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The thermodynamics of liquid He3 is investigated in the vicinity of the line of the phase transitions into the 
superfluid state. Neglecting the weak dipole-dipole interaction, renormalization-group equations that describe 
the evolution of the effective coupling constants in the critical region are derived. It is shown that these - - - 
equations have no stable fued points, so that the superfluid phase transitions in liquid He3 should in principle 
be of first order. Computer solution of the renormalization group equations has established that allowance for 
the interaction of the critical fluctuations can lead in a number of cases to a reversal of the sign of the 
difference of the free energies of the phases A and B ,  i.e., to expansion of the region of thermodynamic 
stability of one of the two superfluid states. Specifically, fluctuation stabilization of the Anderson-Morel phase 
should be observed in He3. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION 

In the present paper we investigate the influence of 
the critical fluctuations of the order parameter, which 
correspond to superfluid phase transitions in superfluid 
He3, on the structure of the phase diagram of this Fer- 
mi liquid. It is known that below 2.6mk and in the ab- 
sence of an external magnetic field liquid He3 can exist 
in one of two superfluid modifications (see, e.g., Ref. 
1). Both modifications were described theoretically 
back in the early sixties, i.e., long before they were 
experimentally observed. The f i rs t  to attract the at- 
tention of the theoreticians was a phase characterized 
by an anisotropic gap in the spectrum of the elementary 
excitations; i t  is presently known a s  the A phase. This 
was followed by the development of a theory of the su- 
perfluid state with isotropic gap, the B phase,3 and the 
basis for the observation of the structure of this phase 

was the fact that in the weak-coupling approximation the 
B phase has a lower f ree  energy than the A phase. 

The discovery, after ten years, and identification of 
the anisotropic superfluid state of liquid ~ e '  (Ref. 4) 
have cast doubts on the applicability of a theory of the 
BCS type in this case.' To explain the experimentally 
observed thermodynamic stability of the A phase in a 
definite range of temperatures and pressures, Anderson 
and Brinkman went beyond the framework of the weak- 
coupling approximation and took into account the renor- 
rnalization of the vertex due to the exchange of the spin 
(noncritical)  fluctuation^.^ I t  turned out that paramag- 
non exchange does indeed stabilize the phase A, and al- 
lowance for the sixth-order invariants in the expansion 
of the free energy explains, a t  least qualitatively, the 
structure of the phase diagram of liquid He3 a s  a whole.' 
We recall that this diagram contains two superfluid sec- 
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ond-order phase transition lines and a first-order line 
of transitions that separates the regions of the existence 
of the A and B phases. All three lines meet ina  single- 
bicritical-point with coordinates P, = 22 atm and T, 
= 2.4mK. 

A theory of the BCS type and i t s  modified variant, 
which takes into account the strong-coupling effects, i s  
based essentially on the idea of the self-consistent field. 
This means that within the context of the phase-transi- 
tion problem they should be equivalent to the phenomen- 
ological Landau theory, which ignores completely the 
critical fluctuations of the order parameter. Neglect 
of these fluctuations is legitimate if the Ginzburg-Lev- 
anyuk parameter of this system is small, this being 
usually due to the relative weakness of the interaction 
responsible for the phase transition. In the case of liquid 
~ e ~ ,  however, the effective interaction is apparently 
strong enough, a s  is attested by the failure of the weak- 
coupling theory. Consequently, the Ginzburg-Levanyuk 
parameter for superfluid phase transitions should not 
be too small here. 

The validity of this conclusion is confirmed by the re- 
sult of recent experiments on the absorption of zero 
sound in normal He3 in the vicinity of the superfluid- 
transition line." In these experiments, critical anoma- 
lies of the absorption coefficient of fluctuation origin 
were distinctly o b s e r ~ e d . ~  Obviously, critical fluctu- 
ations should appear also in the thermodynamics of li- 
quid He3. They can play, in particular, a substantial 
role in the formation of i ts  phase diagram, in analogy 
with the situation in many other  system^.^'" 

The question of the influence of critical fluctuations 
on the character of the superfluid transitions in He3 was 
already investigated by Jones, Love, Moore, and Bail- 
in.12.13 They have considered a number of fluctuation 
Hamiltonians that describe the critical thermodynamics 
of He3 both with neglect of the dipole forces and with 
allowance for these forces, with and without an external 
magnetic field, etc. Principal attention was paid to an 
investigation of dipole-dipole interaction is smuch a s  in 
accord with the estimates of Jones et a1.12 the tempera- 
ture interval in which the dipole-dipole interaction i s  
significant is commensurate with the width of the criti- 
cal region itself. For the width A T  of the critical re- 
gion, on the other hand, they obtained a value of the 
order of 10'STc. But the experimental results of Paul- 
son and Wheatley7 indicate unequivocally that A T  in li- 
quid He3 can hardly be much less (and may even be 
larger)" than 10-2~,.  This forces us  to change the em- 
phasis in this problem and assume the most interesting 
cases to be precisely those in which the dipole forces 
can be neglected. One such case, that of a zero mag- 
netic field, i s  in fact considered in the present paper. 

The plan of the article i s  the following. In Sec. 2 we 
discuss the form of the correlator of the critical fluc- 
tuations, and the renormalization group (RG) equations 
a r e  derived for the effective coupling constants. We 
find a certain numerical smallness that enables u s  to 
neglect the anisotropy of the fluctuation spectrum a t  
reasonable values of the anisotropy parameter. This 
simplifies the problem radically and makes possible a 

detailed analysis of the RG equations; this i s  the subject 
of Sec. 3. It i s  shown in this section that the critical 
renormalizations of the coupling constants can change 
radically the relations between them, and the character 
of these changes corresponds to stabilization of the A 
phase by the critical fluctuations. As a result, the 
phase diagram of superfluid He3 i s  deformed in compar- 
ison with the diagram predicted by the Anderson-Brink- 
man-Serene theory. 5 * 6  Section 4 contains concluding 
remarks. 

2. THE CRITICAL-FLUCTUATION CORRELATOR 
AND THE RG EQUATIONS 

The fluctuation Hamiltonian that describes the super- 
fluid phase transitions in liquid He3 can be easily ob- 
tained by suitably generalizing the phenomenological 
expression for the free energy.14'15 Neglecting the very 
weak dipole-dipole interaction, this Hamiltonian takes 
the form 

Here cpl,(x) is the complex tensor field of the fluctua- 
tions of the order parameter, and the first  and second 
subscripts of 40 refer to the spin and the orbit, respec- 
tively. The coefficients of the fourth-order invariants 
pa play the role of bare coupling constants, the para- 
meter f determines the anisotropy of the fluctuation 
spectrum,2' and 4 i s  the linear measure of the distance 
to the line of the superfluid phase transitions. 

It i s  known that the character of the phase transition 
and the structure of the low-temperature phase depend 
on the manner (and on the degree) of the temperature 
variation of the effective-Hamiltonian coefficients. The 
temperature evolution of these coefficients i s  described 
by the RG equations. To derive these equations, in 
turn, we must know the form of the correlator of the 
critical fluctuations Gljhz(q)= (pu(q)p& (q)). Starting di- . 
rectly from the Hamiltonian (I), we can establish the 
form of the bare  correlator G$ 'L~(~) .  After trivial man- 
ipulations we get 

How i s  the structure of this expression changed when 
the interaction i s  turned on? It is clearly seen from (1) 
that the interaction of the fluctuations does not lead to 
a coupling of the spin and orbital degrees of freedom. 
Consequently, the exact propagator remains diagonal in 
the spin indices also a t  fie #0. In addition, since normal 
He3 i s  an isotropic liquid, the propagator Gi,,,(q) should 
break up, just a s  in (2), into a sum of transverse and 
longitudinal parts. These terms can in principle have 
a rather complicated structure, but each of them should 
be well approximated by a corresponding pole expres- 
sion. 

In fact, we know that the critical fluctuations renor- 
malize strongly only the mass term in the harmonic 
part  of the fluctuation Hamiltonian. The coefficients of 
the gauge invariants, on the other hand, change very 
slowly even near T,. Their rate of change i s  small to  
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the extent that the critical exponent 17 is small. There- 
fore for the "dressed" propagator, a t  least in the lower 
orders of perturbation theory, the following approxi- 
mate formula holds: 

where x is the reciprocal of the correlation radius. 

Having an expression for Gijk,(q), we can proceed to 
derive the RG equations. Since the technique of their 
derivation is well known, we shall dwell here only on 
the most essential aspects. We note f i rs t  that to solve 
our problem there is no need to derive and subsequent- 
ly investigate the complete system of the RG equations. 
Since the coefficients of the gradient terms in the Ham- 
iltonian a r e  weakly renormalized, and the "dressed 
mass" x enters a s  an independent variable, only the RG 
equations that control the evolution of the effective con- 
stant y ~ ,  . . . , ys are  of importance to us. 

In the derivation of the equations for the dressed 
charges i t  is natural to restrict  oneself to the single- 
loop approximation for  the Gell-Mann-Low functions. 
This approximation reflects correctly the qualitative 
feature of the critical behavior. It i s  then easily seen 
that the problem reduces to a calculation of the integral 

and to a determination of i t s  tensor convolutions with 
a l l  possible fourth-order invariants that enter in the 
Hamiltonian (1). The tensor factors responsible for 
these invariants have the following structure (the num- 
ber of the factor coincides with the number of the bare  
invariant pa): 

I t  is convenient also to represent the integral (4) in sim- 
ilar form. 

Substitution of (3) in (4) and integration with respect 
to the angles yield 

where 

and A i s  the cutoff momentum. What remains now i s  
convolution of (6) with each of the 15 pairs of invariant 
~ i ' $ , ~ , ,  a laborious operation but one presenting no 
fundamental difficulties. 

A s  a result we arrive a t  the following system of Gell- 
Mann-Law equations: 

where t O =  l /x .  

The obtained system is quite cumbersome, so  that i t s  
complete investigation, even with a computer, would be 
extremely difficult. This prompts u s  to search for ap- 
proximations that make the problem solvable in prac- 
tice. As the f i rs t  step in this direction we note that the 
complexity of the structure of Eqs. (8) i s  due to a con- 
siderable degree to the anisotropy of the spectrum of 
the fluctuations. In fact, if we change over to a model 
with an isotropic spectrum (f - 1), the propagator (3) 
becomes diagonal not only in spin but also in the orbital 
number, the factor b in (6) vanishes, and with i t  a lso  
the greater part of the terms in the expressions for the 
Gell-Mann-Low functions. In this situation i t  is natural 
to raise the following question: which numerical values 
a r e  typical of the factor b, and can they be neglected, 
compared with a, a t  least a t  not too large values of the 
difference If - 11 ? TO answer this question i t  suffices 
to find the ratio b/a as a function off. The calculation 
of the integrals in (7) entails no difficulty, and in the 
limit a s  A/ u -- we obtain 

A plot of this function is shown in Fig. 1. As seen from 
the figure, a t  I f  - 11- 1 the ratio b/a 0.1, i.e., it is 
small enough. Therefore the numerical coefficients 
with which a and b enter in (8) a r e  of approximately the 
same order of magnitude, and the t e rms  proportional to 
b can indeed be neglected. 

We have estimated here the ratio b/a for arbitrary f 
not only because we do not know the exact value off. 
(The weak-coupling theory yields1' f = 3 for liquid Hes, 
but we know that the predictions of this theory a r e  not 
reliable in this case.) The point is also  that in the cri-  
tical region the parameter f is renormalized, albeit 
slowly, and consequently the ratio b/a also changes. To 
justify the neglect of the anisotropy of the fluctuation 

FIG. 1. Plot of the ratio b / a  against the anisotropy param- 
eter f of the fluctuation spectrum. 
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spectrum we mus t  establish the c h a r a c t e r  of the depen- 
dence of b / a  on f and verify that th i s  dependence i s  
smooth enough. ) 

Assuming the spectrum of the fluctuations to  b e  iso- 
tropic (fully degenerate),  we obtain real ly  a much m o r e  
substantial simplification of the initial problem than 
might seem a t  f i r s t  glance. T h i s  simplification is 
closely connected with the appearance  in our  system, 
in the limit as f- 1, of a cer tain new specific symmetry  
property. To  understand i t s  cause,  we examine m o r e  
carefully the a r rangement  of the invariants  that en te r  
in the Hamiltonian (1). Although the symmetry  of the 
system on the whole cor resonds  t o  the group O(3) XO(3) 
x U(1), not one of the eight t e r m s  in ( I )  cor responds  ex- 
actly to this  group. Instead, each of them i s  a n  invari- 
a n t  of i t s  own wider group, which includes a s  a sub- 
group a l s o  the group O(3) X O(3) x U(1). Thus, f o r  ex- 
ample,  the f i r s t  invariant of fourth o r d e r  in (1) c o r r e s -  
ponds to the group O(9) X U(1), the second to U ( 9 ) ,  the 
third to  U ( 3 )  x 0(3), the fourth to U(3) x U(3), and the 
fifth to O(3) x U(3). Let  u s  a t t empt  now t o  interchange 
the spin and orbital indices of the o r d e r  parameter  and 
s e e  how this i s  reflected in the f o r m  of the Hamiltonian 
of the interaction. I t  i s  easi ly  seen that such a n  opera-  
tion a f fec t s  real ly  only the third and fifth invariants,  
and a s  a resu l t  I \$,,,, i s  simply t ransformed into 
I{$,,,, and vice versa .  On the other  hand, if the b a r e  
coupling constants  & and interchange places s imul-  
taneously, then the f o r m  of the interaction Hamiltonian 
does not change a t  all .  Thus, the fourth-order  f o r m  in 
(I),  in addition to the continuous group O(3) x 3(3)  x C'(1h 
h a s  a l s o  a d i sc re te  symmetry  group consisting of t rans -  
formations of the f o r m  spin = orb i t  and b,= @ j .  

The Hamiltonian, on the whole, however, does not 
have th i s  symmetry  group. In fact ,  although the f i r s t  
two t e r m s  of (1) a r e  indeed invariant to permutations of 
the spin and orbi tal  indices, the third (anisotropic) t e r m  
is sensitive to these permutations. It  i s  precisely th i s  
t e r m  which upse t s  (unfortunately, weakly) the spin-orbit 
symmetry in our  problem. I t  i s  c l e a r  therefore that by 
going to the l imit  f- 1 we not only simplify the f o r m  of 
the propagator in the RG equations, but  a l s o  r e s t o r e  the 
discrete  symmetry  group of the system. 

The presence of additional symmetry  of the Hamilton- 
ian can lead to the appearance of a cer tain specific sym- 
met ry  in the Gell-Mann-Low equations themselves.16 In 
our  c a s e  such a symmetry  should manifest itself in in- 
var iance of the sys tem of RG equations to  the permuta-  
tion y3= y,. T h i s  invariance is a reflection of the fact  
that the spin= orbi t  permutation does not change the 
s t ructure of the Hamiltonian and consequently should not 
affect the f o r m  of the Gell-Mann-Low equations. At  
b = 0, the Gell-Mann-Low equations (8), a s  can b e  easi-  
ly seen, a r e  indeed invariant to the indicated p e r m u b -  
tions. I t  is natural  t o  use  th i s  symmetry  property of the 
RG equations to  simplify the i r  s t ruc ture  fur ther .  
Changing over to the symmetr ized var iab les  

We shal l  in fact  take the system (11) a s  the b a s i s  fo r  
the investigation of the c r i t i ca l  behavior of liquid He3. 

3. PHASE TRAJECTORIES, FIXED POINTS, 
AND PHASE DIAGRAM 

Before we proceed to a n  ana lys i s  of the RG equations, 
we reca l l  the principal r e s u l t s  of the phenomenological 
theory of superfluid phase t ransi t ions in liquid He3, 
which we shall need la te r  on. The tensor  o rder  para-  
mete r  A i j  = ( q i j )  in the A and B phases h a s  the following 
s tructure:  

The f r e e  energ ies  of these phases a r e  

F,='~,T~~-';.[$,+~~~T',':(>~T$:T>~) ] A -  

where  7 = ( T  - T,)/T,. 

The thermodynamic stability of any superfluid modi- 
fication below the phase-transition point i s  determined 
obviously by the sign of the difference of the f r e e  ener-  
gies" F A  and F,. This  difference can b e  represented in 
the f o r m  

If we a s s u m e  the sign of the coefficient $, to be  fixed, 
then 6 F  will depend only on two charac te r i s t i c  rat ios:  

x ~ = ( $ . T J ~ )  3). => 3% (15) 

These  r a t i o s  a r e  those very important charac te r i s t i cs  
of liquid He3 and play the principal ro le  in the formation 
of i t s  phase diagram. 

In the c r i t i ca l  region. the fluctuations of the o rder  
parameter  renormalize the constants  /3,, and their  
place in the expansion of F in powers  of A i s  assumed 
by the physical charges  y,. Accordingly, the s t ruc ture  
of the o rdered  phase, when the c r i t i ca l  fluctuations a r e  
taken into account, i s  no longer determined by the b a r e  
p a r a m e t e r s  x, and yo,  but by their  d ressed  counterparts  

Obviously, to  establ ish the f o r m  of the sought phase 
diagram we must  determine the manner  in which the 
ra t ios  of the vertices x and 1 vary when the system ap-  
proaches the phase-transition line. The RG equations, 
which control  the evolution of the p a r a m e t e r s  x and y in 
the c r i t i ca l  region, can be  easi ly  obtained by combining 
in suitable manner the equations fo r  the charges  (11). 

TABLE I. Coordinates of fixed points of the last  3 equations 
of (18). 

I ( 1 1 1 d i 8  
1 I I I 

we can rewr i te  these equations in the f o r m  
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Introducing in place of y, and y _  also the two ratios 

u=yzIyl, ~ = 2 r - / r % ,  (17) 

we get!) 

The last system has two substantial features. First, 
the equations for x, y, and z do not contain the variable 
v ,  i.e., these three equations form a closed system by 
themselves. Second, the right-hand side of the equation 
for z has a common factor the variable z ,  this being a 
direct consequence of the already discussed spin = orbit 
symmetry. The f i rs t  feature makes it really possible to 
reduce the number of investigated equations to three, 
while the second allows u s  to start  out in the investiga- 
tion with the relatively simple particular case z = 0, 
i.e., to study f i rs t  the picture of those phase trajector- 
ies  of (18) that lie in the (x ,  y) plane. 

Thus, equating to zero the right-hand sides of the 
second and third equations in (18) under the assumption 
z = 0, we obtain the coordinates of the corresponding 
fixed points, These coordinates a r e  given in the first  
four columns of the table. I t  i s  seen that besides the 
trivial singular point x = y = 0, the phase plane b, y) 
contains three other fixed points; two of them, just a s  
the point x = y = 0, a r e  nodes, and one is a saddle. The 
character of the stability of the saddles i s  determined 
by the sign of the vertex y,. For a reason indicated be- 
low, we shall assume this vertex to be negative. Then 
one of the nodes i s  unstable, and the two remaining ones 
stable. On the other hand, the picture of the phase 
transitions of the discussed equations as a whole takes 
the form shown in Fig. 2. The straight line in this fig- 
ure  passing through the quadrants 1, 4, and 3 demar- 
cates the regions of the thermodynamic stability of the 
phases A and B; i t  is described by the equation 

We see that the phase diagram of the RG equations con- 
tains entire families of trajectories that cross  the boun- 
dary that separates the Anderson-Morel and the Balian- 
Werthamer phases. This means that the critical fluc- 

FIG. 2. Phase trajectories of second and third equations of 
(18) a t  z = 0. The straight line passing from the third to the 
first quadrant demarcates the stability region of phases A and 
B. 

tuations can alter radically the ratio of the f ree  ener- 
gies of the free energies of the indicated two phases. 
The separation boundary is crossed by the phase tra- 
jectories in either direction, i.e., the fluctuations can 
stabilize both the phase A and the phase B, h e  result 
depending on the values of the bare coupling constants 
p a .  Thus, for example, a t  yo s - 0.5 a distinct tendency 
to fluctuation stabilization of the phase A is observed; 
if the inverse inequality holds, the fluctuations make 
the phase B energywise favored. 

We go next outside the limits of the plane z = 0. Al- 
though the simultaneous solution of the three RG equa- 
tions is a much more complicated problem than the one 
just considered, a search for fixed points can be made 
here practically without the aid of a computer. By a 
suitable change of the variables x and y we can trans- 
form the system (8) in such a way that the right-hand 
sides of the second and third equations turn out to be 
even functions of z, while the right-hand side d the last 
equation is, conversely, odd in z. Using this symme- 
try, i t  i s  easy to show that the RG equations (18) have, 
in addition to those already obtained, four more fixed 
points. Their coordinates a r e  given in the last four col- 
umns of the table (points 5-8). At y, < 0 all  singular 
points that a r e  farthest from the (x, y )  plane a r e  three- 
dimensional unstable nodes, and the two remaining ones 
a r e  unstable saddles. Resorting to a computer, we can 
establish the form of the entire phase diagram of the 
investigated system, but the obtained picture is excess- 
ively complicated and i s  therefore not presented here. 

Among the fixed points of the RG equation there a r e  
two three-dimensional stable nodes (points 1 and 4 in 
the table). These points a r e  of greatest interest to us, 
since in principle they can correspond to second-order 
phase transitions with universal asymptotic forms of 
the thermodynamic quantities. To verify whether these 
possibilities a r e  realized, i t  is necessary to ascertain 
the behavior of the variable v and of the vertex y, a s  
t -  -. To this end we substitute the coordinates of the 
stable nodes in the right-hand side of 

a ~ 1 a t = - y , ( 7 ~ ~ - 5 ~ + 4 ) .  (20) 

the f i rs t  equation of (18). The similar equation for the 
second stable node is of the form 

It i s  easy to verify that the expressions in the paren- 
theses in (20) and (21) a r e  positive-definite. Conse- 
quently, the variable v increases without limit a t  y ,  < 0 
a t  both fixed points. 

Similarly, returning to  the f i rs t  equation of ( l l ) ,  i t  is 
easy to establish that the coupling constant y ,  itself in- 
creases in absolute value as t -  *, and remains a con- 
stant-sign function of t in the asymptotic region. This 
means in turn that a s  the system approaches T, the 
vertices y , and y, (in the case when y , < 0) should de- 
crease without limit, and y,  should decrease more rap- 
idly than y,.  But the vertex y, enters a s  a term in the 
coefficients of A4 in the expansions of I;', and F,, while 
the remaining vertices in these expansions a r e  obvious- 
ly proportional to y, in the limit a s  t -  *. Therefore the 
term y,A4 in formulas of the type (13) sooner or  later 
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becomes predominant when the temperature i s  lowered, 
and a f irst-order phase transition will take place in our 
system. Thus, continuous phase transitions into the 
superfluid state are generally speaking impossible in 
liquid He3. Accordingly, the point of coexistence of 
three phases-one normal and two superfluid-should in  
principle be  not bicritical but triple. 

Having obtained a n  idea of the character  of the solu- 
tions of the RG equations in the general case, we pro- 
ceed now to consider the most interesting particular 
regime. This regime s e t s  in if the b a r e  values of ef- 
fective coupling constants coincide with those values 
which a r e  given by the pararnagnon theory of Brinkman, 
Serene, and Anderson. I t  is precisely th is  variant 
which is most likely to correspond to the cri t ical  be- 
havior of rea l  He3. The ba re  invariants P, take in this  
case  the forme 

where 6 i s  the paramagnon-coupling parameter  and N(0) 
is thestate density on the F e r m i  s u r f a ~ e . ~ )  We note that 
the constant i s  negative here. I t  i s  this which ac-  
counts for  the choice made above of the sign of the ver-  
tex y,. 

I t  i s  known that when the pressure  changes the para- 
meter  6 changes, and the constants @, should change 
with it. However, within the l imits  of the region of the 
existence of the liquid phase, 6 takes on values not ex- 
ceeding 0.9,6 s o  that we can neglect the paramagnon in- 
crements t o  the expressions for  the f i r s t  three ba re  
coupling constants, and calculate the initial values of 
x, y ,  and z from the following approximate formulas: 

xo=1.256, yo=-2, z,=4+0.76. (23) 

The form of the phase trajectories that s t a r t  out from 
the line that i s  parametrized by these formulas can be 
obtained by a computer solution of Eqs. (18). The fol- 
lowing circumstances must be borne in mind here. We 
know that the structure of the superfluid state is deter- 
mined only by the values of the variables x and y, and 
the difference of the f r e e  energies of the phases A and 
B does not depend on z .  Of principal interest  t o  u s  a r e  
therefore not the three-dimensional phase trajectories 
of the RG equations themselves, but their projections 
on the ( x ,  y) plane. These projections a r e  illustrated in 
Fig. 3. The numbers on the curves  a r e  the correspond- 

FIG. 3. Projections of the three-dimensional phase trajec- 
tories of the RG equations (18) on the k.y) plane. The dashed 
line with the hatches shows the boundary of the stability region 
of the Hamiltoan (1). The numbers on the curves are equal 
to the corresponding values of the parameter 6. 

ing values of the parameter  6, and the hatches mark the 
region of instability of the Hamiltonian (1). I t s  limits 
in the zones corresponding to  the phases A and B a r e  
given by the equations 

u+x=O, l+u+'l3(.z+y) =O, (24) 

which contain the variable v ,  so  that to find these l imits  
it was  necessary to solve the system (18) completely, 
i.e., including the equation for  v. 

The phase trajectories whose projections a r e  shown 
in Fig. 3 break up naturally into two families. The f i r s t  
includes the curves that c r o s s  the boundary of the sta- 
bility region of the Hamiltonian (1) in the same zones 
where they initiate. These curves  a r e  characterized by 
values of 6 that lie beyond the l imits  of the interval 
(0.27,0.40), and obviously correspond to the case  when 
the fluctuations of the order  parameter  do not change 
the rat io of the f r ee  energies of the phasesA and B. 
The second family is made up of t rajectories that start 
out in the stability zone of the phase B, but end up in 
the zone of the existence of p h a s e d .  These correspond, 
a s  can b e  easily visualized, to the regime of stabiliza- 
tion of the phaseA by the cri t ical  fluctuations. This 
regime i s  realized a t  0.27 < 6< 0.40. Within the frame- 
work of the Landau theory, however, the Anderson- 
Morel phase i s  stable only a t  6 > 0.40. Consequently, the 
fluctuations greatly expand in this  case  the region of 
thermodynamic stability of the phase A, and lower the 
threshold of i t s  appearance (relative to 6) by approxi- 
mately a factor of 1.5. 

How does the described effect influence the structure 
of the rea l  phase diagram of liquid He3? To  answer 
this question we at tempt to track the variation of the 
state of our Fe rmi  liquid when the temperature i s  low- 
ered, assuming that the parameter  6 is fixed by the ex- 
ternal  pressure  somewhere between 0.27 and 0.40. 
Thus, since 6> 0.27, a superfluid transition into the 
Anderson-Morel phase should take place in the system 
with decreasing T. This transition i s  of f i r s t  order and 
close to continuous. However, the phase A i s  stable in 
th is  situation only because of the presence of critical 
fluctuations, which have the property of becoming weak- 
e r  when the system moves away from the phase-transi- 
tion line. Therefore further lowering of the tempera- 
t u r e  leads inevitably t o  destabilization of the phase A 
and to  a phase transition into the Balian-Werthamer 
state. This  second transition should occur still  within 
the l imits  of the cri t ical  region, and consequently, in 
the temperature scale, it will be  quite close to the f i r s t  
phase transition. 

Thus, in a certain pressure  interval the fluctuations 
lead to a splitting of the second-order superfluid phase 
transition into two first-order transitions. As a result,  
a n  additional zone of stability of the phase A. adjacent 
to the region described by the paramagnon t h e ~ r y , ~  and 
having the form of a break, a s  shown in Fig. 4, appears 
on the P T  diagram of liquid He3. This beak l ies  entire- 
ly inside the fluctuation region, and the coordinates of 
i t s  tip (triple point) differ substantially from those val- 
ues  obtained in the Brinkman-Serene-Anderson theory 
for  the point of coexistence of the three phases. 
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FIG. 4. Phase diagram of ~e~ with allowance for the critical 
fluctuations (vicinity of the triple point). The letter N denotes 
the region of existence of the normal Fermi liquid. The thick 
dashed line shows the separation boundary of the regions of 
the superfluid phases in the Anderson-Brinkman-Serene theory. 

CONCLUSION 

We conclude with two r emarks  pertaining to the fore-  
going results. The f i r s t  concerns their reliability, and 
the second i s  of general character. 

The principal result  of the paper is the conclusion that 
a beak appears  on the phase diagram of liquid He3. This 
conclusion was  based on a n  analysis  of the RG equations 
obtained in the lowest-order approximation in the dress-  
ed coupling constant. In the cri t ical  region, however, 
neither the vert ices y, themselves nor their rat ios a r e  
small, so  that our initial equations can hardly be re-  
garded a s  sufficiently accurate, a t  least  quantitatively. 
Nevertheless, the deduction that a beak i s  present  i s  
apparently reliable. The point here  is that the forma- 
tion of the beak on the phase diagram is not connected 
directly with the structure of the RG equations. For  
this  singularity to appear it suffices only that the phase 
trajectory to which the threshold value 6 = 0.40 corres-  
ponds does not coincide with the separation boundary 
between the stability regions of phasesA and B. Since 
there a r e  no apparent symmetry-based reasons  for  such 
an agreement," i t  can only be accidental and consequent- 
ly the onset of such a situation (which leads t o  a sup- 
pression of the beak) should be  regarded a s  extremely 
unlikely. 

As to the dimensions of the beak and i t s  orientation, 
these characterist ics  depend substantially on the con- 
c re te  form of the RG equations. Therefore the r ea l  
phase diagram of He3 in the vicinity of the triple point 
can in principle differ significantly from that shown in 
Fig. 4. 

The effects of fluctuation-induced splitting of the phase 
transition and of the appearance of the beak on the phase 
diagram a r e  not restr icted to superfluid He3. They 
were predicted ear l ie r  for  c rys ta ls  with dipole forces  
(ferroelectrics and f e r r~magne t s ) . " "~  However, the 
mechanisms of the fluctuation destabilization of the low- 
temperature phase, which i s  stable within the frame- 
work of the Landau theory, a r e  substantially different 
in these two cases.  In crystals ,  a s  we know, such a 
destabilization is a direct  consequence of the anisotropy 
of the correlation function; the renormalization pro- 
cedure i s  accompanied there by the onset of anisotropy 
of the correlator  in the RG equation for  the vertices, 
and i t  i s  this which leads to violation of the symmetry 
of these equations." In the ca se  of He3, however, the 

situation i s  in a certain sense reversed. The s t ruc ture  
of the ordered phase is determined here  mainly by the 
values of the coefficients of the low-symmetry invari- 
an t s  in the Hamiltonian (I), and the propagator at f = 1 
has the highest symmetry allowed by the nature of the 
order  parameter .  The fluctuation destabilization of the 
low-temperature Landau phase is connected in this  ca se  
most likely simply with the grea t  variety of the possible 
versions of the evolution of the effective coupling con- 
stants, i.e., with the complexity of the topology of the 
multidimensional phase space of the RG equations. 

In conclusion, I wish to  express  my deep gratitude to  
I?. B. Sonin, consultations with whom concerning the 
propert ies of liquid He3 have stimulated to  a grea t  de- 
g ree  the publication of this  paper. I a m  a l so  sincerely 
grateful to B. N. Shalaev for  a very  helpful discussion 
of some symmetry aspects  of th is  proble-m. Finally, I 
thank G. E. Volovik, A. L. Korzhenevskii, G. Mazenko, 
and D. Fisher  for  a discussion of the results .  

wi th  respect to this disparity, we can state the following. 
The estimate AT - 10-5T, was obtained by Jones et al.12 on 
the basis of the Ginzburg criterion, using the formulas of 
the weak-coupling theory. The reason for the discrepancy 
can be both the fact that a theory of the BCS type does not 
correspond to the real situation, and also that the Ginzburg 
criterion itself is  numerically somewhat unreliable. It i s  
known, for example, that for ferroelectrics this criterion 
greatly underestimates AT. 

2 ) ~ h i s  parameter and the anisotropy constant cu contained in 
the Hamiltonian in the paper of Jones et a1.12 are connected 
by the simple relation f = r r  '1. 

3 ' ~ t  i s  appropriate to note here that the RG equations for a 
model with Hamiltonian (1) at  f = 1 were first obtained (within 
the framework of the Callen-Symanzik formalism) in Ref. 12. 
This reference, however, contains no consistent justification 
for neglecting the anistropy of the spectrum. The Gell- 
Mann-Low equations derived above have in the limit a s  
b - 0 a structure that agrees with the form of the RG equa- 
tions obtained by Jones, Love, and Moore. 

')we compare here the free energies of only the phases A and 
B, because only these two phases are observed in experiment. 
In principle, however, the Landau theory admits of the exis- 
tence of no less than 12 different superfluid states of liquid 
~ e ~ . ' ~  One can therefore not exclude the possibility of a p  
pearance, in the critical region. of some new phase that has 
different properties from the known ones. Really, however, 
such a situation can hardly take place, since the values of the 
constants Pa in liquid HeS (see, e. g. , Ref. 61 lie quite far 
from those regions of the constants that correspond to ther- 
modynamic stability of previously unobserved superfluid 
phases. 

5hNe note that the parameter z differs here by a factor of two 
from the analogous variable used in our brief communica- 
tion. l8 

6 ) ~ e r e ,  in contrast to the brief communication,'* we use more 
accurate expressions for P,, which differ somewhat from the 
initial Anderson-Brinkman formulas. 

')If these causes would'really exist then they would manifest 
themselves even in the first orders of perturbation theory. 
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cylindrical indium sample by a current 
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Results are presented of the measurement of the temperature dependence of the hysteresis in the case when 
the superconductivity of a cylindrical indium sample is destroyed by current. The large value and the strong 
temperature dependence of the hysteresis, as well as the fact that the superconductivity is restored when the 
current is decreased to values lower than the current I,, determined by the Silsbee rule, are in agreement with 
the assumption that an intermediate state with a Gorter structure exists in the sample. 

PACS numbers: 74.70.Gj 

An investigation was made of the destruction of the in a c c o r d  with the  ru le  R = R,  + (uT5 amounted to 1.4 
superconductivity of a cyl indrical  indium sample by a x l o S .  
current .  I t  t u r n s  out that  the destruction does not occur  
at a l l  in a manner that might b e  suggested on the b a s i s  
of a periodic London s t ruc ture  of the intermediate  state1 
o r  its  modification^.^'^ In part icular ,  at low tempera-  
tures this  p r o c e s s  takes place with pract ical ly  no hyst- 
eresis, and when the tempera ture  is r a i s e d  the hystere-  
sis is substantially increased.  Restoration of the su- 
perconductivity sets in at c u r r e n t s  lower than the criti- 
ca l  value I,, = c r , H c / 2  (r, is the sample rad ius  and H ,  is 
the c r i t i ca l  magnetic field) determined f r o m  the Silsbee 
rule. 

EXPERIMENT 

The measurements  w e r e  made on a single-crystal 
indium sample. The sample diameter  w a s  3.6 m m  and 
the length 7 0  mm, grown f r o m  the mel t  in a g l a s s  tube 
and its crystallographic orientation w a s  not determined. 
The res i s tance  ra t io  obtained by extrapolating the r e -  
su l t s  of measurements  above the c r i t i ca l  point to T = 0 

The experimental setup is shown in Fig. 1. The  cur -  
r e n t  through sample 2 w a s  produced by c u r r e n t  t rans -  
f o r m e r  4 with superconducting windings, and w a s  mea- 
sured  with a n  inductive m e t e r  3 by the procedure des-  
cr ibed in Ref. 4. At t empera tures  c lose  to  cr i t ical ,  ex- 
per iments  w e r e  a l s o  made in which the  c u r r e n t  w a s  fed 
to the sample f r o m  outside the dewar. F o r  a more  a c -  
c u r a t e  monitoring of the temperature,  the sample 2 was 
placed inside a vacuum jacket I. The sample tempera-  
ture could be monitored during the measurements  with 
a n  Allen-Bradley thermometer  T, which could b e  glued 
t o  the  sample. The lead c u r r e n t  conductors 5 were  
soldered to the  sample with Wood's alloy and were  axi- 
a l ly  symmetr ica l  near  the sample. The vacuum jacket 
w a s  hermetical ly  sealed by a flange joint with a n  indium 
gasket  6. The c u r r e n t  inside the vacuum jacket w a s  fed 
through lead w i r e s  8 of 3 m m  diameter .  The w i r e s  
w e r e  passed inside thin-wall s ta inless-s teel  tubes 7  and 
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