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The feasibility of a phase transition into a current state in the region of an incommensurate phase of an 
excitonic insulator is considered. Correct allowance for the symmetry of the magnetic elements of the 
Coulomb interaction makes states with homogeneous spontaneous current impossible. The characteristic 
dimension of the inhomogeneity in the model under consideration is determined by the degree of disparity 
between the electron and hole Fermi surfaces. The functional of the free energy is constructed and it is shown 
that the phase of the order parameter is not fixed in the incommensurability region. A model solution is 
obtained, from which it can be concluded that a current state is realizable in the region of the domain wall of 
a ferroelectric. 

PACS numbers: 71.35. + z, 72.60. + g, 77.80.Bh 

1. INTRODUCTION 

Halperin and Rice1 noted in their review a substantial 
difference between the states of an excitonic insulator 
a s  a function of the order parameter. In the case of the 
two-band model a t  a nonzero interband dipole transition 
element, the situation was particularly interesting 
(Volkov, Kopaev2). Namely, a t  a real order parameter 
A =  lAlei' a transition into a ferroelectric state takes 
place, and a t  an imaginary order parameter the tran- 
sition is into the so-called current state (called also 
the superdiamagnetic state by Volkov, Ginzburg, and 
Kopaev3). The theory of a phase transition into the cur- 
rent state contains a large number of nontrivial singul- 
arities of physical and mathematical character com- 
pared with the theory of the transition into the ferro- 
electric state. 

A simple approach, which leads in the case cp = 0 and 
cp = II to a homogeneous spontaneous polarization of the 
system, leads in the case q= in/2 to a spatially homo- 
geneous spontaneous current. The latter contradicts 
the Bloch theorem3 which states that the ground state 
of any macroscopic system a s  a state with zero total 
momentum (i. e. ,  with zero average current). A cor- 
rect allowance for the corresponding terms of the 
Coulomb interband interaction eliminates this contra- 
diction, and the only realizable state with nonzero spon- 
taneous current i s  an inhomogeneous one in the sense 
that the average current over the sample i s  zero. "he 
question of the characteristic dimension of the inhomo- 
geneity was discussed in Ref. 6 only qualitatively. 

The present paper is devoted to a clarificationof cer- 
tain possibilities of realization of a current state. The 
point is that in the simplest scheme of an excitonic in- 
sulator' a state with an imaginary order parameter i s  
energywise favored (we do not consider the influence 
of impurity scattering on the phase of the order param- 
eter7). 

The main results of the paper a r e  the following. In 
the region of the inhomogeneous state of an excitonic 
dielectric the most convenient solution can be 

A(T) =AR~(Y) +filrn(r) , 
where ~,*ir) and AIm(r) a r e  the real and imaginary parts 

of the order parameter. The spatial changes A, and 
A,, a r e  connected with each other in such a way that 
A,,(Y) - gradA,(r). The appearance of A,, produces an 
inhomogeneous current j(r)  that flows around the region 
of the spontaneous polarization connected with A,(r). 

Under certain conditions there can exist in the region 
of the inhomogeneous states a solution A=iA,,(r) that 
turns out to  be the most convenient. This corresponds 
to  a pure currentstate. Here and below we a re  dealing 
with the ground state, in contrast to the paper of Klyuch- 
nik and Lozovik; who investigated excited states of an 
excitonic insulator. 

The causes of the onset of inhomogeneous states of an 
excitonic insulator may be non-congruence of individual 
sections of the electron and hole Fermi surfaces, dop- 
ing that leads to inequality of the electron and hole den- 
sities, the presence of other bands that serve a s  an elec- 
tron reservoir and have no energy-spectrum singular- 
ities of their own, and others. The characteristic di- 
mension of the spatial inhomogeneity of the order pa- 
rameter and of the associated physical quantities can 
be generally speaking, incommensurate with the period 
of the crystal lattice. We investigate below inhomo- 
geneous states that arise a t  a specified difference of 
the electron and hole densities N. The dimension of 
the inhomogeneity i s  proportional in this case to (N/v , ) - ' ,  
where v, i s  the velocity on the Fermi surface. 

2. MODEL HAMlLTONlAN AND MATRIX ELEMENTS 
OF COULOMB INTERACTION 

We consider the two-band model traditionally used for 
the investigation of the transition into the state of an 
excitonic insulator. We assume that in the vicinity of 
the point k, of the Brillouin zone there a r e  closely lo- 
cated isotropic bands 1 and 2 with dispersion laws 

E, 2(k) =f (kZ-kpZ) /2m- .  (1) 
where the wave vector k differs from k,. Assume that 
the point k,, the bands 1 and 2 belong to irreducible 
representations of different parity, so  that the dipole- 
transition matrix element PI, differs from zero. To 
investigate the transition into the insulator phase it is  
necessary first  to write down the Hamiltonian of the 

977 Sov. Phys. JETP 51(5), May 1980 0038-5646/80/0t iO977-05$02.40 O 1981 American Institute of Phvsics 977 



system either in the Bloch representation or  in the 
Luttinger-Kohn representation. The latter i s  more 
convenient, for while it becomes necessary to work in 
a nondiagonal basis, the form of the matrix elements 
of the Coulomb interband interaction i s  relatively simp- 
l e r  to establish. 

Thus, the Hamiltonian of the system in the Luttinger- 
Kohn representation takes the form 

where ci(k) are the  electron dispersion laws in bands 
1 and 2; m is the mass of the free electron and must 
be distinguished from the electron effective mass m* 
calculated without allowance for the hybridization of the 
bands 1 and 2. The Hamiltonian (2) contains the hybrid- 
ization term of bands 1 and 2 in explicit form, so that 
even without allowance for the Coulomb interaction H,, 
the anomalous Green's functions ~: , (k)  = b,, + cor- 
responding to the Hamiltonian (2) differ from zero. 
However, & G;,(k) = 0 because the hybridization term 
i s  odd in k, and the presence of anomalous mean val- 
ues does not lead (if Hee i s  not taken into account) to 
any new physical consequences. 

We discuss now the important problem of the form of 
the Coulomb-interaction matrix elements Qjn, (q). In 
practically all  the investigations of the excitonic insula- 
tors (and in a number of other problems) Vij,,(q) i s  
replaced by the constant Vijn, in the high-density ap- 
proximation. The arguments advanced in favor of this 
substitution i s  usually connected with screening (den- 
sity-density interaction from different bands), while the 
argument favoring V,,,, = V, and V,,,, = V, i s  the short- 
range character of the interactions connected with the 
interband transitions of a particle pair (V,,,,) o r  of one 
particle (V,,,,). But whereas replacement of the inter- 
action V,(q) by a constant independent of the momentum 
i s  justified in the high-density approximation, it i s  al- 
ready less obvious for V,(q), and raises serious objec- 
tions in the case of V,(q). The point i s  that this sub- 
stitution causes complete loss of the information on the 
symmetry of the system [this is  particularly important 
for V,(q), sincethe corresponding term in the Hamil- 
tonian leads to the appearance of a source in the right- 
hand side of the self-consistency equation for the order 
parameter]. 

We consider nowthe form of the matrix elements 
V,(q) and V,,,(q) for our model: 

Equations (3) a r e  easily obtained from those of Dubovik 
by making insignificant transformations. We assume 

that all the momenta k, k', and q in the Hamiltonian 
lie near k,, where, in fact, the effective-mass ap- 
proximation is valid, In (3) we have 

B,, (G)= j u;b(r) ~ , b ( r )  egardr, 
v. 

where uILO(r) i s  the Bloch wave function a t  the point k,, 
G i s  the reciprocal-lattice vector, and V, i s  the volume 
of the unit cell: 

In our case the functions ulk0(r)and u,,o(r) have different 
parities. It i s  easy to verify, using this circumstance, 
the following properties of the matrix elements (3): 

v ,  (q) = v ,  ( 4 ,  Vl(0) +o; 
v, (q) =v, (-q), V, (0) +o, V2(0) (VI (0) ; (6) 
v, (q) =-V3 (-q) , v3 (0) =o. 

It follows thus from (6) that it i s  wrong to replace V,(q) 
by a constant independent of the momentum. Analysis 
shows that a t  small q the potentials V,(q) and V,(q) take 
the form 

vz (9) =my2+ (qP)'+V, (0) , (7) 

v3 (9)  =q7, (8) 

where (Y, p,  and y a r e  parameters whose explicit form 
i s  of no interest to us. All that matters i s  that V, >> V,, 
V, in the entire range of variation of q of interest to us. 

As to ~ , ( q ) ,  it i s  easy to obtain from (3) the usual ex- 
pression,' by retaining only the terms with G=O. 

3. SPONTANEOUS CURRENT I N  A SYSTEM WITH 
IMAGINARY ORDER PARAMETER 

According to the classification given in Ref. 2, for a 
real order parameter A in a system with bands of the 
symmetry investigated by us,  there ar ises  a spontan- 
eous polarization 

$(R) =2d,,A (R). (9) 

Here g ( R )  i s  the polarization averaged over the volume 
of the old (unreconstructed)unit cell, and dl, i s  the 
transition matrix element: 

The order parameter A(R), which characterizes the 
macroscopic change of the polarization, i s  simply the 
anomalous Green's function taken at equal arguments 
r = r'= R. It i s  important that the normal Green's 
functions G,, and G,, do not enter explicitly in the ex- 
pression (9) for the polarization. 

The situation i s  different in the case of an imaginary 
order parameter A. Besides the interband component 
of the spontaneous current, which takes the form 

where 

A(R)=tlA(R) 1, (12) 

there is also an intraband current component 
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An analysis carried out in Ref. 6 has shown that at 
constant A(R) the total current in the system i s  zero  
[this can be still treated a s  cancellation of the inter- 
band current (11) by the intraband current (1311. It is  
impossible to obtain a general expression for the cur- 
rent j(R) in terms of the order parameter A(R), but 
near the transition temperature and for a slow varia- 
tion of A(R) it was shown in Reg. 6 that 

j ( R )  =6[rot rot P,,A ( R )  1 ,  (14) 

where 6 is  a numerical coefficient. 

Thus, only an inhomogeneous current state i s  pro- 
duced, in agreement with the Bloch theorem. We note 
also that divj (R) = 0. 

We examine now in greater detail the effective inter- 
action constants for the cases of real  and imaginary 
order parameters. It follows from the results of Sec. 
2 that direct diagrams (of the Hartree type), which 
contain the interband interaction V,(O) drop out of con- 
sideration. Only the exchange diagrams remain, and 
their contribution i s  well known. The interaction con- 
stants (disregarding the spin and the phonons) a r e  of 
the form 

~ H ~ = P ' ~ + P , - ~ V ~ ( O ) ,  grm=V1-Tr.  (15) 

The subscripts Re@) pertsin to real (imaginary) order 
parameters, while V, and V, a r e  the Coulomb interac- 
tions taken on the Fermi surface and averaged over the 
angles. In the Luttinger-Kohn representation the in- 
teraction V,(q) reduces mainly to a renormalization of 
the hybridization term in the Hamiltonian (2), and we 
confine ourselves hereafter to allowance for the inter- 
actions V, and V,. We emphasize, however, that in the 
Bloch representation V, cannot be discarded. The Ham- 
iltonian (2) rewritten in the Bloch representation will 
not contain a hybridization term. The interaction V, 
has in this case, too, the structure (81, but since V, 
acts a s  a source in the self-consistency equations, it 
must be taken into account if a correct  expression i s  
to be obtained for A(k), with par ts  even and odd with 
respect to k.  It can be shown that allowance for such 
an odd part of A(k) i s  analogous to allowance for the 
hybridization in the Luttinger-Kohn representation, and 
ensures mutual cancellation of the interband and intra- 
band currents. 

It i s  clear from the foregoing that it i s  most conven- 
ient to carry out the investigation of the current state 
in the Luttinger-Kohn representation. The weakly in- 
homogeneous current state near the phase-transition 
temperature will be investigated in the next section. 

4. TWO-PARAMETER GINZBURG-LUNDAU 
EXPANSION 

We start  with the Hamiltonian (2) expressed in the 
Luttinger-Kohn representation. The complex order 
parameter 1.1 i s  defined in the usual manner in terms 
of the anomalous Green's function of the system 
G,,(r, r'). It i s  convenient to separate it into a real 
and imaginary part, A =  A, + iA,,. We analyze next 

the behavior of the system near the phase-transition 
temperature. This is  easiest to do by constructing the 
free-energy functional F ( r ) .  For simplicity we as-  
sume that the hybridization parameter IP,,k, I/m E, i s  
small, so that we confine ourselves to the first nonvan- 
ishing terms in the coefficients of the expansion of F(r )  
in terms of A(r). Assume that the electron and hole 
densities a r e  not equal and their difference i s  n. It is  
known1° that in the case of a real  order parameter 
(singlet o r  triplet), if n i s  large enough a transition is 
possible into an incommensurable state characterized 
by a superstructure wave vector q - n/v, .  On the (n, T) 
phase diagram there i s  a point of contact of three 
phases, unreconstructed, reconstructed commensurate, 
and reconstructed incommensurate- the so-called Lif- 
shitz point. We shall not deal hereafter with the spin 
structure, and assume that the pairing i s  singlet both 
the state A,, and in the state a,,. It can be shown that 
allowance for the possible appearance of triplet pairing 
introduces no new factors in the analysis that follows. 

Leaving out the elaborate calculations, we present the 
general form of the functional F(r):  

raa,i ( n  grad ~ ~ , ) ~ + a : : )  ( n  grad AI,) "+ag) (d iv  grad (I6) 

+a:: (div grad Arm) ? A ~ . A R . ~ +  A I m ~ 1 2 + C ( A ~ I Z + A ~ m 2 ) ' .  

He r e  

Tho,, and n,(,,, a r e  the coordinates of the Lifshitz 
point10 at coupling constants g,,(g,,); 

n i s  a unit vector in the P,, direction; 

where 

We have specially separated in the functional (16) the 
terms A,, and A,,, which contain the first-order cor- 
rections in the hybridizations. At the Lifshitz point we 
have cp, = 0 and it was therefore necessary to retain in 
A, and A,, the terms of fourth order in P,,. The coef- 
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ficients a '' and a "', and a ,  C a re  set equal for A, 

and A,,, since they differ little near the Lifshitz point, 
and this difference does not affect the results. The 
coupling constants g, and g,,, which enter in the de- 
finitions of T, andr,,, a r e  such that in the commen- 
surate phase the temperature T, of the transition in- 
to the ferroelectric phase exceeds the temperature TI, 
of the transition into the superdiamagnetic phase.' We 
shall assume that the constants g, and g,, (and con- 
sequently also T, and TI,) a r e  close, andconsider the 
behavior of the lines of the phase transition into a state 
with noncommensurate (inhomogeneous) A, and A,,. 

In this case cp,< 0, cp,< 0. Assume that A, and A,, 
do not coexist in the system. Then, assuming first  
A,,= 0, A, #0,  we obtain an expression for the transi- 
tion temperature: 

We determine q& by minimizing the functional with 
respect to this parameter (we seek the solution in the 
form A,,(Y) = A, cos 9Rer; as indicated by Volkov and 
~ugushev," the representationof the solution in this 
form near the Lifshitz point i s  valid accurate in terms 
cubic in A,,): 

Substituting next (21) in (201, we easily note that the 
highest temperature of the transition into the inhomo- 
geneous (incommensurate state) state corresponds to 
the transition q, 1 P,,. The transition line T,(n) in 
the vicinity of the Lifshitz point O i s  shown in the figure 
(curve 1). The Lifshitz point i s  defined inthe case of 
the transition into the ferroelectric phase a s  the inter- 
section of the line (20) with the line a = 0. 

We now obtain the line T,,(n) that characterizes the 
phase transition into the current state, under the con- 
dition that no transition takes place into the ferroelec- 
tr ic state. In the commensurate state this would cor- 
respond to the condition g,, <g,,, which is apparently 
impossible, so that the transition into the ferroelectric 
state takes place earlier,  and T,,(n)> T,,(n). In the 
inhomogeneous (incommensurate) phase, a s  we shall 
nowshow, the situation may be different. We seek the 
imaginary order parameter A,&) in the form A,,(r) 
= A,, cos em(.), putting hRe = 0. We obtain for the tran- 
sition temperature in this case: 

~Im+Al,+aqI,'+a'Z'qlm'+ a(') ( n q 1 ~ ) ~ = 0 ,  (22) 

and for the parameter q,, we have 

Exactly a s  in (211, the highest transitiontemperature 
T,,(n) i s  reached a t  q,, lP,,. From (21) and (23) it fol- 
lows that in this case q,, = q,. Inasmuch a s  cp, < 0 in 
the incommensurate phase, it follows from (20) and 
(22) that even a t  g, >g,,, owing to the difference be- 
tween the coefficients [+, and -(i)cp,] of the term lin- 
ear in A, the temperature T,(n) may turn out to be 
lower than T,,(n), i. e. , the hybridization suppresses 
the inhomogeneous ferroelectric state more strongly 
than the inhomogeneous current state. The figure 
shows a plot of T,,(n) (curve 2). By selecting the sys- 
tem parameters (by making g,, and GI, close enough) 
we can obtain on the (T,n) diagram a transition into the 
inhomogeneous current state in a definite concentration 
region n >  n b  [where n;, i s  determined by the intersec- 
tion of the curves T,,(n) and ~ ~ ( n ) ]  when the tempera- 
ture i s  lowered. The question of the upper limit of the 
concentration n, a t  which a transition into the current 
state i s  possible, remains open, however. It i s  quite 
probable that this limit coincides with the largest con- 
centration n,,= 0.7554, a t  which a phase transition i s  
possible a t  all. lo 

The most probable i s  a ratio of the constants g, and 
g,, such that T,(n) > T,,(n) on the entire phase diagram. 
It i s  natural to consider the questionof the coexistence 
of the singlet and triplet order parameters near the 
Lifshitz point." Simplifying the analysis, we shall 
assume that the different between g, and g,, i s  large 
enough so that A, and A,, make rather small contri- 
butions to the relation between T,,(n) and T,,(n) and 
can be left out (a more rigorous analysis confirms 
the validity of this approach). We assumethat a t  the 
temperature T,(n) a solution of A,(r) was generated 
in the form A,, cos q x r ,  with qlP, , .  The quantity q 
itself and i ts  change with decreasingtemperature is of 
no interest to us. The coefficient of ~ & ( r )  in the func- 
tional (16) depends substantially on the choice of the 
solution AI, (r). 

We discuss now the situation when A,,(r)= A,sinqxr, 
i. e., i t  is shifted by n/2 in phase relative to 
A,,(r). In this case it i s  easy to verify, by integrating 
over the volume, that the effective coefficient ( Y I ~  01 
the term quadratic in Ah in the expansion of the free 
energy i s  equal to 

a~~=z~~+aq'+a"'q'+~/~CA~~~. (24) 

At the same time it can be easily shown that 

From (14) and (25) we see  that a t  

the term quadratic in 4, in the functional (16) reverses 
sign, and generation of A,,(r) against the background 
of A,(r) i s  possible. Recognizing that T,, = T, + 1116, 
where 

FIG. 1. 

we obtain the condition for the coexistence of A, and 
Ah: 
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The line T,(n) corresponding to Eq. (27) was approxi- 
mately plotted in the figure (curve 3). 

From the analysis of the functional (16) it i s  easily 
seen that coexistence of A,, and A,, i s  impossible in 
the homogeneous case. The most suitable from among 
the inhomogeneous solutions a t  small  q i s  a solution 
of the type 

AR,(r) =An. cos qr, AI,(r) --Arm sin qr. (28) 

The question of the advantage of one type of solution 
over another i s  answered in the same manner a s  for  the 
coexistence of singlet and triplet order parameters. l1 

The results allow us  to predict the following structure 
of the band state in the case of ferroelectric ordering. 
Inside the ferroelectric "domains ," where the spontan- 
eous polarization, which is  proportional to A,, changes 
very little, coexistence of A, and A, i s  impossible, 
and no spontaneous current i s  produced in this region. 
Near the "domain" boundary, in the region where the 
polarization i s  drastically inhomogeneous, a spontan- 
eous current i s  produced and i ts  maximum density takes 
place in the region of the strongest variation of the po- 
larization. Thus, a "domain wall7' of sor ts  i s  produced, 
in which the phase of the order parameter A(Y) changes 
from cp = 0 to cp = a/2 and then from cp = a/2 to cp = a. 
The mathematical analysis of this structure should be 
based on the functional (16) with allowance for  the high- 
e r  harmonic components. The functional F ( r )  takes in 
terms of the new variables (the amplitude IA I and the 
phase cp) the form 

A mathematical analysis of the equations of the mini- 
mization of the functional (29) i s  quite complicated and 
calls for a separate study. 

From among the foregoing results ,  special notice 
should be taken of the fact that the transverse structure 
of an inhomogeneous state [whether "current" o r  
"mixed" (28)] i s  more favored than a longitudinal one 
near the transition temperature. In fact, at  qllP,,, 
a s  follows from the definition of the current (141, we 
would obtain j = 0, i. e. , no longitudinal currents can 
exist in the investigated system. 

This means that in principle states a r e  possible in 
which the phase of the order  parameter i s  equal to 
ia/2 (or varies in space, going through *a/2), but no 
spontaneous current can be produced in this case. In 

our model, such states a r e  not favored near the transi- 
tion temperature compared with the "true" current 
states ( q l  PI,) for the following reason. Since the sys- 
tem i s  uniaxial (there i s  only one preferred vector PI,) 
the Fermi surfaces of the electrons and holes a r e  aniso- 
tropic, but congruent. The conditions of electron-elec- 
tron pairing a r e  most favorable in directions perpendi- 
cular to PI,, inasmuch in these directions the pairing 
covers the greater part of the phase space. 

We have assumed that the cause of the formation of 
the inhomogeneous state (current o r  ferroelectric) i s  
that the electron and hole Fermi surfaces do not coin- 
cide (e.g. , a s  a result of doping). Another cause may 
be the noncongruence of the Fermi surfaces or  of at 
least some of their sections. A qualitative analysis 
based on the model of Kopaev and Mnatsakanov12 shows 
that in this case,  too, a t  sufficiently large noncongru- 
ence, an inhomogeneous state of the type considered 
above i s  produced. 

The authors thank B. A. Volkov and Yu. V. Kopaev 
for  help during the writing of the paper and for useful 
discussions of i t s  results. 

'B. I. Halperin and T. M. Rice, Solid State Phys. 21, 115 
(1968). 

2 ~ .  A. Volkov and Yu. V. Kopaev, Pis'ma Zh. Eksp. Teor. Fiz. 
27, 10 (1978) [JETP Lett. 27, 7 (1978)l. 

'B. A. Volkov, V. L. Ginzburg, and Yu. V. Kopaev, Pis'ma Zh. 
Eksp. Teor. Fiz. 27, 221 (1978) [JETP Lett. 27, 206 (1978)l. 

4 ~ .  F. Elesin and Yu. V. Kopaev, Pis'ma Zh. Eksp. Teor. Fiz. 
24, 78 (1976) [ JETP Lett. 24, 66 (1976)). 

%. Kittel, Introduction to Solid State Physics [Wiley (1956)l. 
6 ~ .  A. Volkov, Yu. V. Kopaev, M. S. Nunuparov, and V. V. 

Tugushev, Pis'ma Zh. Eksp. Teor. Fiz. 30, 317 (1979) 
[JETP Lett. 30, 293 (1979)l. 

'B. A. Volkov, Yu. V. Kopaev, and M. S. Nunuparov, Fiz. 
Tverd. Tela (Leningrad) 21, 2733 (1979) [Sov. Phys. Solid 
State 21, 1571 (1979)l. 

'A. V. Klyuchnik and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 76, 
670 (1979) [Sov. Phys. JETP 49, 335 (1979)l. 
'v. M. Lubwik, Fiz. Met. Metalloved. 35, 1193 (1973). 
'9. M. Rice, Phys. Rev. 2B, 3619 (1970). A. I. Larkin and 

Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) 
[Sov. Phys. JETP 20, 762 (1964)l. 

"B. A. Volkw and V. V. Tugushev, Zh. Eksp. Teor. Fiz. 77, 
2104 (1979) [Sw. Phys. JETP 50, 1006 (1979)l. 

'%u. V. Kopaev and T. T. Mnatsakanw, Zh. Eksp. Teor. Fiz. 
63, 684 (1972) [Sov. Phys. JETP 36, 361 (1972)l. 

Translated by J. G .  Adashko 

98 1 Sov. Phys. JETP 51(5), May 1980 A. A. Gorbatsevich and V. V. Tugushev 98 1 


