
have 

t 6 i k 6 , m [ ~ i - ~ z + ~ , + 4  (.-$) (Z,-FJ +8(9-$) 'F,  

The phase velocity of the sound c(w) and i t s  absorption 
r ( w )  are  given by the formulae 

where 

As + is positive i t  follows from this that in any liquid 

one should find a t  sufficiently low frequencies a positive 
sound dispersion. 
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We consider the anomalies of dynamic slowing down of dislocations as a result of their interaction with the 
soft phonon mode in a displacement-type phase transition. It is shown that when the phase transition 
temperature T, is approached and the corresponding critical frequency w, decreases, the dislocation dragging 
coefficient B, increases in proportion to ln(w,/o,), where w, is of the order of the Debye frequency. The 
possibilities of observing in experiment the predicted anomalies in the temperature dependence of the viscous 
component of dislocation friction is discussed. 
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It is that in phase transitions of the displace- 
ment type there appear in many crystals the so-called 
phonon modes, which a re  characterized by a dip in the 
dispersion law w, = w(k) in the vicinity of a certain wave 
vector1' k=$. It is important that a s  the phase-transi- 
tion temperature T, is approached the depth of this dip 
increases, and the corresponding frequency w,(T) = w(k,,) 
tends to zero a s  T - T,. The width of the energy level 
of the soft mode (T)-the reciprocal phonon relaxation 
time-increases and near T, i t  can even exceed the fre- 
quency w,. Recognizing that the lattice-anharmonicity- 
induced scattering of a phonon by a dislocation from a 
state with wave vector k and frequency w, into a state 
{k', w,} is characterized by a matrix element 

rkw a (w~w,)- ' /~ ,  and also the fact that nea r  the transi- 
tion the density of the critical phonons increases in pro- 
portion to w,", i t  is natural to expect the intensity of 
the phonon-dislocation interaction to increase in the 
vicinity of the point k=k, of reciprocal space near the 
transition temperature T,. This can manifest itself in 
integral fashion in the appearance of singularities of the 
phonon slowing down of the disiocations a t  T = T,. We 
attempt below to investigate the character of these sin- 
gularities within the framework of a simple model. 

Ultrasound damping anomalies of similar origin were 
investigated earlier in a number of studies (see, e. g., 
the review by Garland3). Unfortunately, these results 
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cannot be used directly in our analysis inasmuch, as 
shown earlier,4 ultrasound absorption and dislocation 
dragging a re  limited by phonon processes of different 
kinds. 

We consider a straight-line dislocation with a Bur- 
gers vector b that moves uniformly with velocity v in a 
crystal of unit volume. We assume v to be small com- 
pared with the speed of sound c, but large enough for 
the kinetic energy of the dislocation to exceed signifi- 
cantly the height of the energy barr iers  in the crystal; 
these barriers can be connected wither with the periodic 
Peierls potential relief in the discrete lattice, or  with 
other defects. 

The interaction of optical oscillations in a crystal 
with 6cacoustic" deformations is of striction origin and 
is described by the Hamiltonian2 

Here p, is the effective charge density of the critical 
branch, qr,, is the electrostriction tensor, x(r) is the 
optical-displacement operator, and u, is the deforma- 
tion tensor of the external distortion field. As applied 
to a moving dislocation5 

b 
.-(.)= E;;% (f) e"''-v", 

9 

where pmn(g/q) is an orientation vector that differs from 
zero only in a plane perpendicular to the dislocation. 

After substituting (2) in (I) ,  together with the usual 
Fourier expansion of the operator x(r) (Ref. 2). the 
Hamiltonian of the interaction of the soft phonon mode 
with the moving dislocation can be represented in the 
form2' 

where &= ak + a.k+; a,,' and ak are  the operators of crea- 
tion and annihilation of a phonon with wave vector k; 
S2,=q.v,q=k1-k; 

1, is the phonon polarization vector, w, is the "plasma 
frequencyv of the critical b r a n ~ h , ~  6,,,, is the Kronecker 
symbol, and the z axis is directed along the dislocation. 

The energy dissipation per unit time in a phonon sub- 
system subjected to the perturbation (3) is described 
according to Refs. 4 and 5 by an expression of the type 

here 

n ( o t ) = [ e x p ( o t / T ) - $ I - '  

is the Bose-Einstein distribution function, and 

is a relaxation factor that goes over into the Dirac delta 
function 6(w) a s  y-0. 

Simulating the soft mode, we assume that the anomaly 
of w(k) lies in the Brillouin zone in a spherical cavity 
K with center a t  the point k, and with radius k,. We as-  
sume also that the dispersion law is spherically sym- 
metrical with respect to the center of the cavity and 
takes the following form2 at  k c  K 

0 2 ( k )  =0.2 ( T )  +p(k -kJ2 .  (6) 

The quantity w: = we2 + pkS2 is assumed large enough, s o  
that w, >> y. 

We confine ourselves next to calculation of only the 
"critical increment" to the dissipation (5); this incre- 
ment is due to the phonon transitions within the band K 
and makes an increasing contribution to the dislocation 
slowing down a s  T - T,. We neglect the spatial disper- 
sion of the damping y in region K. 

Changing in (5) in the usual manner from summation 
to integration over the region K,  we take outside the 
integral sign a certain mean value of the square of the 
function of the directions: q2 = ( 1  (k/k, kl/k') 1 ') (the 
order of magnitude of q is determined by the charac- 
teristic values of the components of the tensor qr,,). 
As a result we obtain, after a number of straightfor- 
ward but cumbersome transformations, which we omit, 
the following expression for the critical increment 
B,  = D/v2 to the dislocation slowing down coefficient: 

Y. 

do'o' 
~ . = 2 ~ j  dw n ( w )  I (u,,-02i,,T A ( o 1 - m ) .  

" I  *r 

and 

As the temperature T approaches T,, the value of w, 
decreases gradually. We consider, for example, a 
temperature interval in which 

In this case ~ ( w '  - w) = b(w' - w) and expression (7) 
takes the form 

".IT 

Be-AT d t [ exp{ ( t+  (o , /T)  ') 'h )  -1 I-'. (10) 
0 

Formula (10) defines a function that diverges logarithi- 
mically a s  w, - 0. For  example, a t  w, << S2 =min{w,, T} 
we have in place of (10) 

However, a relation of the type (lo), (11) remains 
qualitatively valid only so  long a s  w, 2 y. With further 
decreasing of i ~ ,  , the large logarith ln(Q/w,) in (11) i s  
replaced in natural fashion by ln(n/y). In fact, in the 
limiting case w, << y Eq. (7) yields 

Thus, the discussed anomalies of the dynamic slowing 
down of dislocations a re  not of abrupt character. It is 
of interest to estimate their scale against the general 
background of normal phonon slowing down. At the 
lowest temperatures, T << w,(T) the quantity B,(10) i s  
exponentially small and the considered mechanism can- 
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not compete with the flutter effect,' which "freezes out" 
more slowly than the other phonon mechanism when the 
temperature is decreased (B,, T3). A more gainful 
situation from the point of view of observability of the 
temperature anomalies of B, in the vicinity of the phase 
transition is realized a t  w,(T) << T, << w,, when the den- 
sity of the normal phonons is still small while the den- 
sity of the critical phonons is already large. A com- 
parison of the quantities B,(11) and Bf, (Ref. 4) in the 
indicated temperature region leads to the estimate 

w ,  a n d 8  a re  the Debye frequency and temperature. 
Recognizing that usually 4 - 1, p1l2 -c  and w, - w, - 2rc/b, 
the temperature T, should be of the order of 8/10. 
Thus, in low-temperature ferroelectrics (including vir- 
tual ones), for which w, < T, S To, the temperature burst 
of B,(T) in the vicinity of the transition should be per- 
fectly observable. 

In the high-temperature region, T 2 w,, the principal 
role in the dynamic slowing down of the dislocations is 
usually played by phonon scattering of anharmonic type 
(phonon wind). 4 * 5  In this case both the acoustic and the 
optical branches make a contribution linear in tempera- 
ture to the slowing down, and the ratio of the corre- 
sponding slowing-down coefficients turns out to be of the 
order of 

where p is the shear modulus, M is the characteristic 
value of the elastic moduli of third order, and w, is the 
average frequency of the lowest optical mode a t  the 
boundary of the Brillouin zone. Usually q - 1, w, - w,, 
M - 1Op and accordingly Bop << B,,. Therefore to assess  
the relative role of the dissipation mechanism discussed 
above in the vicinity of the temperature Tc2  w,, i t  is 
necessary a s  a rule to compare Bc( l l )  with B,, (Refs. 
4, 5); this yields 

This ratio, just a s  BOp/B,,, is apparently usually small, 
although, taking into account the strong dependence of 
expressions (15) and (16) on the ratios w,/w,, wdw,, 
c / ~ ' / ~  and some uncertainty in the values of the para- 
meters q ,  M, and won, one cannot exclude the possible 

existence of crystals for which B,, S B, o r  B,, 5 B,. In 
the latter case the criterion for the observability of the 
anomalies of B, is that the ratio 

not be small. 

In any case, when choosing objects for  an experimen- 
tal investigation of the discussed effects, perference 
should be given to crystals characterized by a high 
level of plasma frequency wo and electrostriction, and 
also by a low level of the parameter P ,  of the damping 
y ,  and of the anharmonicity. 

Thus, when the crystal is suitably chosen, the appear- 
ance of noticeable temperature anomalies and the dy- 
namic slowing down of dislocations near a displacement 
type phase transition is perfectly realistic. One can 
hope to observe them in the dislocation component of 
high-frequency amplitude-dependent internal friction. 
They can be investigated also by directly measuring the 
mobilities of individual dislocations. 

In conclusion, the authors thank V. L. Jndenbom, 
A. P. Levanyuk, and S.A. Pikin for a helpful dis- 
cussion of the results and V. G. Vaks for valuable re- 
marks. 

" ~ o s t  frequently (for a ferroelectric transition of the dis-  
placement type) ko=O. At the same time there are known 
phase transitions (for example, in anti-ferroelectrics) cor- 
responding to ko # 0. 

"we shall be interested henceforth only in transitions within 
the limit of one soft mode, and omit therefore all the phonon 
polarization indices. The frequency, temperature, and ener- 
gy will be assumed to have the same dimensionality, i.e., the 
Planck and Boltzmann constant will be assumed equal to 
unitv. 
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