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The orbital susceptibility of two-dimensional graphite with a linear dispersion law is calculated. It is shown 
that this quantity is determined entirely by the band-band contribution of the filled-valence-band states 
excited by the magnetic field into the conduction band, and is inversely proportional to the state density on 
the Fermi level in the temperature-degenerate case. A quasilinear dispersion law with a forbidden gap - lo-' 
eV between the degenerate bands is proposed for the description of the experimental temperature 
dependences of the diamagnetism. The obtained theoretical expressions describe satisfactorily the 
experimental data in the entire measurement-temperature range. 

PACS numbers: 75.20.Ck, 78.20.Dj 

1. INTRODUCTION 

Graphites have the largest specific diamagnetism of 
all the presently known materials. Thus, the suscepti- 
bility of single-crystal graphite in the c-axis direction 
amounts to - -30 cgs emu/g a t  a temperature low- 
e r  than 77 K. ' There exist, however, "two-dimension- 
al" graphite-like structures with a magnetic suscepti- 
bility greatly exceeding this These "two-di- 
mensional graphites" contain a s  their principal struc- 
tural units graphite-like layers that hardly interact with 
one another; this makes i t  possible to describe the elec- 
tronic structure of such materials by means of two-di- 
mensional band models. * 

An ideal graphite-like layer is, if spin-orbit interac- 
tion is disregarded, a gapless semiconductor with a lin- 
ear dispersion law near the corners of the band5e6: 

2. ORBITAL SUSCEPTIBILITY OF TWO-DIMENSIONAL 
GRAPHITE WITH A LINEAR DISPERSION LAW 

The orbital susceptibility x,, of two-dimensional 
graphite with a linear dispersion law (1) was calculated 
from the general expression proposed by Roth and Wan- 
n i e r l O ~ i ~ o r  the magnetic susceptibility of a system of 
noninteracting Bloch electrons in the limit of weak 
fields (H - 0). Expanding the tensor products, we re- 
write expression (103) of Ref. 10 for the case of a two- 
band striicture (1) in the presence of an inversion cen- 
ter. In a magnetic field H directed along the z axis 
perpendicular to the plane of the layer we can write 

where x,, is the Landau-Peierls susceptibility: 

..,- 
where k is the distance in k-space from the corner of 
the band, Po is the constant of the band structure of the and xbb is the band-band contribution made to the dia- 
graphite,6 and m is the mass of the f ree  electron. The magnetism by the carr iers  belonging to the entire Fer- 
signs + and - pertain respectively to the conduction and mi distribution: 
valence bands. 

In this paper we calculate the orbital susceptibility of 
a graphite-like layer, for the purpose of ascertaining 
the origin and the structure of the large diamagnetic 
contribution to the susceptibility of the two-dimensional 
graphites. 

The present difficulties in the description the diamag- 
netism of two-dimensional graphite7g in the entire 
range of measurement temperatures a r e  due to one 
shortcoming: the orbital susceptibility is calculated 
there by using energy levels that were not corrected for 
the terms quadratic in the magnetic field H, whereas all 
the diamagnetic effects manifest themselves just in the 
second order in H. 'O*" In fact, a more correct  use of 
the Euler-Maclaurin summation than in Refs. 8 and 9 
leads only to a diamagnetism that oscillates about zero. 
At the same time, the oscillation mechanism proposed 
by ~ c ~ l u r e '  for the description of the high-temperature 
contribution to the magnetic susceptibility does not op- 
erate below the degeneracy temperature. 

Here &,,(k) is the dispersion law in the first  band (n= 1, 
2): 

is the Fermi-Dirac distribution function, p is the chem- 
ical potential of the system of impurity carriers,  and O 
is the temperature in energy units. The summation 
sign stands for summation over the band numbers n and 
integration over the coordinates of the continuous vari- 
able k in the first  Brillouin zone. The matrix elements 
in (4) a r e  written in the representation of the Bloch 
function of the single-elcctron problem. 

To obtain (4) we have used the following properties of 
the Adams coordinate  erato tors"^^^: 
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A pnvn. 
I,,. = - 

mi ~ , ( k )  -E.* ( k )  at n+n', 
L, is the electron orbital-momentum operator, we can 
determine the origin of the two terms in (8). 

where v a r e  the Cartesian indices ( v = x ,  y), p,,, 
= (n, k lpv In', k )  is the band-band matrix element of the 
momentum operator f ,  and In, k )  =~, ,e '~ '*  is the Bloch 
function of the nth band. 

To determine the matrices P",,,,, we express the peri- 
odic parts of the Bloch waves u , ,  in terms of the wave 
functions ui,, and u2,,, which a r e  degenerate a t  the cor- 
ne r s  of the band. From the secular equation for the en- 
ergy levels (1) we obtain in the k . p  approximation6 

The signs - and + pertain respectively to the electron 
and hole states, and a is the angular coordinate of the 
vector k. The wave functions (6) lead in f i rs t  order in 
k to the linear spectrum (1). 

Inasmuch a s  symmetry yields6 

we obtain the sought relations: 

Taking into account the spin degeneracy and the fact 
that a unit cell contains two carbon atoms, we obtain 
with the aid of (5) and (7), normalizing to unit mass, 

where co corresponds to the point of cutoff of the linear 
spectrum in the first  Brillouin zone, 

3 a 2  e 2  A = - -  cgs emu 
a2np cL (x) y2=0.35.10-6- g .sV, 

i e' cgs emu 
B=-.-=0.15.i0-'-. 

4npc, mez g 

We have used here the structure parameters of two-di- 
mensional graphite: a = l.4:6 A; p = 2.22 g/cm3 is the 
graphite density; c~ = 6.80 A is double the yo = 2fipo/ 
3i'2mas 2.8 eV (Ref. 4) is the parameter of the intraly- 
e r  interaction. 5*6 In the case degenerate in the temper- 
ature (@ = 0) we have 

de 
u=-B j T, (14) 

-4 

where po is the Fermi level of the system. 

Writing down the single-particle Hamiltonian in the 
presence of a magnetic field in a symmetrical gauge: 

where & is the Hamiltonian in the absence of a field and 

An analysis of the structure of the diamagnetic contri- 
bution shows that the component 

that describes the interaction of the magnetic field with 
the orbital momentum of the electron is responsible for 
the quantity xi, whereas the component x2 is determined 
by the term 

in (15). The physical cause of both diamagnetic contri- 
butions l ies in the interband transitions induced by the 
magnetic field. i0'i2 

A remarkable consequence of the linear character of 
the dispersion law is the vanishing of the Landau-Pei- 
e r l s  susceptibility (31, meaning the diamagnetism in 
two-dimensional graphite is entirely of band-band ori- 
gin. 

Relations (9) and (10) do not make i t  possible to cal- 
culate the value of the -- magnetic - - - - -- susceptibility ---- a t  finite - 

temperaturcowing to the non-integrable singularity at 
zero in  the integrands. This is a formal consequence of 
the fact that the matrix elements (5) become infinite a t  
the band degeneracy point c = 0. The physical reason is 
that the magnetic field is a strong enough perturbation 
to upset the band structure near the degeneracy point, 
so  that relation (5) becomes invalid in the region ~ ~ 0 .  
Almost degenerate states lead then to a strong field de- 
pendence of the magnetic susceptibility (of the form 
~ " ' 2 ) .  

We shall get rid of this divergence by changing over 
from the energy spectrum (I) to a more realistic one. 

3. ENERGY SPECTRUM AND DIAMAGNETISM OF 
TWO-DIMENSIONAL GRAPHITE WITH A 
QUASILINEAR DISPERSION LAW 

The gapless state produced in two-dimensional graph- 
i te by the symmetry of the crystal lattice should be 
made to vanish by perturbations that lower the symme- 
try. In the absence of band-band interaction, the role 
of such a perturbation can be played by the spin-orbit 
coupling. The perturbed spectrum of the two-dimen- 
sional layer can be written in sufficiently general 
formi5*I6 

where y and 6 a re  certain small (compared with Ipo 1) 
energy constants. 

Thus, perturbation of the linear energy spectrum (1) 
leads to a quasilinear dispersion law with a small for- 
bidden gap A s  = 2y between the valence and conduction 
bands. 

We shall not specify the parameter y more concretely, 
and retain i t  a s  a phenomenological constant whose val- 
ue, a s  will be shown below, can be obtained by compar- 
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ing the theoretical and experimental temperature de- 
pendences of the diamagnetic susceptibility of two-di- 
mensional graphites. 

The ser ies  (22) converges rapidly, but at  ,!i 2 1 i t  is con- 
venient to use the following expansion in powers of P: 

Neglecting the influence of the small  perturbation y on 
the matrix elements (7), we rewrite (9) and (10) with 
allowance for (16) (the energy origin is shifted by an 
amount 6 from the corner of the band): 

The values of P a t  a given temperature O and at a given 
Fermi  level po  a r e  determined by iteration from (22) o r  
(23). Figure 1 shows the dependence of p on O in di- 
mensionless coordinates. 

We consider now (20) a t  I pO I >> y. The use of 0/ I p0 I 
a t  low temperatures and of y/@ a t  high ones a s  the 
small  parameters of the problem enables to distinguish 
between the contributions made to the magnetic s u s c e p  
tibility by the different energy states in the band. In 
the dimensionless coordinates x = C / O  and B we have an 
asymptotic estimate a s  y/0 - 0: 

In the temperature-degeneracy region 

Inasmuch a s  a t  I p o  I << .so the value of X, depends little on 
the cutoff energy, and .sof 1 eV, we can estimate x2 a s  a 
function of the position of the Fermi  level a t  y = 5 . lo4  
(see Sec. 4): 

where 

The f i rs t  term in (24) corresponds to the contribution 
from the states located in the immediate vicinity of the 
band-degeneracy point c f  0 and having the highest sus- 
ceptibility. 

It should be noted that the asymptotic form (24) de- 
scribes satisfactorily the temperature dependence of 
x(O) in the entire temperature interval: at y/O- 1, 
when the asymptotic estimate of the f irst  term in (24) i s  
incorrect, this term vanishes, corresponding to the ab- 
sence of ca r r i e r s  near the point E = 0. 

The function @ ( B )  (Fig. 2) and the susceptibility of 
two-dimensional graphite take in different temperature 
intervals the following forms: 

1)  0 << Ipo l -degeneracy. We have 

Whereas for  sufficiently deep states in the valence 
band [pO =- (0.1-0.3) e ~ ]  x2 is located at  the level x,, 
of the atomic diamagnetism, x2 can noticeably exceed 
xat in the case when the Fe rmi  level is close to the de- 
generacy point or  in the conduction band. However, the 
weak dependence of x2 on the position of the Fermi  level 
and on the temperature make this quantity pseudoatomic 
in character. 

Thus the large absolute value of the diamagnetism of 
two-dimensional graphite in a direction perpendicular to 
the layer plane is determined almost completely by the 
value of xi. 

4. TEMPERATURE DEPENDENCE OF THE 
DIAMAGNETIC SUSCEPTIBILITY OF TWO- 
DIMENSIONAL GRAPHITE. COMPARISON WITH 
EXPERIMENT 

2 ) @ 2  lpol. Here 
Taking into account the rapid decrease of the integrand 

of (17) at  large c, we write down for I p 0  I << &o: 

where 

We shall need now the temperature dependence of the 
chemical potential p. At Ipo l >> y we obtain after ele- 
mentary transformations, from the electroneutrality 
condition, 

- Ei(- n) is the integral exponential function,'? and 

j r(l+.-=)dz-g:. 
0 

where 
FIG. 1. 

.B=lpl/e, Po=Ipol/e. 

This yields an equation for the determination of P :  

n' e - n ~  
Bz+--4C(-1)n+t-, nz Po'. 

"-1 
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FIG. 2. 

The function (29) differs little from I/@ and is not con- 
nected with the initial position of the Fe rmi  level. 

3) 0= 0.5 11, I .  A characteristic maximum of the 
diamagnetism is observed in this level. Its position 
practically coincides with the temperature Om a t  which 
the relative fraction of the states with the maximum 
value of the susceptibility is maximal: 

The amplitude of the maximum xm/xo is determined only 
by the ratio Ipo l/y and depends little on po: 

Comparison of (31) with the experimental rat ios x,/x, 
makes it possible to estimate the parameter y. 

The theoretical relations (24) were compared with the 
experimental data of Marchand and ~ u ~ a r t , ' ~  who inves- 
tigated the temperature dependence of the diamagnetism 
of boronized pyrocarbons in the temperature interval 
77-1400 K. Pyrocarbons a r e  homogeneous products 
obtained by precipitation of carbon from the gas phase 
when methane is thermally decomposed in vacuum. Al- 
loying with boron makes i t  possible to vary the hole 
carr iers .  Experimental proof of the linear character 
of the state density of the impurity ca r r i e r s  in pyrocar- 
bons with boron in a wide range of Fermi-level posi- 
tions in the valence band (- 0.076 to 0.52 eV) is con- 
tained in a paper by one of us.4 Thus, a pyrocarbon al- 
loyed with boron can serve a s  a real  approximation of 
two-dimensional graphite. 

Figure 3 shows typical temperature dependences of 
the diamagnetic susceptibility for samples with different 
boron contents in the lattice. '"he ordinates represent 
the differences of the principal values of the susceptibil- 
ity, corresponding to the magnetic field directions per- 
pendicular to the layer ( x ~ ~ )  and along the layer (xl1). 
The susceptibility xi1 along the layer amounts to 
- (0.3 - 0.5) . l o 4  cgs emu/g for all the materials in- 
vestigated in Ref. 18, and is practically independent of 
temperature. This makes i t  possible to attribute xil to 
the atomic diamagnetism and the difference x~~ - to 
the susceptibility of the n electrons. 

The table l ists  the reduced results of the graphic ma- 
terial of Ref. 18. The experimental values of the con- 
stant A in Eq. (9) were estimated from (27) and (30): 

For  comparison with experiment, the theoretical plots 

FIG. 3. Temperature dependence of the diamagnetic suscepti- 
bility of pyrocarbons with boron. The experimental data of 
Ref. 18 are represented by different symbols : .-sample 
40AS, a=40AP, o-56P, A-100P, and 0-150s. Solid 
lines-calculated curves for the parameters A and y listed in 
the table. 

of x(@) with the parameters A and y from the table a r e  
shown in Fig. 3. The functional relation (24) describes 
satisfactorily the experimental curves in the entire tem- 
perature-measurement interval. I t  must be recognized 
in the analysis of the empirical constants A,,, and y that 
the existing inhomogeneity of the distribution of the bor- 
on or  of the intrinsic defect content in the lattices of the 
two-dimensional graphites should change the functional 
connections that follow from (27), (30), and (31). An 
elementary analysis shows that the inhomogeneity leads 
to a decrease of the empirical coefficient A,,, from (32) 
and of the ratio x,/xo compared with the theoretical val- 
ues (11) and (31). 

Taking the last  remark into account, we have estimat- 
ed the mean value of y to be - 5 lo4  eV, which is close 
in order of magnitude to the splitting of the band degen- 
eracy point & =  0 on account of the spin-orbit interac- 
tion. l4 The estimate obtained by us for y allows us  to 
estimate roughly the theoretically attainable diamag- 
netism of two-dimensional graphite. I t  must be recog- 
nized here that in the case of the dispersion law (16) the 
Landau-Peierls diamagnetism differs from zero  and 
reaches at  Ipo I/y" 1 values typical of the interband 
contribution xi. Taking this remark into account, x,, 
is estimated a t  - -400 . 1oTcgs emu/g in the liquid- 
helium temperature region. We note that the maximum 
value of the diamagnetism corresponds to complete ab- 
sence of ca r r i e r s  in the two-dimensional graphite. 

TABLE I. Reduction of the experimental data of Ref. 18. 
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-x,,/u: cgs emulg 

1 , ~ ~ ;  , eV 

FIG. 4. Diamagnetic susceptibility of two-dimensional 
graphites as function of the position of the Fermi level ( y  
= 5. eV) at the temperatures 300 (1) , 77 (2), and 4.2 K 
(3). 

T o  at ta in  such  suscept ibi l i t ies  i t  is necessa ry  to have 
defect-free graphite-like l a y e r s  that do  not in te rac t  
with one another. F igure  4 shows plots  of xi(po) calcu- 
la ted a t  y = 5 lod eV a t  t empera tu res  300, 77, and 4.2 
K. These  make i t  possible  to es t imate  the degree  of 
perfection of the investigated graphites.  The  maximum 

attainable values  of X, are respect ively - 31 -10' and 
- 84 - l o 4  c g s  emu/g a t  300 and K, respectively. 
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