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Effects of vacuum polarization by an external gravitational field in a system of spinor, scalar, and massive 
vector particles are considered in the model of conformally flat space-time. Expressions are obtained for the 
radiative corrections, and the part they play in gravitational theory is analyzed in the limits of weak 
(IR:l<m2) and strong ( IRfl>m2) gravitational fields. The Appendix gives expressions for the rate of 
spontaneous production of real particles by a strong gravitational field and the energy-momentum tensor of 
real particles in the ultrarelativistic limit; a law of increa$e of the entropy of an ultrarelativistic medium is also 
formulated. 
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INTRODUCTION 

The theory of quantum gravitational phenomena has by 
now been developed in some detail. The theory is 
based on a classification of quantum effects, in which 
one distinguishes vacuum polarization, production of 
real particles, and their interaction with a self-con- 
sistent gravitational field1"; the treatment i s  based on 
Einstein's equations, which a re  assumed to hold right 
down to curvature values R - 1; = lo6' cm" (Ref. 9). 
However, i t  has been conjectured1° that the quantum 
behavior of matter will lead to a significant modifica- 
tion of the classical theory of gravitation already a t  
Compton curvatures. In the present paper, this con- 
jecture is discussed on the basis of expressions for the 
radiative corrections. 

In 01, we derive the basic equations describing the 
isotropic model of the universe, the matter behaving a s  
a mixture of ideal gases, which corresponds to modern 
ideas about the interactions of elementary particles. l1 

In 02, we derive and analyze the radiative corrections 
of second order to Einstein's equations. The radiative 
corrections of third order a re  obtained in 03. Here, 
after studying the general structure of the perturbation 
theory series,  we consider the conjecture that the theory 
of gravitation is nonlocal in nature. 54 is devoted to the 
alternative (local) approach to the theory of strong 
fields, and we discuss the gravitational Lagrangian of 
the classical theory and establish an expression for the 
quantum corrections to it. In the Appendix, we con- 
sider the spontaneous production of real  particles by a 
strong gravitational field, formulate a law of increase 
of the entropy of an ultrarelativistic medium, and ob- 
tain expressions for the energy-momentum tensor af 
real particles in the ultrarelativistic limit. 

3 1. BASIC EQUATIONS 

We restrict  ourselves to a model which describes a 
mixture of ideal gases of scalar, spinor, and vector 
particles in a homogeneous isotropic space with self- 
consistent conformally flat metric of the form 

The total Lagrangian of the system is 

where 

where xo is the unrenormalized gravitational constant, 
and the subscript in brackets indicates the spin of the 
field. We shall not go through the well-known proce- 
dure for obtaining from (1.2) the field equations and the 
energy-momentum tensor and the transition to the mo- 
mentum representation of the field  operator^,^ but ra- 
ther write down directly the complete system of equa- 
tions of the model with allowance for the choice of the 
metric (1.1) (where no confusion is possible, the spin 
index j will be omitted for brevity): 

Here, a, and b,, are,  respectively, the operators of 
annihilation of particles and antiparticles, the brackets 
(. . . ) denote averaging with respect to the density ma- 
trix, the dot denotes differentiation with respect to the 
time t, and the upper and lower signs correspond to 
bpsons and fermions, respectively; finally, by T and 
T: we denote the components of the energy-momenhun 
tensor after separation of the conformal factor a-4. In- 
formation about the individual properties of the parti- 
cles is contained in the 9nasses" p, "frequencies" o,, 
and the kernels WM: 
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i=O, ' l r ,  I ;  p(j)=m(j)a, @:(j)=pg+~;)r 
I L i  

WP*(j) = -- Vp*(j); 
2  a  

j=o: vp=pg/w;;  

j==vg: vP(*~,,)=pp/w:; 

j=l: Vp(o)=-(pE+w:)/w;, Vp(*,)=p2/w:. 

Equations (1.3)-(1.4) form a complete system that 
describes quantum gravitational phenomena in an iso- 
tropic universe. 

~ s s u m i n ~  that the metric is weakly nonstationary, 
i. e . ,  that 

we can construct a solution to Eq. (1.3) in the form of 
a perturbation series.  The propagator can be repre- 
sented in the form 

DPa ( t )  = D:?" ( t )  + ~ r "  ( t )  . (1.6) 

In (1.6), D & P O " ( ~ )  is the local part of the propagator, and 
i t  vanishes in flat space-time and, therefore, describes 
polarization of the physical vacuum by the gravitational 
field; D r l ) ( t )  is the distribution function of the real  
particles with allowance for the effects of their interac- 
tion with the self-consistent field and pair production. 

The calculation of DT' up to terms of third order 
inclusively in perturbation theory gives 

The result (1.7) will be used in 8 2 and 03 to calculate 
the radiative corrections to Einstein's equations. The 
effect of particle production will be discussed in the 
Appendix. 

From the representation of the propagator D, in the 
form (1.6) there follows an analogous representation 
for the energy-momentum tensor: 

the polarization part T:'PO" depending only on the me- 
tric. It is therefore natural to write Einstein's equa- 
tion in the form 

and interpret the tensor II: a s  the quantum radiative 
corrections to the equations of the classical theory of 
gravitation. 

0 2. RADIATIVE CORRECTIONS OF SECOND ORDER 
AND THE PRINCIPLE OF,RENORMALIZABILITY 

An asymptotic expansion of Tf'POn in powers of the 
curvature can be obtained by assuming that the inequali- 
ties (1.5) hold for all p, including p=O. It is readily 
seen that the condition of applicability of the asymptotic 
expansion is 

Substituting the expansion (1.7) in the expressions f o r  
3? and f (1.4) and restricting ourselves to the second 
order of perturbation theory, we obtain 

The zeroth term of the expansion (2.1) is the energy- 
momentum tensor of the undeformed vacuum. The ex- 
pressions (2.2) and (2.3) also contain divergent inte- 
grals and require renormalization. A natural proce- 
dure i s  to subtract from T:,,,,, the energy-momentum 
tensor of the undeformed vacuum, this last including 
additional counterterms whose form is readily esta- 
blished in each concrete case. Such a renormalization 
amounts to a shift in the origin for the energy-momen- 
turn tensor. However, only power divergences can be 
eliminated from T:,,,,, by such a method. No shift of 
the origin can eliminate from (2.2) and (2 .  3) the loga- 
rithmic terms, but there a r e  no physical grounds for 
other renormalization methods. Cutting off the loga- 
rithmically diverging integrals a t  some limiting mo- 
mentum p,, we obtain in the framework of the adopted 
model the following results. 

... 
mZ 1 a(" ab 2 i(iZ 

~;$')=-~i+- -- 
4n2 240,' ( a 

+4-+3 (f) -66) 
a' 
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The conservation conditions Tf,,,,, ;, = 0 a r e  satisfied 
identically for (2.4)-(2.6) in each perturbation order. 

The limiting conformal momentum Po is related to the 
physical momentum by Po =po/a, and i t  is therefore not 
a renormalization constant; if we set  Po= const, we 
come into conflict with the Bianchi identities. We can 
extricate ourselves from the resulting dilemma by cal- 
culating and transforming the Lagrangians correspond- 
ing to (2.4)-(2.6). Using the formula 

and making some simple transformations, we obtain for 
the considered system of fields 

where 

here, N, is the number of species of particle with spin 
j in the system, and mj, is the res t  mass of the parti- 
cle with spin j of species 1. 

In (2. a), we go over to the physical momentum. In 
addition, we use the arbitrariness in the choice of the 
cosmological time and make the transformation 

variable (2.10) in (2.8) to first  order in 5 ,  omitting in 
the Lagrangian the total derivatives with respect to the 
time, and choosing 5 in the form 

we find the final physical Lagrangian of the radiative 
corrections: 

The result (2. l l ) ,  and also the tensor II:, can now be 
represented in a covariant four-dimensional form: 

Note that the expressions (2.12) and (2.13) a re  not the 
most general; namely, (2.12) does not contain the 
quadratic invariant of the Weyl tensor, which vanishes 
in a conformally flat world. 

Let us now discuss the results. From (2.12), we 
readily conclude that the effect of the first-order ra- 
diative corrections reduces to a renormalization of the 
bare gravitational constant no, and the observed value 
H. of the gravitational constant is related to n o  by 

The quantity A ( ~ / x )  = 1 / ~ .  - l /x0  is the correction to 
the linear elasticity of the vacuum due to the polariza- 
tion effects. l2 Thus, allowance for the first-order 
radiative corrections does not give significantly new 
physical information. 

Allowance for the second-order corrections renders 
the theory nonrenormalizable in the sense that there 
does not exist a finite limit l i m ~ ~ ~ ~ ~ : ~ ~ ~ )  a s  Po- -. The 
formal similarity of the divergences in 2'') and 2") 
suggests that the effect of c ~ ~ ~ ~ : ~ ~ ~ )  also consists of re- 
normalization of some new physical constant. 13*14 In- 
troducing in the unrenormalized gravitational Lagran- 
gian a term quadratic in the curvature, 

we obtain after renormalization 

Thus, when we treat the divergent radiative correc- 
tions of second order from the point of view of the re- where 5 is a small parameter. Making the change of 
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normalizability principle the order of the equations of 
the theory of gravitation is raised from the second to 
the fourth. This principle evidently also justifies the 
appearance of two new non-Einstein solutions in the 
theory of gravitation with quadratic invariants. 

63. RADIATIVE CORRECTIONS OF HIGHER ORDERS 

In the higher orders of perturbation theory, none of 
the terms in T:,,,, , contains divergences, and their cal- 
culation does not lead to any fundamental difficulties. 
Omitting the simple but fairly lengthy calculations, we 
give the final expression for the Lagrangian of the ra-  
diative corrections of third order directly in covariant 
four-dimensional form: 

where 

The tensor II: of the radiative corrections correspond- 
ing to the Lagrangian (3.1) has the form 

The expression (3.2) makes i t  possible to discuss the 
part played by the radiative corrections of higher arder 
in the theory of gravitation. The terms in (3.1) cubic 
in the curvature introduce additional nonlinearities in 
(3.2) and, therefore, in the equations of the theory (1.8). 
As in the case of the second-order radiative corrections, 
these terms must be regarded a s  the effects of the non- 
linear reaction of the vacuum to the gravitational field 
which deforms it. In this sense, analysis of the terms 
in (3.1) cubic in the curvature cannot yield qualitatively 
new physical information; allowance for them when 
(R" <<mz only leads to a more precise quantitative de- 
termination of effects that a r e  already contained in the 
corrections to the gravitational Lagrangian that a r e  
quadratic in the curvature. 

A particular part in (3.1) is played by the term with 
v(-", which arises because of the four derivatives of the 
curvature in (3.2), which corresponds to the presence 
in Eqs. (2.1) of six derivatives of the metric tensor and 
therefore, the existence of two further new solutions, 
whose physical interpretation presents a serious 
problem. Analayis of the radiative corrections of 
Mgher orders shows that the solution to the problem of 
the new solutions can in principle be found only by 

studying the structure of the complete perturbation 
series. In fact, one can show that the Lagrangian of 
the radiative corrections of n-th order has the form 

with 

Terms of the type (3.3.1) have the same physical mean- 
ing a s  the terms in (3.1) cubic in the curvature, and 
therefore allowance for them does not give rise to any 
objections when (R:  1 << m2 in any perturbation order. 
Allowance for the terms (3.3) results in an increase in 
the order and, accordingly, the number of solutions 
of Eqs. (2.1) to 2n. The new solutions introduced into 
the theory of gravitation by the radiative corrections 
of higher orders a re  not physical-there is no field-the- 
oretical principle which calls for their inclusion in the 
region of small curvatures. It is possible that the ap- 
pearance in II: of the terms with the higher derivatives 
is due to an incorrectness of the perturbation theory 
that is employed, and then the corresponding t e rms  
should simply be ignored; but i f  one adheres to the op- 
posite point of view, an approach to the interpretation 
of the obtained results can be based on nonlocal quan- 
tum field theory. l5 

Indeed, we can show that an inifinite series of terms 
of the type (3.3n) can in principle be combined into the 
Lagrangian of a nonlocal field theory. For  this, let us 
consider the action functional 

-- -- s:D"''= I d ' x d ' x ' ~ - ~ ~ x )  I - g ( r l )  K,(z, x r ) 9 r "  ( x ,  x ' ) ,  (3.4) 

where K2(x, x') is a form factor andL?:Poll(~, x') 
= a, R(x)R(xr). Suppose that the functions K,(x, x') has 
a fairly sharp maximum on the surface x - x' and can 
therefore be expanded in a ser ies  in the even deriva- 
tives of the covariant delta function D(x - x'): 

1 Ka ( x ,  XI) = - [ D  ( x -  XI) + 102D (X -x')" ;, 
If- g (4 
+ Z ~ ~ D ( X - X ~ ) ~ ~ ; ~ ~ ~ ; ~ +  .. . I  (3.5) 

[in (3.5), the covariant derivative is taken with respect 
to the argument of the D function]. Substituting the 
ser ies  (3. 5) in (3.4), we obtain a ser ies  for S ~ * O n ,  which 
for 1, - l /m has the same structure a s  the ser ies  

which is obtained by summing expressions of the type 
(3. 3. n). Thus, for a suitable choice of the kernel 
K,(x, x'), the Lagrangian (3.4) will contain radiative 
corrections that a re  quadratic in the curvature but not 
with derivatives of all orders. Similarly, the radiative 
corrections of N-th power in the curvature with deriva - 
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tives of any order can be combined in the nonlocal La- 
g r a n g i a n ~ ~ * o '  '(x, x') - R ( ~ ) R ~ - ' ( x ' ) / m ~ ~ - ~ .  The action 
functional for  such a Lagrangian has the form 

and the total action for the radiative corrections is ob- 
tained naturally by summing the expressions (3.6): 

Thus, the results of calculating the radiative correc- 
tions can in principle be represented in the form of the 
expansion of a nonlocal action functional, and one may 
therefore conjecture that the true theory of gravitation 
is nonlocal, the nonlocality becoming important a t  I R:( 
-mZ= 12, where I ,  is the Compton wavelength of a par- 
ticle of mass m. It is clear that in this treatment of the 
radiative corrections with higher derivatives the prob- 
lem of interpreting the new solutions does not arise. 
On the other hand, radiative corrections of the type 
(3.3. I), which do not contain derivatives of the curva- 
ture, a re  evidently the terms of an expansion in an 
asymptotic series in the parameter g = I R: 1 /m2 of some, 
in general, nonpolynomial local Lagrangian that takes 
into account exactly the nonlinear reaction of the physi- 
cal vacuum to the gravitational field which deforms it. 
When 1 R: 1 - 12, we have g - 1, and the perturbation 
theory of the standard Minkowski-space physical vacuum 
by the gravitational field becomes inapplicable; i t  is 
therefore possible that in strong gravitational fields 
there is a radical rearrangement of the physical vacuum 
the description of which requires a significant modifica- 
tion of the basic propositions of the theory. Such con- 
siderations suggest that the limit of applicability of 
Einstein's classical theory of gravitation occurs a t  
Compton curvatures. 

5 4. QUANTUM CORRECTIONS TO THE 
GRAVITATIONAL EQUATIONS I N  STRONG 
GRAVITATIONAL FIELDS 

In 03, after our discussion of the structure of the per- 
turbation series for the radiative corrections, we con- 
jectured that the higher derivatives in this series could 
reflect a nonlocal nature of the theory of gravitation a t  
Compton curvatures. It is well known that a precedent 
for such a interpretation was set  in quantum electro- 
dynamics (see Ref. 15). However, in quantum electro- 
dynamics an alternative view is nevertheless dominant, 
namely, the theory can remain local even a t  very high 
field intensities, i t s  limits of applicability being esta- 
blished by an estimate of the quantitative contribution 
of the quantum corrections to the field equations. 
Clearly in the theory of gravitation we must also con- 
sider both possibilities. In this connection, let us 
suppose that the fundamental principles of quantum 
field theory a re  valid at curvatures significantly ex- 
ceeding the Compton curvatures (I R: 1 >> mZ), and let us 
calculate the quantum corrections to the equations of 
the theory of gravitation in this region. 

The formulation of the problem described above con- 
cerning the calculation of the quantum corrections to the 

field equations is due to Zel'dovich and Starobinskii. ' 
They established the order of magnitude of the leading 
quantum terms by an analysis of the effect of vacuum 
polarization by an anisotropic field. Our aim in the 
present paper is to obtain covariant expressions for the 
quantum corrections that arise in conformal fields. 

Before we present the results of the actual calcula- 
tions, let us briefly discuss the question of the confor- 
mal invariance of physical fields. We support the 
widely accepted view that all  physical fields a re  of con- 
formal type. The equations of motion and energy-mo 
mentum tensors obtained from the Lagrahgians (1.2) 
correspond to such fields; after the transformation 

., - - 
the equations of motion for the field variable cp, I), $i 
preserve their form if m is replaced by  me'. The 
tensors have the same property: T,k=  Tike-*, where 
f: can be expressed in terms of the transformed field 
variables in the same way a s  T: in terms of the original 
variables. It is clear from the above considerations 
that all  corrections from scalar particles, f e k i o n s ,  
and the transverse components of a vector field will be 
proportional to m2 and negligibly small1) when mZ <<I R:I. 
With regard to the longitudinal component of a vector 
field, the property of '~quasiconformality~' (i. e . ,  con- . 
formal invariance up to replacement of m by p) of the 
vector field does not imply that the quantum gravita- 
tional effects in conformally flat space-time a re  pro- 
portional to m2; in this respect, particles with spin 
j= 1 differ from scalar particles and fermions with 
j = g. The reason for such a difference is that in the 
theory of boson fields ( j  2 1) there is no passage to the 
limit with respect to the mass;  for i f  m = O ,  the parti- 
cles have only two physical (contributing to observable 
quantities) polarizations, whereas for m # O  the number 
of such polarizations is 2 j+  1. Therefore, when m #O 
the behavior of the new degrees of freedom must be 
studied by investigating the equations of motion. For a 
vector field, we can obtain the answer to our problem 
in general form by investigating the four-identity 

which is contained in the equations of motion of the vec- 
tor field [see (1.2)] 

For  m zO, the expression (4.1) takes the conformally 
noninvariant form 

v, ,+2a, ,F=o, (4.2) 

a violation of the conformal invariance being contained 
in terms that do not depend on the rest  mass a t  all..  
This violation of the conformal invariance does not af- 
fect the transverse field components, since for them 
(4.2) is satisfied identically. Quite different is the sit- 
uation for the longitudinal component, in which case 
(4.2) fixes a connection between the _longitudinal and 
time components of the four-vector $,. This condition 
is used essentially in the construction of solutions to 
the field equations. Therefore longitudinally polarized 
vector particles lead in the expressions for the radia- 
tive corrections to conformally noninvariant terms that 
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asymptotically do not depend on the res t  mass. In the 
case of a strong gravitational field (IR:~ >>m2), i t  will 
be these terms that a re  of the greatest interest. 

To obtain the structure of the ser ies  of the radiative 
corrections for I R:I >> m2, we use a method of calcula- 
tion that differs somewhat from the one presented in 
881-3. This method does not require a decomposition 
of the field operator into positive and negative fre- 
quency parts. In the Friedmann metric (1.1) and after 
the confoi-ma1 transformation eo= a(t), transition to the 
(3 + 1)-dimensional form of expression $i = (4, #,), 
Fourier transformation 

and expansion of the spatial part of the field operator 
with respect to a local orthonormal basis in p space, 

the system of field equations for the longitudinal-time 
component takes the form2' 

In (4.3), the averaging is performed with respect to a 
state vector defined for t= -m, where space is assumed 
to be flat. Using the wave equation for u,, we can 
readily construct an equation for G,= (u,,+u&: 

~ , + ~ . Q ~ G , + ~ ~ ~ ~ , G , = O  (4.4) 

and express the observable quantities in terms of G,: 

One of the solutions of (4.4) is an asymptotically local 
series3) in the parameter 5 =  Q,/a;: 

For  t = -m, there corresponds to flat space 

where N,(-m) and N,,(-m) a re  the numbers of particles 
and antiparticles at t =  --. Separating from G,(t) the 
polarization part Gipo')(t), to which there corresponds 
(GDC2Jj:",' = 4, substituting GipO"(t) in (4.5), and using 
formula (2.7), we obtain . 

After integration over the p space and regularization of 
the power divergences, the expression for C,,,,,, takes 
the form 

Representing the result (4.6) in covariant form and 
taking into account the logarithmically diverging con- 
tribution to the Lagrangian from the fermions [the re-  
sults of 92 for the terms containing ln(po/ma) a re  also 
valid for the case of a strong field], we obtain the La- 
grangian of the radiative corrections in the case of a 
strong field, ( R :  ( >>m2: 

where 

in which 2' is the polynomial divergent part  of the La- 
grangian of the radiative corrections, g,,, is the non- 
polynomial quantum correction, Po is the physical lirn- 
iting momentum, the numerical coefficients qjl' and qy'  
a r e  determined by formula (2.9), and ql0) = 1/8. 

Our calculation shows that C', the logarithmically di- 
vergent part of the Lagrangian of the radiative correc- 
tions, is equal to the divergent part of the Lagrangian 
of the radiative corrections calculated for the weak 
field case. 4 '  The regularization of this part of the La- 
grangian of the radiative corrections, which leads to a 
Lagrangian of the classical gravitational fieM of the 
form5' 

has already been discussed in 82 [see (2.14)-(2.16)]. 
The total Lagrangian of a strong gravitational field 
(I  R: 1 >> m2) is the sum of the classical Lagrangian (4.9) 
and the quantum radiative correction (4.8): 

9'cg)=Fco+9,,). (4.10) 

In accordance with (4.9), one of the problems of the 
theory of a conformal field consists of establishing the 
value of the dimensionless coefficient v-' in front of the 
quadratic invariant in the classical gravitational La- 
grangian. 

It is interesting to note that in the strong field equa- 
tions there occurs the term A, this depending weakly 
(logarithmically) on the curvature: 

For  the terms in the quantum corrections that a r e  li- 
near and quadratic in the curvature one can propose 
the following interpretation: they lead to a finite re- 
normalization of the gravitational constant and the con- 
stant v: 
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Using (4.11)-(4.13), we can represent the Lagrangian 
(4.10) of a strong gravitational field in the form 

It must however be emphasized that the dependences 
x(R;), v(R:), A(@), noted above hold only in the asymp- 
totic region IR:] >> m2; in the case of a weak field, 1 R! 1 
<<m2, i t  follows from the results of 102 and 3 that 
x, v =  const and A =0. Indeed, the calculations show 
that the term A(R:) ar ises  from a divergent correction 
of the form 

It is readily seen that after regularization of the di- 
vergences by the subtractional procedure the term 
(4.15) gives in a weak field ((R:l <<m2) finite power 
corrections in the curvature, which a r e  taken into ac- 
count in 0'') and a'2) [see (2.8)], while in a strong field 
(JR:( >> m2) it  gives the term A@:). 

Lpr ( t ,  t') =L,Y (t ,  t') +L? ( t ,  t') , 

(A. 2) 

The symbol f indicates that all  local terms which can- 
cel a t  the end of the calculations6' a r e  eliminated from 
the integral. As follows from (1) and (2), the produc- 
tion of real  particles depends strongly on the type of 
statistics. For  Bose particles, the spontaneous effect 
is added to the stimulated effect, while in the case of 
Fermi  particles the negative sign in front of L T t  demon- 
s t ra tes  the effect of the Pauli exclusion principle. 

Investigation of Eq. (A. 1) in the weak field case does 
not give physically interesting results, since in this re- 
gion the rate of production of the total number of real 
massive particles is exponentially small. l6 In a strong 
gravitational field, (R:l >>m2, substituting (1. 7) and 
(A. 2) in (A. 1) and restricting ourselves to the calcula- 
tion of the terms that do not depend on the res t  mass 
and the terms proportional to m2, we obtain for the den- 
sity of the total number of mrticles and anti~articles.  

The equations obtained from (4.11)-(4.14) can be 
used to analyze the early stages in the evolution of an dJp N=C J W N P ~ ?  

isotropic universe with allowance for quantum effects. 
(Havingthisin mind, we give in the Appendixthe energy- the result 
momentum tensor of matter with allowance for the pro- 
duction of particles and their interaction with self-con- (A. 3) 
sistent conformal fields. n 

The numerical coefficients q"' and q"' for the con- In $3 ,  we have noted the alternative approach to the 
problems of the theory based on the conjecture that the sidered particle species a re  determined by (2.9). To 

represent (A. 3) in four-dimensional form, we introduce gravitational interaction is nonlocal. In such an ap- 
the four-vector of the current of the particles 

proach, i t  is a t  present impossible to draw any quan- 
titative conclusions except that the effects of nonlo- if= (Nla', 0, 0, 0 )  
cality, if they really do exist, must be mainfested a t  and an integral characteristic of the effect, 
Compton curvatures. 

ANme= J ( - g ) ' / ~ j ~ ; ~  d6x , 
We are  grateful to A. A. ~tarobinski i  for valuable 

comments. which is the total number of particles produced in a 
volume V =  1 of the three-dimensional space during the 
entire time of evolution of the universe. For AN,,, we 

APPENDIX have in accordance with (A. 3) 

Production of real particles by a strong gravitational field; 
energy-momentum tensor of an ultrarelativeistic medium 

The problem of the production of real particles re- 
duces to finding the function N*(t), which is related to 
the propagator by 

Dpx(t)+i=(Npx(t) *i)Fnx(t) - 
 h he solution (1.7) corresponds to N,,(t)=O. ] From 
Eq. (1.3), we can obtain an integral equation for N,(t) 
(Ref. 3): 

dN,x(t)/dt=Wp~(t) l Wpk(tf)Lpi(t, tt)dt', (A. 1) 
-c+ 

where L,(t, t') is the function of the reaction of the 
physical vacuum and the particles to the external gra- 
vitational field, 

1 AN,- I R ( q ( ' ) ~ l + d q ( u ~ )  (-g)lh dbx. (A. 4) 

The integrand in (A. 4) is the covariant expression for 
the rate of spontaneous production of real  particles in 
the strong gravitational field. Note that up to a common 
factor (1/2n)ln(P,,/m) this rate is equal to the expres- 
sion for the divergent part of the radiative corrections 
to the gravitational Lagrangian [see (2.12) and (4.7)1. 

Suppose that in the early stage sf the cosmological 
evolution there is a state of local thermodynamic equili- 
brium, this leading a t  each instant of time to equili- 
brium distributions of the particles of all species. In 
this case, the production of real particles reduces to 
a growth of the entropy and temperature of the medium. 
Therefore, the problem of particle production under 
conditions of local thermodynamic equilibrium reduces 
to the formulation of the law of increase of the entropy 
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and the finding of the dependence of the temperature on 
the time. 

It is however necessary to take into account one fur- 
ther channel of particle production due to bulk deforma- 
tions of the field of the matter velocities. Allowance 
for this channel leads to the appearance in the equations 
of the coefficient of bulk viscosity. In a state of local 
thermodynamic equilibrium, the entropy S and the tem- 
perature 8 in the ultrarelativistic limit a re  connected 
by 

where g, is the number of independent polarizations of 
the particle of species j. Introducing the four-vector 
of the entropy flux density oi, the four-tensor of the 
bulk deformations dh, and the four-scalar for the phy- 
sical  temperature T, 

a'= (Sla', O,O,O), d: = (6:-uiuh) uZil, 

we write the law of increase of the entropy of the ultra- 
relativistic medium in the form 

(A. 5) 

In accordance with (3) and (4), 
go..=$, A',, $,=n/0.122.12960, 

where N ,  is the number of species of vector bosons 
(m, + 0). 

The coefficient of bulk viscosity em,, can be calculated 
only for known laws of interaction of the elementary 
particles. Here, we shall restrict  ourselves to a single 
remark. The conformal invariance of the Lagrangian 
of the interaction in conjunction with dimensional con- 
siderations suggests that in the ultrarelativistic limit 

E,t=xT=, 

where x is a dimensionless numerical factor whose 
magnitude is determined by the coupling constants, the 
species of the particles, and the dynamical properties 
of their internal degrees of freedom. 

The energy-momentum tensor of a locally equilibrium 
medium can be obtained from (1.4) after separation of 
the vacuum part, substitution a s  propagator of the dis- 
tribution function of the real particles interacting with 
the external gravitational field 

and averaging over the statistical ensemble. In the 
ultrarelativistic limit, 

direct calculation leads to the result 

represent the last  expression in the covariant form 

where the bar denotes averaging over the statistical 
ensemble in the state of local thermodynamic equili- 
brium. 

" ~ e n e r a l l ~  speaking, the spinor particles make a contribution 
to the Lagrangian proportional to m 2 ~  ln (po/m). 

2 ) ~ n  the considered type of space, the system of field equations 
decouples into the systems of equations for the transverse 
components and the longitudinal-time component. 

3)~he two other solutions to Eq. (4.4) a r e  essentially nonlocal 
and do not contribute to the considered effect. 

4 ) ~ p  to finite terms, 2'' preserves its form in the region of 
Compton curvatures I R : I - m2 a s  well. 

5 ) ~ s  we have already noted, the obtained covariant expressions 
do not take into account terms which vanish in conformally 
flat spaces (such as, for example, the second invariant of 
the Weyl tensor). 

6 ) ~ 1 1  the local terms of the asymptotic expansion of the propa- 
gator a r e  taken into account by the solution (1.71, and there- 
fore iVPL(t) is essentially nonlocal. 
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