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The dynamics of the resistive state of a superwnductor is initially investigated with relatively simple model 
equations as an example. It is shown that at almost the entire distance between the phase-slip cmters (PSC) 
the picture is stationary, and in a narrow region near the PSC the order parameter experiences strong 
oscillations ranging from zero to approximately the equilibrium value. It turns out that the current-voltage 
characteristics (CVC) can be obtained by using the static equations, so that an exact analytic expression for 
the CVC can be obtained. The developed approach is used next for a real superwnductor. One of the features 
of the obtained CVC is the existence, on top of the normal current, an extra current that does not depmd on 
the voltage at large values of the latter. With decreasing temperature, the extra current begins to depend on 
the voltage. 

PACS numbers: 74.20. - z, 74.30.Gn 

1. INTRODUCTION 

A superconductor state that has a finite resistance to 
direct current i s  called resistive. It is known that a 
constant and homogeneous electric field cannot exist in 
an  infinite superconductor with a homogeneous and sta- 
tionary order parameter. Otherwise, the electromag- 
netic potentials that increase in time or in space would 
destroy the superconductivity. Therefore, if a constant 
electric field is present inside the superconductor, this 
means that the macroscopic phase coherence must be 

PSC were advanced subsequently. Some workers (for 
example, Rieger, Scalapino, and Mercereau2; Skocpol, 
Beasley, and Tinkham?) have assumed a s  before that 
the PSC is produced a t  definite instants of time a t  cer-  
tain points of the sample. Others (for example, Fink 
and ~ o u l s e n ~ ' ~ ;  Galal'ko e t  a1.6'7), on the contrary, have 
assumed that the PSC a r e  stationary formations char- 
acterized by a jump of the derivative Bx/Bt a t  definite 
points of the sample. This approach was argued most 
consistently in the papers of Galaiko et CZZ..~" 

lost a t  some point of the sample and a t  some instants of 
time. It i s  shown in the present paper that the static struc- 

ture of the PSC is unstable, i.e., .that the jump of the 
In a type-I1 superconductor in a magnetic field, the 

resistive state i s  produced by transport of the magnetic 
flux by the moving vortices, and an  electric field is in- 
duced a s  a result. In sufficiently narrow (quasi-one- 
dimensional) superconducting samples, however, the 
current flowing through them produces practically no 
magnetic field, and the resistive-state mechanism i s  
different. This i s  precisely the situation considered in 
the present paper. 

The superconductor 
invariant potentials 

i s  characterized by the gauge- 

the order parameter being A = Ihleix. If the potential 
cp increases with increasing coordinate x along the sam- 
ple, then in order for the invariant quantity B, on which 
the behavior of the superconductor depends, to remain 
on the average finite in space, a definite adjustment of 
the phase of the order parameter i s  required. For a 
long narrow superconducting channel, the character of 

chemical potential of the pairs i s  smeared in space, and 
that the order parameter a t  the PSC has  two principal 
length scales expressed in t e rms  of the coherence 
length [ ( l ' )  and the depth of penetration of the longitudin- 
a l  electric field I ,  If, a s  i s  usually the custom, I ,  
>> S(T), then the order parameter changes periodically 
with time in a rather narrow region x -  (51, )'I2 near the 
PSC, where fluctuates between ze ro  and values on 
the order of unity. At the same time, a t  distances x-1, 
from the PSC, the order parameter and the gauge-in- 
variant potentials change little in time (see a lso  Ref. 8). 
The distance between the PSC i s  determined principally 
by the relaxation length of the chemical potential +, and 
i s  therefore of the order of 1,. Thus, the static approx- 
imation is valid in almost a l l  the space and i s  violated 
only near the PSC, which i s  essentially a dynamic ob- 
ject. At the same time, to obtain the current-voltage 
characteristics (CVC) i t  becomes possible to employ 
the static equations, which admit of an  exact solution 
and make i t  possible to understand sufficiently well the 
entire picture. 

this adjustment should be such that a t  individual points 
of the superconductor the phase changes jumpwise a t  It is a lso  shown in this paper that the qualitative pic- 

certain instants of time by a multiple of 2r. Naturally, ture of the resistive state remains the same for a rea l  
superconductor with a gap. Here, too, an exact expres- a t  these points of the sample, the macroscopic phase 

coherence of the superconductor is disturbed a t  the in- sion i s  obtained for the CVC in the temperature region 

stant of the phase jump, and the order parameter van- near T,. 

ishes. These points a r e  called phase-slip centers 2. MODEL-DEPENDENT EQUATIONS OF 
(PSC), and were f i rs t  introduced in superconductivity SUPERCONDUCTIVITY 
theory by Langer and Amboegaokar.' 

The exact dynamic equations that describe a super- 
Two different ideas concerning the structure of the conductor with a gap in the spectrum a r e  generally 
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speaking quite complicated. In some cases  the writing 
down of the equations themselves i s  a problem, let a- 
lone their solution. It would be therefore difficult, nat- 
urally, to track such a complicated dynamic phenomen- 
on a s  the formation of the PSC by starting directly from 
the general equations for a rea l  superconductor. It i s  
logical to use a s  the f i rs t  step an investigation of the 
simplest dynamic equations of superconductivity. Des- 
pite the impossibility of obtaining a mathematically ex- 
ac t  solution even for the model equations that will be 
discussed below, i t  does become possible to draw a 
number of important conclusions. 

In this section we consider the dynamics of the PSC 
on the basis of equations of a special type, which differ 
from the Ginzburg-Landau equations in that dissipative 
terms a r e  added to the derivatives with respect to time: 

a+ . az+ 
u -+zcpl$ --+l$(ll$lZ-l)=O, ( at ) axz 

(la)  

The complex order parameter i s  here f) = ($leiX. 

At u = 12, this system of equations, a s  shown by 
Gor'kov and I?liashberg,' corresponds to a gapless su- 
perconductor with large concentration of paramagnetic 
impurities. Introducing n = ($1 and the gauge-invariant 
potentials Q = A  - ax/ax and G = cp + ax/at (A = 0 in our 
one-dimensional case), we can rewrite the system (1) 
in the form 

In contrast to the system (I), the system (2) contains 
only the gauge-invariant quantities A, Q, and Q .  

From (2b) and (2c) we easily obtain the equation 

which describes in the static case the penetration of a 
longitudinal electric field into a superconductor. As 
seen from (2), the characteristic length 1, over which 
the penetration decreases i s  proportional to u"I2. 
Since the length scale, as seen from (2a), was chosen 
to be the coherence length E(T), the f ree  parameter u in 
(1) and (2) i s  connected with the ratio of the character- 
istic lengths 

In this section we investigate the case of small u << 1; 
this i s  useful, because in a rea l  superconductor with a 
gap we have <(T)<<ZE in the entire temperature range 
of practical interest. 

If the density of the current through the sample ex- 
ceeds a certain value j,, called the Ginzburg-Landau 
critical current, then a homogeneous and stationary 
state of the superconductor, a s  i s  well known, becomes 

impossible. For the system (2) the critical current i s  
j ,  = 2/33'2. Let u s  dwell on the possible types of solu- 
tion that the system (21, or i t s  equivalent system (I) can 
have a t  j > j,. 

We investigate for stability the normal state of rela- 
tively infinitesimally small fluctuations of the order 
parameter. We linearize for this purpose the system 
(1): 

The solution of this equation can be written in the form 

Xexp 

The quantity t 3  in the argument of the exponential i s  
connected with the dispersal of the Cooper pairs by the 
electric field and leads to suppression of the order par- 
ameter. From this, in accordance with the papers of 
Gor'kovlo and ~ u l i k , "  we can conclude that the normal 
state i s  stable in the small. 

This conclusion, however, does not extend to fluctu- 
ations of finite magnitude. If the one-dimensional sam- 
ple i s  broken up into infinitesimally small segments 
along the coordinate, x,,x,, . . . , and the behavior of the 
system in the phase space A(%,), A(%,), . . . , i s  consider- 
ed, then the origin corresponding to the normal state i s  
a stable singular point. One can imagine that a t  a fin- 
ite distance from the origin there i s  located a separa- 
trix that serves a s  the borderline between the region of 
attraction of the trajectories to the normal state and the 
region of attraction to a certain limit cycle, which cor- 
responds to a solution periodic in time and gives r ise  to 
the resistive state of the superconductor. We shall pre- 
sent below results  of numerical calculations that con- 
firm the existence of a limit cycle of the system (1) a t  
u<<l .  

Using (5), we can estimate for a certain class of func- 
tions the value of the stationary threshold solution that 
i s  unstable to infinitesimally small fluctuations. If the 
modulus of the order parameter was constant in space 
a t  the initial instant of time, i t  will vary subsequently 
like 

A (x, t )  =Ao esp ( t /u- j9 ' /3u) ,  (6) 

and go through a maximum. If we assume that a t  u << 1 
the trajectories that lie in the region A 5 1 can be at-  
tracted to the normal state, then we obtain from (6) an 
estimate for the critical fluctuations a t  u j  << 1: 

The threshold solution that separates the region of sta- 
bility of the normal state was investigated numerically 
for the system (1) a t  u> 1 by Kramer and Baratoff." 

Thus, both the normal and the dynamic resistive 
states a r e  stable a t  j>j,, and a transition from one of 
them to the other a t  large currents should take the form 
of a finite jump. It should be  noted here that experi- 
mental observation of this jump can be strongly hinder- 
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ed by Joule heating, which becomes stronger a t  larger 
currents. In the normal state, some decrease of the 
resistance can result from quantum fluctuations, a s  
shown in Refs. 10 and 11.' 

As mentioned above, the physical realization of the 
resistive states can in principle be visualized a s  fol- 
lows. For example, i t  was proposed in Refs. 4-7 that 
the order parameter a t  the PSC point is zero a t  all  
times. In this case the PSC i s  reminiscent of a Joseph- 
son transition with constant difference of the chemical 
potentials of the Cooper pairs, and i t  can be shown that 
the alternating Josephson current exerts a weak influ- 
ence on the entire static picture. 

We examine now what happens to such a static PSC if 
the special condition #(O, t )  = 0 is not imposed. Near the 
point x = 0, a t  the initial instant of time A = 2-1 /2 (~1  << 1 
[in accordance with the solution A = tanh(2-'I2)x1)], and 
we can therefore use the linearized equations (5). From 
(2c) we find that Q = 1/3u@(O)lxl. The order parameter 
near the static PSC should then be of the form 

(P.,(x,  t )  =2-"'1x1 eup [ i Q  ( 0 )  (t-'l,x%) sign z]. (8) 

It i s  easily seen from (5) that actually #,, is not a solu- 
tion of Eq. (41, if for no other reason that a t  t<<u the 
solution (5) with initial condition A = 2"I2(x1 yields 
#(O, t )  = ( t / 2 ~ ) ' / ~ .  

Thus, the PSC cannot exist a s  a static formation, in- 
asmuch a s  there a r e  no physical reasons that dictate 
the condition #(O, t) = 0. In other words, in (8) is an 
unstable solution and diffuses in time. 

We proceed now to an examination of the dynamic sit- 
uation. As already mentioned, the dynamic PSC pre- 
supposes a vanishing of $(x = 0, t) only a t  certain in- 
stants of time. This is precisely the situation consid- 
ered in Ref. 1 and investigated also in Ref. 2. It was 
shown in an earlier paper14 that the PSC can be visual- 
ized a s  topological singularities of the type of vortices 
in the space {x, t}, which form there a periodic struc- 
ture similar to the Abrikosov lattice in type-I1 super- 
conductor~. '~ (A similar situation in the case of phase 
slip in superfluid 'He was considered by Vol~vik. '~  The 
electric field satisfies in this case the relation 

where n i s  an integer, F, = nFic/e is the "flux quantum," 
and the integral is taken over the area of the unit cell 
in {x, t} space. In the units chosen above, this relation 
takes the form 

An individual PSC i s  simply an isolated point in this 
space. Just a s  for an ordinary vortex, the integral a-  
long an infinitesimally small contour around this point 
is 

where the vector q = {Q, - e}. This relation turns out to 
be useful also in the consideration of the PSC dynamics. 

If the current is not much higher than j,, we have j- 1 
in our units and, a s  follows from (2b), E- j .  Relation 

(9) connects the characteristic spatial and temporal 
scales x, and to of the variation of the electric field: 

The characteristic spatial scale of the change of the 
electric field is, just as in the static case, the quantity 
xo-U-~12 . The characteristic time scale is then to -d l2 ,  

and, by making the change of variables 
y=su" T=tu-" (12) 

we rewrite (2) in the form 

In the current equation, the term with the derivative 
with respect to time is anomalously large, and the sol- 
ution must be found by equating this term to zero. We 
find thus that over scales X - ~ " ' ~ 0 , -  1) the regime 
should be static. From an estimate of the values of the 
derivatives in (13b) i t  is seen that the derivative with 
respect to the coordinate becomes just a s  large a s  the 
derivative with respect to time over scales x-u-'I4 
x b-u'I4). The static approximation does not hold in 
this region. Since the PSC form in the {x, t} space a 
regular lattice, the time derivatives drop out when (2) 
or  (3) is averaged over the time, and the resultant 
equations determine the static solution over the char- 
acteristic lengths x>>u"I4. 

These equations can be written in the form 
- a 2 ~ / a ~ v ~ ~ Z ~ = o ,  (143) 

~ = - A ~ Q - ~ Q / ~ X ,  (14b) 
A'+QZ=l. ( 1 4 ~ )  

We recall that 5(T) = 1 and 1, = u"I2 in terms of the un- 
i t s  assumed in (2). I t  can therefore be stated that the 
static regime exists over distances of the order of I, 
from the PSC and is violated over distances (t1B)1/2 
from it. 

Integration of the system (14) is simple: 

A (3pt -2)  ( j -pZ( l -pZ) ' i ' )  
uQ2=f  ( A ) ,  f ( ~ ) = 2 1 -  

p ( I-pZ) '" dp, 
IZ. (154 

where 2 i s  the distance between the PSC. The quantity 
A, i s  the integration constant. The sign of j was re- 
versed in (15a) for convenience. With respect to the 
choice of the integration limits A and A,, the following 
remark must be made. What flows through the sample 
a t  large distances from the PSC is principally the su- 
perconducting current whose value i s  expressed in 
terms of the local value of the order parameter j, 
= A2(1 - A ~ ) ' / ~ .  The thermodynamically stable branch 
is then 2/3 A2 -C 1. Thus, the values of A, and A must 
be chosen from the indicated interval. As the PSC is 
approached, the superconducting current decreases, 
and therefore A>A,. At distances ~ < < u ' ' / ~  from the 
PSC, the superconducting current is small, and the 
main contribution to the total current is made by i t s  
normal component. For this reason, a t  disiances u-'l4 
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< < x < < u ~ / ~  we must assume that j,= 0 and A =  1. An es- 
timate with the aid of Eq. (13a) shows that 1 - A ~ - u - ' / ~  
in this region. 

The coordinate dependence of the modulus of the order 
parameter i s  shown in Fig. 1, where the static solution 
(15) i s  almost the entire curve, with the exception of the 
vicinities of the points x = 0 and x = I, in which phase 
slip takes place periodically in time, and x, - 
,u-l 1 4  . The constant A, i s  the value of A halfway be- 
tween two PSC. Curves 1, 2, and 3 correspond to dif- 
ferent instants of time. Thus, curve 1, for example, 
corresponds to the instant of formation of the PSC, and 
recalls the static solution of Fink and P ~ u l s e n , ~  except 
that in their case x," 5. 

The system (1) was numerically integrated a t  small u 
and the result confirmed fully the foregoing arguments. 
The boundary conditions aA/ax = 0 and iP = 0 a t  the PSC 
point were used in the calculations. The result was a 
time-periodic regime a t  currents both larger a i d  
smaller than j,. Figure 1 corresponds to the calcula- 
tions for u = 0.01 and j = 0.4 (we recall that j, = 2/33/2 
= 0.3849), and to a distance I = 40 between the PSC. If 
the instant of the PSC formation (curve 1) corresponds 
to t ,  = 0, then a t  the instant when the maximum of 
A(x = 0, I; t )  i s  reached (curve 2) we have t ,  = 0.053, 
while curve 3 represents some intermediate value t ,  
= 2.188. The time period for this case is T = 2.52, 
which contradicts a t  f i rs t  glance the estimate T - u l / ~  
= 0.1. However, a s  follows from (9), T = vBil and cal- 
culation by formula (15a) yields for u ' / ~  a numerical 
coefficient of the order of 10, thus resolving this con- 
tradiction. 

In the numerical integration i t  was noted that with de- 
creasing u the amplitude of the time oscillations de- 
creased in the central part  of the curve of Fig. 1. 

The coordinate dependence of the potential 9 i s  shown 
schematically in Fig. 2 up to the region of the strong 
nonstationarity. This region, from zero to values of 
the order of x,, makes a small contribution to the re- 
lation (9). In fact, the contribution from the region 0 
< x ~ x , " u " / ~  i s  of the order of 

where the bar denotes averaging with respect to time. 
It follows from (3) that 

FIG. 1. Coordinate dependence of the modulus of the order 
parameter for three instants of time: t ,  = 0, t 2 =  0.053, and 
t,=2.188 for curves 1, 2, and 3, respectively. 

FIG. 2. Schematic coordinate dependence of the scalar gauge- 
invariant potential in the static region. The static approxima- 
tion does not hold at distances on the order of q from the PSC. 

Therefore the contribution of the considered region is 
of the order of u9  (x,)% - ~ " ~ 9  (xI) and i s  small compared 
with 9(xl)  =9 ,, which i s  half the voltage on the PSC. 

In the static region we have 

and therefore, introducing the oscillation frequency 
w= 2n/T and 9,::O(x= 0) we obtain the relation 

2c~,=no. (17) 

The quantity 29, plays the role of the voltage V on a 
Josephson junction. Relation (17) differs by a coeffi- 
cient from the usual expression 2eV = n w  by virtue of 
the specific form in which the initial equations ( I )  a r e  
written, where Z @  i s  added to the derivative instead of 
2icpG. 

It i s  now easy to write down an expression for the 
CVC. As shown earlier14 the electric field averaged 
over time and space, which we shall also designate by 
E, is expressed in terms of the periods in the coordin- 
a te  I and the time T: 

E=Znn/lT. (18) 

Using (17) we find that 

E=2@,/1 

which i s  the result that can be obtained by using the 
static approximation(l6). By the same token, to  obtain 
the CVC we can use the static equations (14), which 
were already used earl ier  to describe the resistive 
state a t  I,>> [ in Refs. 4-7. The form of the CVC is ob- 
tained from (19) and (15): 

The period of the structure with respect to the coordin- 
ate, i.e., the distance between neighboring PSC, i s  

The free parameter A,, which varies in the range 2/3 
S 1, defines a single-parameter family of CVC. 

The CVC defined by Eq. (20) have a zero  slope a t  
small values of E and begin with a certain values of the 
current j,, which i s  determined by the parameter A,, 

namely j, = Ai(1 - A;)"~. We consider now the initial 
section of the CVC. We put j = j ,  + j,, j, << j. At large 
distances from the PSC we then have A = A,+ A, and the 
function f(A) takes the form 
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The period of the structure i s  therefore, with logarith- 
mic accuracy, 

where C" 1. 

Thus, the initial section of the CVC is of the form 

(i-io)lio=c exp {- [f (4 )  l'"holE). (23) 

It is clear therefore that the role of the critical current, 
i.e., the current a t  which the electric field appears for 
the f i rs t  t i e ,  is played by the quantity j,, which lies in 
the range between zero and j,, corresponding to the A, 
interval from 1 to (2/3)lf2. The concrete choice of the 
parameter A, (i.e., of the form of the CVC) should be 
determined from additional physical considerations. 

We can use here, just a s  in Ref. 7, the principle of 
the minimum entropy production; this corresponds to 
the minimum of the expression 

I 

The latter is attained a t  the values A, = (2/3)lf2 and j, 
= j,. In this case 

(i-ie)/j.=C, exp (-0.32/E). (25) 

We present by way of example a lso  the expression for 
the CVC in the case A,- 1. It takes the form 

(i-io)Ijo=C2 exp (-LIE) ; ( I - A : ) ' ~ w ~ ~ .  (26) 

We turn now to the CVC section corresponding to high 
voltages. For this approach to be valid, the upper cur- 
rent limit can be established from the following consid- 
erations. With increasing current, the length I of the 
structure decreases in proportion to ( u j ) ~ ' ~ .  It follows 
from (11) that the characteristic time scale decreases 
like (u/j)lf2. If we now compare in (2b) the terms with 
the time and coordinate derivatives, in the same mann- 
e r  a s  in (13b), then i t  turns out that the region of static 
behavior corresponds to x>> (ui)'lf4. Therefore the 
static approximation is violated a t  (uj)-' S (uj)" 12, 
i.e., a t  j <<u". At these values of the current, a l l  the 
quantities oscillate strongly in time over the entire 
length of the sample. In this regime one can expect the 
resistive state to go over into the pure normal state. 
The described theory is therefore valid a t  j <<u'l (at 
j/j,<< F,/t2 in the customary units). 

From Eqs. (15), (20), and (21) i t  is easy to obtain the 
CVC in the case of large currents j,<<j <Cum'. It takes 
the form 

j=E+jexc (27) 
and differs from Ohm's law in the presence of an excess 
current 

which does not depend on the electric field. 

The CVC for the three values of A, a r e  shown in Fig. 
3. 

Thus, we can draw the following conclusions. 

FIG. 3. CVC calculated for a superconductor from Eqs. (15) 
and (20) at  different values of the constant A:= 0.68, 0.95, 0.98 
respectively for curves 1, 2, and 3. 

1) The closer A: to 2/3, the higher the correspond- 
ing curve; a t  A, close to unity, the curves start out 
from very small currents (this agrees  with the already 
mentioned results of the numerical calculations). The 
Ginzburg-Landau thermodynamic critical current j, is 
the critical current for only one value A: = 2/3, and a t  
larger values of this parameter the critical current is 
less than j,. 

2) The initial section of the CVC has a zero slope 
(this is a consequence of the infinite length of the sam- 
ple). 

3) At currents greatly exceeding the critical value, 
the CVC proceeds in parallel with the normal law, with 
an excess current independent of E. The reason for the 
latter is that in this model there is no direct influence 
of the scalar potential iP on the order parameter, and 
the superconducting current remains finite with in- 
creasing *. 

At very large currents, the static approximation no 
longer holds and i t  appears that the CVC is no longer 
parallel to Ohm's law, so  that the changeover to the 
normal state becomes possible. 

3. CURRENT-VOLTAGE CHARACTERISTICS OF A 
SUPERCONDUCTOR WITH A GAP 

In this section we shall dwell on the case of a super- 
conductor with a gap in the energy spectrum. The dy- 
namics of such superconductors i s  much more compli- 
cated that in the gapless situation, and the equations 
a r e  not a s  simple in form as (1). In the properties of 
the superconductor with a gap, however, there i s  an 
essential singularity that makes the dynamics of the 
PSC of a real superconductor highly similar to the dy- 
namics of the model considered in the preceding sec- 
tion. This singularity is the large ratio of the depth of 
penetration of the electric field to the coherence length 
LE/t. It i s  precisely because of this hierarchy of the 
characteristic lengths, in accordance with the ideas 
developed by ~ a l a f k o , ~  that the order parameter adjusts 
itself rapidly to the static variation of the electric field, 
as shown in the preceding section. I t  can be concluded 
on this basis that the dynamics of the PSC in a real  su- 
perconductor is similar to that considered above, i.e., 
i t  is characterized by the presence of a broad region in 
which the picture is stationary, and a narrow region in 
which A varies with time from zero to a certain maxi- 
mum value. 

The dynamics of a superconductor with a gap depends 
essentially on the ratio of the characteristic frequen- 
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cies w and of the wave vectors k, and on the reciprocal 
energy relaxation time 7- T3/wL. If w and Dk2 (D is the 
diffusion coefficient of the normal electrons) a r e  much 
less than y, then i t  i s  easy to write down the dynamic 
equations near the transition temperature. Under these 
conditions, a s  shown by Artemenko and Volkov,17 we can 
use the approximation of the effective chemical poten- 
tial a. Putting T =  (T,- T)/T, we write down the equa- 
tions for the modulus of the order parameter, for the 
current density, and for the scalar potential: 

Equation (29a) is similar to the equation of Ref. 18. 
We have here the invariant combinations 

where x is the phase of the order parameter. 

The length over which the longitudinal electric field 
falls off, a s  seen from (29c), and the coherence length 
a r e  given by & - D T / ~ A  and 5'" D/TT, respectively, and 
their ratio is 

LE2/gZ= (TZr/ .y2)  ">I. (3 0) 

For this ratio to be large, i t  is necessary to satisfy the 
inequality 2-3/2~[8#/76 (3)I5l4= a . 

We shall measure next a l l  the quantities in units of 

The system (29) can then be written in the form 

a @ ,  1, aQi 
j,=-A,ZQ, b -- 

ax,  g a t ,  ' 

- ~ 

where 2-3/2~[8#/7[(3)]5/4 = a and b = 21r"[75(3)/2,rr~]1'~. 
By virtue of the Josephson relation for the PSC, the 
reciprocal characteristic time of the problem coincides 
with e*,, and the necessary condition w<<y for the ap- 
plicability of (29) i s  equivalent by virtue of (31) to the 
inequality T<< ( y / ~ ) ' / ~ .  Therefore, taking (30) into ac- 
count, we shall consider Eqs. (29) and (32) under the 
condition 

( .y /T)Z<r< (.y/T)"'Qtl. (33) 

The derivatives with respect to time in (32), just a s  
in (13b), a r e  preceded by anomalously large coeffi- 
cients. Repeating arguments of the type used in the 
preceding section, we arr ive  a t  an analogous conclu- 
sion, that the picture over a distance of the order of 1, 
from the PSC is in the main static, and over a distance 
( 5 ~ ~ ) " ~  this approximation is violated. [At still shorter 

distances, an essential role i s  assumed by the deriva- 
tive with respect to the coordinate in (32a).] 

Equations (29) a r e  similar to those investigated nu- 
merically by Kramer and Watts-Tobin.lg They also ob- 
tained for these equations oscillating solutions corres- 
ponding to PSC. 

Having determined the region of applicability of the 
static approximation, we now write down static equa- 
tions of somewhat more general form, which a r e  valid 
in a larger temperature interval that will be established 
below: 

The difference between (34) and (29) i s  that (34a) con- 
tains the term %,, which describes the direct influence 
of the scalar potential on the order parameter.6 In ad- 
dition, account i s  taken in (34a) of the influence of the 
superconducting current on the rate of the relaxation of 
the unbalance of the electron-hole branchesz0: 

Changing to new units, which differ from (31) only in the 
definitions of xo and a,, 

we write down the system (34), retaining the previous 
notation for all  the quantities 

Az+Qz+Q2/@12=l ,  (3 7a) 
j=-A2Q+E, E=-a@/ax,  (37b) 

-aZcD/ax2+AQB(Q) =0, ( 3 7 ~ )  

where 

The second derivative of A with respect to the coordin- 
ate, which is present in the Ginzburg-Landau equation, 
turns out to be insignificant within the scale of the prob- 
lem. 

If we neglect the last term in (37a), this system can 
be easily integrated in analogy with the preceding sec- 
tion: 

" [ j - p 2 ( l - p z ) " ]  (3pa-2)dp  
s ( A ) = z J '  ( I - P ~ )  '"B 

A* 

The electric field i s  determined in this case just a s  in 
(19), and the distance between two neighboring PSC i s  

I ( 3 A L - 2 ) d A  
le2 

( I - A ' )  " l g ( A )  I X B [  (I-A') " ]  
A0 

where A, i s  a lso  the value of the order parameter half- 
way between two PSC. We then have for the CVC in the 
customary units 
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In the transition to the customary units i t  is necessary 
to make the substitution j- 2j/33'2jc also in the function 
g ( ~ ) .  The condition for the smallness of the discarded 
term in (37a) is @,<<@,. Therefore, taking into account 
the logarithmic singularity in (38) and the inequality 
(30), the region of applicability of (40) is 

If we go farther down from T,, then direct suppres- 
sion of the order parameter by the scalar potential be- 
comes important. The picture of the distribution of @ 
becomes the same qualitatively a s  in Fig. 3, but the 
maximum value of the potential is now a,, and the order 
parameter is suppressed to zero, a t  the assumed ac- 
curacy, a t  the points of the PSC. In this case the elec- 
tric field i s  

E=2Q, / l .  (42) 

If we move from the midpoint between the PSC, where 
the potential @ i s  still small, then the vector potential 
Q manages to drop practically to zero  over those dis- 
tances a t  which the last term in (37a) i s  still small. 

At large distances, suppression of A on account of 
the term @' sets  i s  in (37a), a s  shown in Fig. 4. The 
region in which Q" 1 has a characteristic scale of the 
order of unity. Because of this difference between the 
scales, the distance between the PSC i s  

" [ j -p2  (1-pa) (3p2-2)  d p  
h ( ~ ) = 2  J 

I-pa 
A. 

The CVC is given by Eq. (42). The region of applica- 
bility of (42) and (43) i s  given by the inequality 

This region, of course, is very narrow and we consider 
i t  only in order to trace the transition to the regime 
when the scalar potential influences directly the order 
parameter. 

For the case (41), the CVC family will take the same 
form a s  in Fig. 3, and the limiting value At = 2/3 cor- 
responds to the uppermost position of the curve. In the 
principle, hysteresis connected with transitions from 

one curve to another i s  possible, but this question calls  
for a special investigation, a t  a given current through 
the sample, the curve with A: = 2/3 corresponds to the 
weakest electric field, and consequently, to the small- 
est  entropy production, and we shall therefore consider 
henceforth only this curve. 

We consider now the CVC in different temperature 
regions: 

1. (y/T)'<< r<<y /T. In this case the influence of the 
superconducting current on the relaxation of the unbal- 
ance of the branches i s  small. 

a )  Initial section of the characteristic, j - j, << j,: 
(45) 

b) Large currents, j,<<j. A current in excess of the 
normal current appears in this case and does not de- 
pend on the electric field: 

j=oE+a,j,, 

2. ~ / T < < T < < ( x / T ) ' ' ~ ~ ~ ( T T / ~ ) .  In this case the influ- 
ence of the superconducting current on the relaxation of 
the unbalance of the branches i s  appreciable. [The val- 
ue of z in (35) i s  large.] 

a )  The initial section of the characteristic, j - j, <<j,: 

We can separate here two limiting cases. We introduce 
the quantity 

The following cases  a r e  possible: (j - j,)/j,<<K, and 
then 

and K << ( j  - j,)/j,<< 1. In the latter case 

b) Large currents. Here, too, we have an excess 
current 

Tz . 
j=oE+h,jc /ln'-, (50) 

FIG. 4. Coordinate dependence of the modulus of the order 
parameter and of the gauge-invariant vector potential for the 
case of direct suppression of the superconductivity by a scalar 

where 

potential in the temperature region 

A2 (3Aa - 2) d'4 
= 1.22. 

2/3'/2 
( 1  - A = ~ / " L  ( A )  

3. (y /~) ' / ' / ln(Tr /~)<< r<< (y /~) ' /2 .  In this tempera- 
ture region the direct suppression of the superconduc- 
tivity by the scalar potential becomes significant, and 
the superconducting current influences strongly, a s  be- 
fore, the relaxation of the branch unbalance. 

a )  Initial section of the characteristic. Here 
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We introduce the  quantity M = exp(- 3+,/2314) << 1. If 

( j  -jc)/jc<<M, then 

j - j ,  (52) 
I .  

On the other hand, if M<< ( j  -jc)/jc<< 1, then we  have 
f rom (51) 

(53 

b)  Large  cur ren ts ,  jc<<j: 

This  formula is valid at j/j, << l n ( T ~ / ~ ) .  We see 
therefore that allowance f o r  t h e t e r m  @2 in the Ginz- 
burg-Landau equation f o r  the o r d e r  parameter  l eads  to  
a dependence of the e x c e s s  c u r r e n t  on Eat  la rge  values 
of the latter. If we d i s regard  t h i s  t e rm,  then the in- 
crease of @ with increasing c u r r e n t  does not lead to 
suppression of the o rder  parameter  and  superconduct- 
ing cur ren t  remains  constant; th i s  in  fac t  is the  cause  
of the constancy of the excess  c u r r e n t  with increasing 
voltage. 

Equations (45)-(54) cover  the t empera ture  interval 

and admi t  of comparison with experiments  on thin long 
superconducting samples,  f o r  which the reciprocal  el- 
ectron-phonon relaxation t ime y is known. 

4. CONCLUSION 

I t  is shown in the presen t  paper  that when the model 
superconductivity equations are used the  nonstationary 
nature of the PSC manifests  itself only in a narrow re- 
gion on the o r d e r  of (1,[)'12 near  the PSC, while at dis-  
tances of the o r d e r  of 1, f r o m  it the picture is station- 
a r y .  By the s a m e  token, if 1, >> 5, then the s tat ic  equa- 
tions can b e  used in the space between the  PSC. In ad-  
dition we have tracked the analogy in the dynamics of 
the PSC of a r e a l  superconductor with a gap in the spec- 
t rum,  and of PSC described by model equations. On 
th i s  b a s i s  we  obtained the CVC of a r e a l  superconduc- 
tor .  A fea ture  of the obtained CVC is the existence of 
a n  excess  c u r r e n t  (on top of the normal  current) ,  which 
does not depend on the voltage at la rge  values of the 
la t ter .  With decreasing temperature,  the excess  c u r -  
ren t  begins to depend on the voltage because of the 

s t ronger  influence of the scalar potential on the o r d e r  
parameter .  A constant excess  c u r r e n t  w a s  observed 
experimentally in Ref. 3. 

An excess  c u r r e n t  w a s  a l s o  obtained by Rieger ,  Scal- 
apino, and MercereauS in the i r  model of the res i s t ive  
state. TinkhamZ1 has recent ly proposed a simple qual- 
itative picture that descr ibes  the interaction of severa l  
PSC in a quasi-one-dimensional superconductor, i n  
which the CVC has a s imi la r  behavior and a l s o  h a s  a n  
excess  current .  In addition, the e x c e s s  c u r r e n t  a p p e a r s  
in superconducting f i laments  of finite length that join 
two bulky superconductors between which a potential 
difference is maintained," and in the CVC of point 
junctions of two  superconductor^.^^ 

Electromagnetic radiation f r o m  a sample in the re- 
sis t ive state w a s  observed in Ref. 24. The high degree 
of monochromaticity of th i s  radiation m a k e s  it possi-  
ble, in principle, t o  a s s u m e  it t o  b e  caused by  nonsta- 
tionary p r o c e s s e s  connected with CVC. 

The au thors  thavnk K. K. Likharev f o r  help with the 
work, V. P. Galaiko and  Yu. N. Ovchinnikov f o r  helpful 
discussions, and a l s o  I. M. Dmitrenko, V. G. Volots- 
kaya, and L. E. Musienko f o r  report ing their  experi- 
mental data. 

"we note that a t  u=  0 the threshold solution (7) vanishes and 
the normal state becomes unstable a t  not very large currents. 
This situation corresponds to a certain degree to the case 
considered in an investigationi3 of a nonequilibrium supercon- 
ductor in which the coefficient of the first derivative in the 
equation for the order parameter was equal to zero because 
peculiar character of the disequilibrium. 
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