energy of the emitted electron. 

For  the reaction ( la)  we have Ef >O, i. e . ,  

In this case the nuclear wave function in the final state 
can be written in the form 

X:Uc(R) = Y., ( R )  Y,x, ( R / R )  (12) 

where Y,,,(R/R) is a spherical wave function corre- 
sponding to the angular momentum j and i t s  projection 

M , .  The radial wave function \k,,(R) is a solution of the 
Schriidinger equation in the field of the effective poten- 
tial 

where Uf is defined in (5). At Cf >O the function @cf(R) 
is normalized to a delta function of the energy and cor- 
responds to channel (la). At cf < 0, the function 'I'w = @,, 
is normalized to unity and corresponds to the channel 
(lb). 

At collision energies E > Uf,,, the radial wave func- 
tions @,,,(R) and * , f j ( ~ )  in (8) and (10) can be written 
within the framework of the quasiclassical approxima- 
tion': 

1 2 p  de. " 
yz0 j ( R ) -  - (-- ) cos ( fpjdR-  ;) . 81CO (15a) 

R npj dv 

where 

p j ,= [2p(E-u& ( R )  ) I"., p j = [ 2 p ( e t - ~ , i f  (R)) I". 

To determine the electronic wave functions we use the 
following model. We assume that the excited electron 
in the initial bound state and in the final continuous- 
spectrum state with energy k2/2 moves in the Coulomb 
field of the atomic residue with charge Z,,,  = 1. The 
second electron is strongly bound to i t s  atom and de- 
termines the electronic terms of the molecular ion of 
the initial and final ~ ta tes -~C,+  and 'C.,', respectively. 

Sincen >> l l y ,  the electronic wave function *$(r,, r,, R) 
can be represented a s  a product of the wave functions of 
the first  and second electrons: 

Here @;ff(r,,R) is the Coulomb wave function; in the 
initial state i t  is normalized to unity, and in the final 
state this wave function can be written in the Sommer- 
feld repre~entat ion,~,  i. e.  , i t  can be expanded in the 
Coulomb functions of the continuous spectrum, and 
*f>(rz, R) a r e  the molecular wave functions of the 
strongly bound electron and correspond to molecular- 
ion states of various parities. 

The perturbation operator 3 in (6) is the operator of 
the interaction of the valence electrons of the colliding 
atoms: 

Integrating in (6) with respect to the coordinates of 
the second electron and using the fact that the inter- 
nuclear distance is much larger than the dimensions of 
the unexcited atom [condition (2)], and the fact that the 
average distance a t  which the highly excited electron is 
located is much larger than R [condition (3)], we can 
write Eq. (6) in the single-electron approximation: 

where V is defined a s  
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1 v = -  ( Y el* ( r )  i 1 A 1 ~ ~ l f ( r ~ ) )  

Under the normalization conditions chosen by us, Eq. 
(18) determines the differential cross section of the 
reaction. 

Integrating (8) with respect to the internuclear dis- 
tance R with the quasiclassical wave functions (14) and 
(15)," and replacing the summation over the vibrational 
and rotational quantum numbers of the molecular ion by 
integration, we obtain the following expression for the 
cross section of the reaction (1): 

Here R ,  is the resonance point defined by the condition 

g, and g; a r e  the statistical weights of the colliding 
atoms A and A *, gf is the statistical weight of the final 
electronic state, - 

M:::" = J R,,l*iRn,rr' dr, 
0 

and R,, is the radial wave function of the electron. 

The resonance condition (21) can be rewritten in the 
following form: 

A (R , )  =k2/2+1/2n:ff. (22) 

The cross section for the associative ionization channel 
(lb) is obtained from Eqs. (20)-(22) with account taken 
of satisfaction of the condition (lo), while for channel 
( la)  it is obtained with account taken of satisfaction of 
the condition (11). 

3. We determine now the rate constant of the reac- 
tion (1) 

where a is defined by Eq. (20), and the angle brackets 
denote averaging over the velocity distribution function. 
Assuming the distribution function to be Maxwellian, we 
obtain a general formula for the rate constant of the re -  
action (1): 

g c k" = ~ ( n ) = &  U' (Rp)  o,h(k) k dk. (24) 
2yg&Ae J R :  ( T + ~ )  2neff e x ~ [ - T ]  

Here T is the temperature of the gas, c = 137 is the 
velocity of light in atomic units, a,(k) is the cross sec- 
tion for the photoionization of the excited atom A*, 
which is connected with the matrix elements M,k;iil in 
the following manners: 

where 

is the e r r o r  integral. 

As seen from (24) and (25), our problem was re- 
duced to finding the photoionization cross section a, of 
a highly excited atom. Since we a r e  not considering 
here the Rydberg states of an electron with n >> 1, we 
a r e  justified in using the quasiclassical approximationg 
for  an estimate of the dependence of the photoionization 
cross  section on n. Within the framework of this ap- 
proximation (see the Appendix) we have obtained the 
limiting n-dependences of the rate constant of reaction 
(1) and of the function f of (26). At n>> 1/2T11' we have 

and a t  n << 1 / 2 ~ ' / ~  

4n2g, Ri;,(2nz) ('/ ,)  vz a 
K ( n ) = -  Texp  

3yg*g*. n'r2('/3) 

f=1, 

where R,,, is the point of intersection of the terms of 
the initial and final states, and depends weakly (logar- 
ithmically) on n. 

It is seen from (27) and (28) that a t  sufficiently small 
n(n << 1/2 PI2)  the rate constant K(n) increases exponen- 
tially with increasing n and the disintegration of the ex- 
cited atoms proceeds mainly via the associative ioniza- 
tion channel, while a t  large n (n >> 1 / 2 ~ ' / ~ )  we have 
K(n)  - l/n3 and the associative ionization can be ne- 
glected. The rate constant of the ionization (1) assumes 
a maximum value in the region vzm,= 1 1 2 ~ ~ ~ ~ .  For  nu- 
merical calculations of the ionization rate constants i t  
is advisable to use for the photoionization cross section 
(25) the more accurate expressions obtained by Burgess 
and Seatonlo on the basis of the quantum-defect method. 

The table l ists the results of the numerical calculation 
of the rate constant of the ionization process in colli- 
sions of excited cesium with i t s  own atom in the ground 
state: 

a t  a gas temperature T = 500 K. The results of the cal- 
culations a re  compared with experiment. 4 * 6  

TABLE I. 

The rate constant defined by (24) is the.sum of the 
rate constants of the reactions ( la)  and (lb), i. e. ,  

The rate constant of the associative ionization Kai 
= K'lb)(n) is then obtained by simply multiplying the in- 
tegrand of (24) by the function 
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FIG. 1. Spectrum of emitted electrons (s- S-electrons, d - d -  
electrons) at n = 15 and T =500 K;  k is the electron velocity. 

The figure shows the value of dK,,,/dk a t  n =  15 for 
emitted s and d electrons, calculated on the basis of 
(24). As seen from the figure, the main contribution 
to the ionization rate constant is made, a s  expected, by 
the d electrons and by those values of the emitted-elec- 
tron momenta which lie in the region k, ,  - l/n,,. 

4. Calculations have shown that the main contribution 
to the ionization cross section is made by the internu- 
clear distances near the intersection point of the poten- 
tial curves of the initial and final states, with 

Thus, a t  large values of n the condition for satisfaction 
of the inequalities (29) makes i t  possible, on the one 
hand, to use perturbation theory, and on the other hand 
to use the asymptotic theory for the description of the 
behavior of terms of the system (1). In addition, the 
large values of n justify the hydrogenlike approximation 
for the description of the states of the electron before 
and after the collision. This model makes i t  possible 
to express the rate constant of the ionization process 
in terms of observable parameters that characterize 
the behavior of the system: the gas temperature, the 
principal quantum number n, the orbital angular mo- 
mentum 1 of the highly excited electron, the polariza- 
bility a of the atom in the ground state, and the binding 
energy of the electron in the atom. 

Concrete results were obtained here for the case 
when the colliding atoms have one valence electron 
each. Within the framework of the given model, the 
problem can be easily generalized to include the multi- 
electron case. The multielectron character of the sys- 
tem influences here only the behavior of the terms of 
the system (1) in the initial and final states. 

In the case when 1/2n>, >D, where D is the dissocia- 
tion energy of the molecular ion A,', there may be no 
intersection points of the potential curve U, and U i .  
This means that a t  

the probability of the process (1) is adiabatically small. 
This is confirmed by the experimental data. 3 , 6 9 1 1 - 1 5  

When solving this problem we neglected the influence 

of the Coulomb-condensation levels with principal quan- 
tum number n' > n  on the probability of the ionization. 
Estimates show that allowance for the Coulomb conden- 
sation makes a small contribution (- l/n4) to the ioniza- 
tion rate constant of a highly-excited atom with n>> 1. 

In conclusion, the authors thank B. N. Smirnov for 
suggesting the problem and for a discussion of the re- 
sults. 

APPENDIX 

In the quasiclassical approximation, which is valid a t  
n >> 1, k << 1, the photoionization cross section o,, ob- 
tained by B ~ r e e v a , ~  is of the form 

1-v2 
( I  ( A n v  + - 1 2 A n  ) (A. 1) 

3c oSn5  v z  

where 

and J,,(4nv) is a Bessel function. For  large values of 
n, the Bessel function J , (~nv)  can be represented in 
the form of an asymptotic expansion in powers of Anv: 

(A. 2) 

Here @(t )  is an airy function of argument 
t=n2~213(2/v)113(1 - v). It is easy to verify that t << 1 a t  
large n and small k, and therefore @(t) = ~ ( 0 )  and 
G1(t) =G1(0). 

Substituting the asymptotic expression of the Bessel 
function in (A. I) ,  we obtain an expression for the pho- 
toionization cross section: 

. (A. 3) 

From this, in accordance with (24), the rate constant 
of the ionization takes in the quasiclassical approxima- 
tion the form 

At 1/4n2T << 1 the integrals in (A. 4) can be represented 
in the form 

a 
=Riitexp (-) T (f) (2T)"a, 

where R,, ,  is the point of intersection of the terms of 
the initial and final states. 

Thus, we have found that a t  n >> 1 / 2 ~ ' / ~  
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If T << 1, then the f i r s t  t e r m  in (A. 7) can be neglected. 
In the opposite limiting case n << 1 / 2 ~ ' / '  we have 

1 Rri[A(Rr) 1'' exp (- - - 
t / z n ~  2R,'T 2T 

and accordingly the ionization rate constant is de te r -  
mined a t  n << 1 / 2 ~ ' / ~  by the expression 

4n2 g, T 
K(n)=--- 

a  ex^ ( - - - 
37 g~g,. n3 3 , ;T 4n2T 

~ { ( l + t ) ~ p - z  (f) ( f ) "'(2n1)-1/3+ (i) "b-2  (-5) ( 2 n z ) ~ )  

(A. 10) 

 he integration is carried out by the stationary-phase 
method, as was done for the case of collisions of the second 
kind.' In our case I A F  I = I dA/dR I R = ~ ,  " yA (R,) , A F  is the 
difference between the slopes of the curves of the potential 
energy at the resonance point R ,  . 
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On vibrational energy exchange between strongly excited 
polyatomic molecules 
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Processes involving the exchange of vibrational energy in collisions between strongly excited polyatomic 
molecules are studied. Relaxation equations are obtained in the dipole-dipole approximation for the 
vibrational energy in a nonequilibrium molecular gas and also a kinetic equation for the distribution function 
of the vibrational states. The relation between the dynamic relaxation characteristics and the spectral 
properties of the gas is found. A comparison of the V-V relaxation time with the experimental data gives 
satisfactory results in the region of high excitation (T,, 2 600 K). 

PACS numbers: 34.50.Ez, 34.50.H~ 

The development of r e s e a r c h e s  on the laser separat ion 
of isotopes by  the method of photodissociation of poly- 
atomic molecules in a s t rong  infrared (IR) field makes  
timely the investigation of p r o c e s s e s  of exchange of 
vibrational energy in the collisions of s t rongly excited 
molecules. 

The problem of the r a t e  of collisional exchange of the 
vibrational energy has  been studied in the example of 
diatomic and weakly excited polyatomic 

An important  fea ture  of the vibrational spec t rum in 
these  cases is i t s  d i sc re teness ;  therefore,  the calcula- 
tion of the transition probabilities reduces to the prob- 
lems of the excitation of an osci l la tor ,  o r  of t ransi t ions 
in  a two-level s y s t e m  or  in a sys tem of two weakly in- 
teract ing osci l la tors .  In polyatomic molecules, the den- 
s i ty  of the vibrational spec t rum increases  rapidly with 
increase  in the vibrational energy and can  exceed the 
duration of the collision process  a t  energies  lying sig- 
nificantly below the dissociation threshold. It should be 
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