## Mass formula for mesons and baryons

## A. D. Sakharov

P. N. Lebedev Physics Institute, USSR Academy of Sciences (Submitted 4 February 1980) Zh. Eksp. Teor. Fiz. **78**, 2112–2115 (June 1980)

The number of independent parameters in the semiempirical formula for meson and baryon masses proposed by Ya. B. Zel'dovich and the author is reduced by applying chromodynamics considerations. The results are compared with experiment. A summary of the new predictions is given.

PACS numbers: 12.70. + q

Ya. B. Zel'dovich and the author proposed a semiempirical formula which gives a unified description of the masses of the mesons and baryons with the wave function of the quarks in the lowest s state (Ref. 1).<sup>1)</sup> For mesons we shall write the formula with the minimum number of independent parameters as

$$M = \delta_{M} + m_1 + m_2 + b \frac{m_0^2}{m_1 m_2} \sigma_1 \sigma_2 \tag{1}$$

and for baryons

$$M = \delta_{B} + m_{1} + m_{2} + m_{3} + \frac{b}{3} \left( \frac{m_{0}^{2}}{m_{1}m_{2}} \sigma_{1}\sigma_{2} + \frac{m_{0}^{2}}{m_{2}m_{3}} \sigma_{2}\sigma_{3} + \frac{m_{0}^{2}}{m_{3}m_{1}} \sigma_{3}\sigma_{1} \right); \quad (2)$$

here  $\delta_{u}$ ,  $\delta_{B}$ , and b are parameters with the dimensions of mass and  $m_{i}$  are the masses of the quarks. Below we use the following notation:  $m_{0}$  is the mass of the ordinary quark u or d;  $m_{s}$  and  $m_{c}$  are the masses of the strange and charmed quarks. Altogether there are six parameters.

The last term in Eqs. (1) and (2) is the spin-spin interaction of the quarks;  $\sigma_i \cdot \sigma_j$  is the scalar product of the quark spin vectors;  $\sigma_1 \cdot \sigma_2 = -3/4$ , +1/4 respectively for pseudoscalar and vector mesons. With total baryon spin J = 3/2 we have

$$\sigma_1 \sigma_2 = \sigma_2 \sigma_3 = \sigma_3 \sigma_1 = 1/4$$

With total baryon spin J=1/2, if the baryon contains two identical quarks  $q_2$  and  $q_3$  we have

$$\sigma_2 \sigma_3 = {}^i/_4$$
,  $\sigma_1 \sigma_2 = \sigma_1 \sigma_3 = -{}^i/_2$ .

However, if the baryon contains three different quarks, then the eigenvalues of the spin-spin interaction operator

 $H_{\sigma\sigma} = A \sigma_1 \sigma_2 + B \sigma_2 \sigma_3 + C \sigma_3 \sigma_1$ 

are

$$h_{\gamma_{1}} = -\frac{1}{4} (A+B+C) \pm 2^{-\gamma_{1}} ((A-B)^{2} + (B-C)^{2} + (C-A)^{2})^{\gamma_{1}},$$

$$h_{\gamma_{1}} = +\frac{1}{4} (A+B+C).$$
(3)

These eigenvalues can be found by direct solution of the secular equation of eighth order. We previously<sup>2</sup> pointed out a simple procedure for separation of the second-order secular equation and for finding  $h_{1/2}$ . We shall consider a two-dimensional space corresponding to spin 1/2 and a definite projection. The two-dimensional operators  $\sigma_i \cdot \sigma_j$  have eigenvalues  $-1/4 \pm 1/2$  and are obtained from each other by rotation of the basis by 120° (from symmetry considerations). If one of them is diagonal in a certain basis,  $\alpha = -\frac{1}{4} + \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$ 

then the other two in the same basis are:

$$\beta = -\frac{1}{4} + \frac{1}{2} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \ \gamma = -\frac{1}{4} + \frac{1}{2} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

The quantities  $h_{1/2}$  are the eigenvalues of the matrix

$$H_{\sigma\sigma}' = \alpha A + \beta B + \gamma C.$$

Equation (3) describes the masses of the isodoublet baryons of composition (o, c, s), where o is an ordinary quark, and also (for C = B) the masses of the doublets  $\Sigma$ ,  $\Lambda$  and  $\Sigma_c$ ,  $\Lambda_c$ . We note that in Ref. 2 in the corresponding formula we erroneously emitted the factor 1/2in front of the radical, but the numerical values have been calculated correctly.

The spin-spin interaction in Eqs. (1) and (2) are interpreted as the interaction of magnetic-like gluon moments which are proportional to g/2m, by analogy with the ordinary Dirac magnetic moment; g is the interaction constant. Of course, the large value of the radiation and vacuum corrections makes this interpretation somewhat arbitrary (compare Ref. 3). The empirical factor 1/3 in Eq. (2) can be explained in the following way. The spin-spin interaction is proportional to  $(g_1g_2)/V$ , where V is the effective volume of the hadron and  $(g_1g_2)$  is the scalar part of the color charge vectors in two-dimensional charge space. We assume that the effective volumes of the baryons and meson are related as 3:2 in correspondence with the number of quarks. In the case of a meson the scalar product of the charge vectors of the quark and antiquark is equal to  $-g^2$ . The angles between the charge vectors of the quarks of three different colors entering into the composition of the baryon in charge space are equal to 120°. The scalar products are equal to  $g^2 \cos 120^\circ = -g^2/2$ . Thus, the scalar products of the charges for the baryon and meson are related as (1/2): 1. Collecting the factors, we have  $(2/3) \cdot (1/2) = 1/3$ .

The relations connecting the mass differences of the baryons and mesons follow from Eqs. (1) and (2). They are adequately satisfied experimentally (see Refs. 4-6):

$$\frac{\Delta - N}{2 - \pi} = \frac{1}{2} \quad \text{(experimentally 0.46)}, \tag{4a}$$

$$\frac{\Sigma^* - \Sigma}{K^* - K} = \frac{1}{2} \qquad \text{(experimentally 0.48)}, \tag{4b}$$

0038-5646/80/061059-02\$02.40

© 1981 American Institute of Physics 1059

$$\frac{K^{*}-K}{\rho-\pi} + \frac{3}{2} \frac{\Sigma-\Lambda}{\Delta-N} = 1 \quad \text{(experimentally 1.02)}, \tag{4c}$$

$$D^{*}-D = 3 \quad \Sigma_{e}-\Lambda_{e} \quad \text{(add)}$$

$$\frac{\partial -D}{\rho - \pi} + \frac{3}{2} \frac{2_c - \Lambda_c}{\Delta - N} = 1 \quad \text{(experimentally 1.08)}, \tag{4d}$$

 $m_{*}-m_{\circ}={}^{*}/_{*}(3K^{*}+K)-{}^{*}/_{*}(3\rho+\pi)=\Lambda-N \text{ (experimentally 179\approx177), (4e)}$  $m_{\circ}-m_{\circ}={}^{*}/_{*}(3D^{*}+D)-{}^{*}/_{*}(3\rho+\pi)=\Lambda_{\circ}-N \text{ (experimentally 1356\approx1318).(4f)}$ 

The presence of the factor 1/2 in the expression for the spin-spin interaction of the quarks in the baryon can be checked without use of the ratio of the hadron volumes if we turn to the electromagnetic mass differences (see a forthcoming article<sup>7</sup>). Making the substitution for mesons  $-g^2 \rightarrow -g^2 + e_1e_2$  and for baryons  $-g^2/2 \rightarrow -g^2/2$  $2 + e_ie_j$ , we have

$$\frac{D_0 - D_0}{D_+ - D_+} = \frac{\Sigma_+ - \Sigma_+}{\Sigma_- - \Sigma_-} = \frac{m_d}{m_u} + \frac{2}{3} \frac{e^2}{g^2},$$

and experimentally

$$1 + (1.79 \pm 1.45) \cdot 10^{-2} \approx 1 + (2.03 \pm 0.67)^{-2}.$$
 (4g)

Taking for the parameters of Eqs. (1) and (2) the values

 $m_{o} = 285, m_{o} = 463, m_{e} = 1621;$  $\delta_{M} = 40, \delta_{B} = 230, b = 615,$ 

we find the hadron masses, which are given below together with their experimental values. For the mesons

|                       | π          | ρ          | ω          | K          | K*           | φ            | D            | D*           | ¢            |
|-----------------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|
| Formula<br>Experiment | 149<br>138 | 764<br>773 | 764<br>783 | 504<br>494 | 882,5<br>892 | 1024<br>1020 | 1865<br>1865 | 1973<br>2005 | 3287<br>3105 |
|                       |            |            |            |            |              |              |              |              |              |

and for the baryons

|            | N   | Δ    | Σ    | Λ    | Σ*   | 8    | 8*   | Ω    | Σε   | $\Lambda_{c}$ |
|------------|-----|------|------|------|------|------|------|------|------|---------------|
| Formula    | 931 | 1239 | 1188 | 1109 | 1377 | 1335 | 1524 | 1677 | 2436 | 2267          |
| Experiment | 939 | 1232 | 1193 | 1116 | 1385 | 1318 | 1533 | 1672 | 2425 | 2257          |

In Ref. 2 we used formulas with a larger number of parameters than in Eqs. (1) and (2), namely

$$M=a+\sum (m_{\circ}-m_{\circ})|s|+\sum (m_{\circ}-m_{\circ})|c|+b\sum \xi_{i}\xi_{j}\sigma_{i}\sigma_{j}$$
(5)

with different parameters for the mesons and baryons. The mass differences  $D^* - D = 132$  MeV and  $\Sigma_c - \Lambda_c$ = 161.5 MeV predicted in Ref. 2 have been confirmed experimentally: respectively 140 and 168 MeV (see Refs. 5 and 6). However, the absolute mass values turned out to be somewhat higher than those predicted.

The best description of the masses of the D,  $D^*$ , and  $\Lambda_c$  (but not of the  $\psi$ ) requires some change of the constants in Ref. 2, namely, for the mesons

$$a=614$$
,  $b=635$ ,  $m_s-m_o=179$ ,  $m_c-m_o=1356$   
 $F_s=0.626$ ,  $F_s=0.22$ .

and for the baryons

$$a=1085.5, b=195.5, m_{\bullet}-m_{o}=177$$

 $m_c - m_o = 1318$ ,  $\xi_s = 0.605$ ,  $\xi_c = 0.178$ 

[ $\xi_c$  for the baryons is determined as  $m_0/m_c = 285/(285 + 1318)$ ].

With these constants the expected masses of the  $s\bar{c}$ and  $c\bar{s}$  mesons are 2083 for J=0 and 2171 for J=1. The  $\psi - \eta''$  mass difference (for the vector and psuedoscalar particles of composition  $c\bar{c}$ ) without allowance for the mixing with  $\eta$  and  $\eta'$ , is 31 MeV.

The masses of the baryons turn out to be equal to the following values:

|                     | ooc ( $\Lambda_{c}\Sigma_{c}$ ) | osc (Bc)      | $ssc(\Omega_e)$ | $occ(N_{cc})$ | $scc(\Omega_{ce})$ | $ccc(\Omega_{ccc})$ |
|---------------------|---------------------------------|---------------|-----------------|---------------|--------------------|---------------------|
| $I = \frac{1}{2}$ : | 2257/2417.5                     | 2491.5/2582.5 | 2754            | 3688.5        | 3879               | 5044                |
| $I = \frac{3}{2}$ : | 2469.5                          | 2624          | 2786            | 3740.5        | 3910.5             |                     |

The experimental value of the  $\Sigma_c$  mass is  $\Sigma_c = 2425$ MeV. If we define

$$\xi_c = 1 - \frac{3}{2} \frac{\Sigma_c - \Lambda_c}{\Delta - N} = 0.14$$

then the calculated  $\Xi_c'' - \Xi_c'$  mass difference increases somewhat:

$$\Xi_{c}''-\Xi_{c}' = \frac{b}{2^{t_{h}}} \left[ (\xi_{*}-\xi_{c})^{2} + (\xi_{*}-\xi_{c}\xi_{c})^{2} + (\xi_{c}-\xi_{c}\xi_{c})^{2} \right]^{t_{h}} \\ = \begin{cases} 91 \text{ MeV for } \xi_{c} = 0.178 \\ 96.7 \text{ MeV for } \xi_{c} = 0.14 \end{cases}$$

The author expresses his gratitude to the participants in the seminar of the Theoretical Division at the Lebedev Institute for discussion of this question.

- <sup>1)</sup>In Ref. 1 in addition to a linear mass formula we discuss also the model of construction of a baryon from four quarks and an antiquark, which does not present interest here.
- <sup>1</sup>Ya. B. Zel'dovich and A. D. Sakharov, Yad. Fiz. 4, 395 (1966) [Sov. J. Nucl. Phys. 4, 283 (1967)].
- <sup>2</sup>A. D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. **21**, 554 (1975) [JETP Lett. **21**, 258 (1975)].
- <sup>3</sup>J. Sapirstein, The Color Magnetic Moment of a Quark, SLAC-PUB-2352, June 1979.
- <sup>4</sup>Review of Particle Properties, in: Rev. Mod. Phys. 48, No. 2, Part II (1976).
- <sup>5</sup>G. Goldhaber et al., Phys. Rev. Lett. 37, 255 (1976).
- <sup>6</sup>C. Baltay et al., Phys. Rev. Lett. 42, 1721 (1979).
- <sup>7</sup>A. D. Sakharov, Zh. Eksp. Teor. Fiz. **79**, 350 (1980) [Sov. Phys. JETP **52**, No. 2 (1980) (in press)].

Translated by Clark S. Robinson