
fields that a r e  applied along the constant field H and 
along the z  axis and lead to the same result when their 
frequency corresponds to the transition h = JLL. The 
constant field H is close to the direction of the [110] 
axis. The alternating low-frequency equalizes the 
populations of the spin levels of the As75 nuclei, for 
which the z;  axes coincide with the axes [l i l l  and 
[ill] of the crystal. The alternating field HI, gives 
rise to transitions & = JLL corresponding to  Am =* 1, 
on account of the admixture of the states I ri)  to the 
states x,,,,, as a result of non-axiality of the EFG. 
Those components of the field HI, which a r e  parallel 
to  the z ;  axes give rise t o  Am =O transitions if the 
states x+,/, and X-, I ,  a r e  mixed. 

As seen from Fig. 4, in a narrow region of angles cp 
the field Hi, is much more effective than the field HI,, 
this being proof of the mixing of the states x+,/, and 
x-,/,. The shift of the maximum on the curve of Fig. 4 
relative to the point cp = O  is  determined by the field of 
the electrons, 

The mixing of the states x+,/, and x-,/, at an  orien- 
tation H along the [I101 axis turns off part of the field 
of the As75 nuclei with one substituted neighboring 
atom. The direction of the summary nuclear field due 
to  the quadrupole interaction differs in this case from 
the direction of the vector (S). A consistent allowance 
for the effect of mixing of the spin wave function i s  
made in the theory of D'yakonov, Merkulov, and Perel', 
who explained the sharp magnetic anisotropy and the 
onset of the ambiguity of the polarization following 
optical orientation a s  being due to the influence of the 

level anti-crossing. 

The described experiments confirm the validity of the 
premises and of'the conclusions of this theory. 

The authors thank M. I, D'yakonov, A. I. Merkulov, 
and V. I. Perel' for  a discussion. 
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The hydrodynamics of two- and one-dimensional liquids 
A. F. Andreev 
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We evaluate the (first and second) viscosity coefficients and the thermal conductivity coefficient of an 
arbitrary two-dimensional (nonsuperfluid) liquid. The kinetic coefficients are mainly produced by the 
contribution of the long-wavelength thermal fluctuations and can be expressed completely in terms of 
thermodynamic functions. We find a thermodynamic inequality, the violation of which must lead to a 
singularity in the kinetic coefficients. We evaluate the sound absorption coefficient in a one-dimensional 
liquid. 

The existence of long-wavelength weakly damped 
thermal fluctuations (of sound waves, and also of en- 
tropy and viscous waves) in liquids causes the occur- 
rence of a number of non-local kinetic effects." In 
particular, power-law '6tails" appear in the expressions 
for the damping in space or time of such excitations 
which a re  usually characterized by exponential damping 
laws. 

In the literature, a large of amount of special attention 
has been paid to a study of the power-law decrease in 
time of the auto-correlation function of the particle 

velocity in a liquid, which was detected by Alder and 
Wainwright6 a s  the result of a numerical calculation, 
and which, a s  was shown in Refs. 2 t o  5, is caused by 
long-wavelength fluctuations. This law is s o  slow that 
there appear (see Refs. 2,4, 5,7) formal divergences 
of the coefficients in the Barnett correction terms to the 
Navier-Stokes equation (in the three-dimensional case) 
and of the viscosity coefficients (in the two- and one- 
dimensional cases). 

The present has shown that the system of 
equations which describes the dynamic properties of a 
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liquid, taking into account the long-wavelength fluctua- 
tions consists of hydrodynamic kind of equations and 
Boltzmann kinetic equations for the fluctuation distribu- 
tion functions, which a re  related to each other. One 
must solve this system of equations taking into account 
the boundary conditions, for instance, the condition for 
diffusive reflection, which a re  satisfied by the distribu- 
tion function a t  the boundaries of the liquid since con- 
crete examples show118 that the main role is usually 
played by fluctuations with a mean free path of the order 
of the characteristic length of the problem. It is im- 
portant that then the wavelength of the fluctuations is 
small. 

The complete set  of equations can be reducedg to 
equations of a purely hydrodynamic type in the particu- 
l a r  case when we a r e  dealing with linearized equations 
in an unbounded liquid. In that case the fluctuation dis- 
tribution functions can be evaluated in the general form 
and eliminated from the equations. As a result one ob- 
tains the equations of hydrodynamics taking the fluctua- 
tion correction terms into a c ~ o u n t , ~  which in the three- 
dimensional case can be expressed in terms of thermo- 
dynamic functions and the kinetic coefficients of the 
liquid and which a re  non-local and appreciably larger 
than the Barnett correction terms. 

In the present paper a similar program is carried out 
for a two-dimensional liquid. In that case the contribu- 
tion from the fluctuations i s  appreciably more impor- 
tant-all kinetic coefficients of the liquid a re  basically of 
a fluctuation character and can thus completely be ex- 
pressed in terms of thermodynamic functions. The 
two-dimensional hydrodynamic equations, taking dissi- 
pation into account, turn out to be non-local which is 
connected with the logarithmic dependence of the kinetic 
coefficients on the frequency and the wavevector. A 
qualitatively similar conclusion follows, of course, 
(see Refs. 4,5,7,10) from the presence of the above- 
mentioned formal (logarithmic) divergence of the ki- 
netic coefficients. It is interesting to note that the con- 
dition that the expressions for the kinetic coefficients 
found below a r e  positive imposes some restriction on 
the thermodynamic functions of a two-dimensional 
liquid. 

The situation in a one-dimensional liquid turns out to 
be appreciably more complicated. In that case the es- 
sential role is played by fluctuations with a wavelength 
comparable to the characteristic length of the problem. 
A hydrodynamic formulation is, essentially, impossible 
a s  i t  is impossible to introduce quantities which a re  
averaged over volumes with linear dimensions which 
a re  larger than the wavelengths of the fluctuations, but 
smaller than the characteristic length of the problem. 
Below we shall evaluate sound absorption in a one-di- 
mensional liquid which turns out to be proportional to 
w3I2  (w is the sound frequency) i. e . ,  which differs 
greatly from the hydrodynamic quadratic law. 

In a previous paperQ we omitted incorrectly from the 
kinetic equations for the shear and entropy waves 
several terms, which, if taken into account, change the 
coefficients in the final results. We give therefore in 
the Appendix of the present paper the correctedformulae 

for the correction terms to the hydrodynamic equations 
of a three-dimensional liquid and for the sound disper- 
sion. 

1. BASIC EQUATIONS 

We shall start  from the equations, obtained in a pre- 
vious paper,g which express the time derivatives of the 
hydrodynamic quantities in terms of the deviations 
6n(q), 6f,,(q), 6g(q) of the distribution functions of, re- 
spectively, the sound, shear, and entropy fluctuations 
from their equilibrium values: 

b+p div v=O, 

pTa+div Q=0. 
Here 

p, P, and v a re  the density, pressure, and velocity of 
the liquid, T is the temperature, and o the entropy per 
unit mass,  

c, is the heat capacity per unit mass  a t  constant pres- 
sure,  d ~ = d ~ q / ( 2 7 ~ ) ~ ,  and d is the dimensionality of the 
space. 

The indices a, P number the directions of the polari- 
zation of the shear waves. In the three-dimensional 
case there a re  two directions of polarization determined 
by the mutually orthogonal unit vectors l , (a = 1,2)  
which lie in the plane perpendicular to the direction of 
the wavevector q and which satisfy the condition lailak 
= 6,, - q,q,/q2. In the two-dimensional case we can 
drop the indices a! and P ,  since there is only one polar- 
ization direction determined by the vector li = e,,qk/q, 
where e,, is the antisymmetric unit tensor. 

The deviation 6n(q) of the sound fluctuation distribu- 
tion function from i ts  equilibrium value is determined 
by the formulag 

where n=q/q,  and o, k a re  the frequency and wavevec- 
tor of the hydrodynamic motion. The quantity y, is in 
the three-dimensional case equal to 

where q, L are  the f i rs t  and second viscosity coeffi- 
cients, H. is the heat conductivity coefficient, and c, is 
the heat capacity per unit mass a t  constant volume. In 
the two-dimensional case we have 
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where g (q) ,  5,(q), and x,(q) a r e  the values of the coef- 
ficients of f i r s t  ( ~ ( w ,  q)) and second (5(w, q)) viscosity 
and the heat conductivity ( ~ ( w ,  q)) for w = cq. 

The distribution functions f,,(q) and g(q) of the shear 
and entropy fluctuations satisfy the equations 

where V, = ~ ( 0 ,  q), X, = ~ ( 0 ,  q)/pcp. In a previous papers 
we erroneously omitted in Eqs. (4) the terms with an 
explicit dependence on the velocity gradients. These 
terms [the second and third in the first  and the second 
in the second of Eqs. (411 a re  obtained in the usual way 
(see Appendix to the paper by Meierovich and the pres- 
ent author8) from the non-linear terms (vV)v and vVo 
in the hydrodynamic equations for G and 6. 

From Eqs. (4) we easily find the deviations 

of the distribution functions of the shear and entropy 
waves from their equilibrium values which are ,  re- 
spectively, equal to 6,,T/p and c,/p. 

2. KINETIC COEFFICIENTS OF TWO-DIMENSIONAL 
LIQUIDS 

Substitution of Eqs. (3) and (5) into Eqs. (2) for the 
dissipative momentum and energy fluxes gives in the 
two-dimensional case 

a ~ ,  a ~ ,  a v  a ~ ,  
z.--q ( u ,  k )  (6+ zk az, -dik2) a z ,  - c ( o .  r)a.= 

Q = - x ( o ,  k )  V T ,  (6 

where the kinetic coefficients a re  defined by the for- 
mulae 

q ( 0 ,  k) ='/apT(Ii+2Ir), 
6  ( 0 ,  k )  =pT(cp-$+'It) zIi+'I;T~aIa+'I~pT($-l) 'I,, 

% ( a ,  k) =' l~p~ ' I i ,  
(7) 

in which 

All integrals in (9) are  logarithmic a s  Y,, qO, xo depend 
only logarithmically on q, a s  we shall see below. To 
evaluate them with logarithmic accuracy we can neglect 
in the denominators of the integrands the terms with w 
and k. We must clearly in a l l  integrals take a s  upper 
limit the quantity q - l /a,  where a is the interatomic 
distance. The lower limit of the integral I, must be 
that value of q for which the quantity ysq2 equals 

p(w - cn . k), i. e. ,  

qa-max( ( k a )  '", ( o a l c )  ") 

The analogous role in I, and I, is played by the value 
qa - ( w a / ~ ) ' / ~ ,  but i t  is necessary to remember that 
Eqs. (8) were obtained under the assumption that q >> k. 
Therefore, the lower limit in I, and I, is, in fact, the 
value 

qa-max (ka,  (oa lc )  "). 

Introducing the logarithmic variables 

we get from (7) and (8) the following equations: 

where L = $min(x, y), A =min(x, y/2). Since 

q .14  -q  (2 ,  m ) ,  xo ( 2 )  =x  (5 ,  m)  , 
I n  ( x )  = q  ( ~ $ 2 )  +6 ( 5 , ~ )  + (T$'/ca) x  ( z ,  z )  , 

Eqs. (9) form a closed set. Through simple transfor- 
mations we get from them the following set  of equations 
for the functions xo(x), g,(x), and y,(x): 

The solution has the following form 

where 

After substitution into (9) we get the final expressions 
for the kinetic coefficients: 

1040 Sov. Phys. JETP 51(5), May 1980 A. F. Andreev 1040 



All kinetic coefficients increase a s  w, k -0 in propor- 
tion to ln1I2w or  1n1l2k. This justifies the original as- 
sumption that the main contribution to them comes from 
the long-wavelength fluctuations. 

There follows from Eq. (10) an interesting conclusion 
that in order that the kinetic coefficients a re  positive it 
is necessary that the thermodynamic inequality 82 < 1 or 

This condition is always satisfied in a rarefied system 
(in a gas), where c, is independent of the density. 
However, in the general case there may exist in the 
phase diagram of a two-dimensional liquid a peculiar 
singular line on which g2= 1 and such that when one ap- 
proaches it, 5 - m, n - 0, while 71 = const. , a s  can be 
seen from (10). 

3. SOUND ABSORPTION IN A ONE-DIMENSIONAL 
LIQUID 

In the one-dimensional case there exist altogether 
two kinds of long-wavelength fluctuations-sound waves 
and entropy waves. There a re  no shear waves. How- 
ever, a more important characteristic is the well known 
resonance character of the interaction between solmd 
waves which propagate in one of two possible directions 
in that case the conditions for conservation of energy 
and of momentum are  identically the same. Below we 
shall evaluate the sound absorption coefficient and we 
show that due to the resonance condition the main con- 
tribution to the absorption comes from thermal sound 
fluctuations with a wavelength of the order of the sound 
wavelength. The contribution from the entropy waves 
can be neglected a s  there is no resonance. 

Sound absorption is determined properly by the phonon 
energy function 

Here w, = c 1 k 1 ,  G,(w, k) is the retarded Green function 
defined in the usual way in terms of the complex opera- 
tor of the sound field Gka,eik", where a, a re  the phonon 
annihilation operators. The use of the function G, in- 
stead of the usual D function is here more convenient 
a s  the well known hydrodynamic operator (see Ref. 11) 
of the phonon-phonon interaction cannot be expressed 
directly in terms of the real  phonon field. 

As the interaction between long-wavelength phonons 
is weak, the main contribution to G comes in the Mat- 
subara technique from the diagrams shown in the figure 
in which the bare hydrodynamic vertex occurs (see Ref. 
11) 

and the exact Green functions. After analytical con- 
tinuation with imaginary frequencies we get 

FIG. 1. 

x G ,  ( - o - x ,  q )  + n ( x )  p(q, x )  G ,  ( - o - x ,  -k-q) 1 
+2V2(k,  q, k + q ) n ( x )  [ p ( q ,  ~ ) G n ( o + x ,  k+q) f p ( k f  g, x ) G a ( ~ - o ,  q)  1 
+vl ( k ,  q, k-q)  n ( x )  [ p  (k-q ,  2 )  G , (o -x ,  q )  +p(q,  X )  GA(O-X,  k-q)  I ) ,  

where p(k, w )  = (2ni)-'{G,(w, k) - GA(w, k)} is the spectral 
function (see Ref. 12), GA is the advanced Green func- 
tion, and n(x)= ( 8 I T  - 1)". 

It will be clear from the result that the quantity 
C, = C(ck, k) is appreciably smaller than w,. In that 
case the main contribution to the integral over x comes 
from the poles of the Green functions in the integrand 
which lie close to the real  axis. As a result we get 

where we have used the fact that in the case considered 
of a classical liquid we must assume that the condition 
n(x) = T/x>> 1 is satisfied. 

In the integral over q the main contribution also 
comes from the pole terms, especially those of them 
which have a resonance nature, i. e . ,  which tend to 
infinity a t  2 = 0. If, to fix the ideas, we assume that 
k > 0, such pole terms give terms with V(k, q, k + q) 
when q >O and terms with V(k, q, k - q) when 0 < q < k. 
After simple transformations we get 

Separating the real and imaginary parts in (11) we 
easily check that G, is pure imaginary s o  that the damp- 
ing is much larger than the dispersion. 

We can write the solution of Eq. (11) in the form 
C,= iI'(k) where the sound absorption coefficient r (k)  
is equal to 

One easily checks from Eqs. (11) and (12) that, indeed, 
the main contribution to the sound absorption comes 
from the interaction with thermal sound fluctuations 
with wavelengths of the order of the sound wavelength. 

I express my gratitude to I. M. Lifshitz for a useful 
discussion. 

APPENDIX 

If we use instead of Eqs. (10) and (11) of Ref. 9 Eqs. 
(5) the expression for the corrections ~TJ, , , ,  to the vis- 
cosity tensor is changed. In the notation of Ref. 9 we 
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have 

t 6 i k 6 , m [ ~ i - ~ z + ~ , + 4  (.-$) (Z,-FJ +8(9-$) 'F,  

The phase velocity of the sound c(w) and i t s  absorption 
r ( w )  are  given by the formulae 

where 

As + is positive i t  follows from this that in any liquid 

one should find a t  sufficiently low frequencies a positive 
sound dispersion. 
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We consider the anomalies of dynamic slowing down of dislocations as a result of their interaction with the 
soft phonon mode in a displacement-type phase transition. It is shown that when the phase transition 
temperature T, is approached and the corresponding critical frequency w, decreases, the dislocation dragging 
coefficient B, increases in proportion to ln(w,/o,), where w, is of the order of the Debye frequency. The 
possibilities of observing in experiment the predicted anomalies in the temperature dependence of the viscous 
component of dislocation friction is discussed. 

PAC3 numbers: 63.75. + z, 61.70.Le 

It is that in phase transitions of the displace- 
ment type there appear in many crystals the so-called 
phonon modes, which a re  characterized by a dip in the 
dispersion law w, = w(k) in the vicinity of a certain wave 
vector1' k=$. It is important that a s  the phase-transi- 
tion temperature T, is approached the depth of this dip 
increases, and the corresponding frequency w,(T) = w(k,,) 
tends to zero a s  T - T,. The width of the energy level 
of the soft mode (T)-the reciprocal phonon relaxation 
time-increases and near T, i t  can even exceed the fre- 
quency w,. Recognizing that the lattice-anharmonicity- 
induced scattering of a phonon by a dislocation from a 
state with wave vector k and frequency w, into a state 
{k', w,} is characterized by a matrix element 

rkw a (w~w,)- ' /~ ,  and also the fact that nea r  the transi- 
tion the density of the critical phonons increases in pro- 
portion to w,", i t  is natural to expect the intensity of 
the phonon-dislocation interaction to increase in the 
vicinity of the point k=k, of reciprocal space near the 
transition temperature T,. This can manifest itself in 
integral fashion in the appearance of singularities of the 
phonon slowing down of the disiocations a t  T = T,. We 
attempt below to investigate the character of these sin- 
gularities within the framework of a simple model. 

Ultrasound damping anomalies of similar origin were 
investigated earlier in a number of studies (see, e. g., 
the review by Garland3). Unfortunately, these results 
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