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A connection is established between the hydrodynamic approach and the phenomenological Lagrangian of 
spin waves in spatially disordered media. The hydrodynamic approach is generalized with allowance for the 
nonlinear interactions of the magnons. Account is taken of the relativistic corrections for the new possible 
phases due to total spontaneous breaking of the spin-rotati03 group. 
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The study of spin waves in spatially disordered mag- and spatially inhomogeneous media. 
netic media has received much attention of late.Iv2 
Since spin waves a r e  Goldstone excitations due to spon- 
taneous breaking of symmetry with respect to spin rota- 
tions, it is possible to apply to them the general group- 
theoretical method of describing the dynamics of Gold- 
stone excitations, the so  called method of phenomeno- 
logical Lagrangians (Refs. 3-5)," which has been ex- 
tensively used recently in elementary-particle physics. 

The conclusion that total spontaneous symmetry 
breaking of spin rotations i s  possible and leads to the 
presence of three branches of spin waves, f irst  formu- 
lated in Ref. 7 for the case of spatially disordered sys- 
tems, was recently also proposed in an interesting 
paper by Halperin and  asl low' on the basis of the hydro- 
dynamic approach used by them. They, however, took 
no account of the nonlinear effects, and the analysis 

The method of phenomenological Lagrangians is based pertained only to the particular case of a degenerate 
on the remark that spontaneous symmetry breaking i s  in spin-wave spectrum. An analysis of spin waves for the 
fact not a breaking of the symmetry, but i ts  restruc- case of a spatially disordered medium, similar to the 
turing in such a way that the dynamic variables that analysis of Ref. 7, was recently presented also by 
transform in accordance with the linear representations ~ n d r e e v , ~  who made, in particular, an interesting at- 
of the corresponding group a r e  replaced by some new tempt to establish the form of the relativistic interac- 
dynamic variables with a nonlinear transformation law tions. 
(the SO called nonlinear realizations). The dynamic 
variables of the latter type a r e  defined by a Lagrange 
function that i s  invariant to the transformations of the 
considered symmetry group. In the long-wave limit, 
the invariance requirement determines the Lagrange 
function of Goldstone fields accurate to a certain num- 
ber of phenomenological constants. Depending on the 
subgroup of the invariance of the ground state, the ex- 
citation spectrum has one, two, o r  three Goldstone 
spin-wave branches. For the first  two cases the sub- 
group of the invariance of the ground state i s  the group 
O(2) and these cases correspond to ferromagnetic and 
antiferromagnetic media; in the case of antiferromag- 
netic media, the ground state i s  invariant also with re- 
spect to time reflection. In both considered cases small  
deviations of the system from the ground state a r e  de- 
scribed by two angles [the coordinates of the homo- 
geneous factor space 0(3)/0(2)], which correspond to 
one or two branches of spin excitations, depending on 
whether the equations of motion contain derivatives of 
f irst  o r  second order with respect to time. 

The three spin-wave branches appear in the case of 
maximum breaking of the symmetry of the ground state, 
when the subgroup of its invariance i s  only the identity 
transformation. In this case deviations from the ground 
state a r e  described by three angles [the parameters of 
the group 0(3)], the dependence of which on the spatial 
coordinates and on the time determines in fact the char- 
acter of the spin excitations. 

The dispersion spectra of spin waves and of their in- 
teractions were considered in detail in Ref. 7 for the 
three indicated cases, for both spatially homogeneous 

The purpose of the present paper is, f irst ,  to estab- 
lish a connection between the phenomenological method 
of Ref. 7, on the one hand, and the hydrodynamic ap- 
proach of Ref. 1, on the other, and to generalize the 
latter to take into account all  the possible nonlinear in- 
teractions and forms of the magnon spectrum. The 
second purpose is  further development of the approach 
proposed in Ref. 7 to include allowance for relativistic 
interactions and for interaction with an external mag- 
netic field. 

We propose that, in contrast to the case of spatially 
ordered media, for which relativistic interactions con- 
tain terms both with and without gradients of the magnon 
fields, in the case of a spatially disordered medium 
there a r e  possible phases due to the total spontaneous 
breaking of the group of spin rotations, for which al- 
lowance for the relativistic effects involves only the 
field gradients. As a result, the relativistic correc- 
tions for the considered phases do not change the Gold- 
stone character of the spectrum and lead to a correla- 
tion between the polarization properties and the propa- 
gation direction of the spin waves, and to the appear- 
ance of spatial anisotropy. 

1. The interaction between electron spins in magnetic 
media, neglecting relativistic effects, is invariant to 
simultaneous rotation of all  the spins of the system- 
the transformations that make up the O(3) symmetry 
group. In the case when some of the operators with 
spin indices averaged over the ground state of the sys- 
tem differ from zero and transform in accordance with 
a non-identical representation under transformations of 
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the spin-rotation group, spontaneous symmetry breaking 
takes place in the system. In states close to the ground 
state, local mean values in different spatial and tem- 
poral points differ in this case from one another by a 
certain rotation that belongs to the considered group of 
transformations. The wave. processes that result from 
the indicated local differences manifest themselves as 
certain elementary excitations-spin waves having, de- 
pending on the structure of the medium, definite disper- 
sion properties and a definite character of the interac- 
tion.& 

In the long-wave limit, the properties of the spin 
waves, for the case of arbitrary magnetic media, can 
be described phenomenologically using only the sym- 
metry r e q ~ i r e m e n t . ~  To clarify the relations that ar ise  
when the method of phenomenological Lagrangians is 
applied to magnetic media, we consider f i rs t  the classi- 
cal example of spontaneous breaking of O(3) symmetry, 
namely mechanical rotation of an arbitrary solid. It i s  
known that all the interactions between the individual 
components of the solid a s  a mechanical system remain 
invariant to spatial rotation. The formation, in the gen- 
era l  case, of an asymmetrical solid, as a result of such 
interactions i s  spontaneous symmetry breaking. Just as 
in the general case of spontaneous symmetry breaking, 
in this case the spontaneous symmetry breaking does 
not mean vanishing of the symmetry. The symmetry 
with respect to spatial rotation manifests itself in the 
equivalence of different positions of the solid a t  rest, 
and also in the invariance of the equations of motion in 
the case of rotation of the solid. The requirement that 
the equations of motion be invariant to rotation and time 
reversal, together with the additional restriction that 
the degree of the derivatives of the Euler angles in the 
Langrangian not exceed two, leads to the well known 
Lagrange function2' 

where a,, i s  the moment-of-inertia tensor, and 
wa(BA, 0,) a r e  the components of the vector of the angu- 
l a r  velocity in the coordinate system tied to the rotating 
body; these components a re  represented in the form of 
functions of the Euler angles 8, and their derivatives 
with respect to time: 

~ ' ( 0 1 ,  el) -8, sin 0, sin 0r+& cos 02, 
@'(Or, 8,) -6, sin 0, cos e2--8, sin Or, 

~ ' ( e , ,  el) =e, cos O1+82. 

The Euler angles 8,(t) (X=1,2,3) fix the position of the 
solid in space a t  a given instant of time. When the solid 
rotates, the Euler angles change. However, since the 
components wa(8, 8) a r e  considered in a rotating co- 
ordinate system, and consequently a r e  invariants, the 
Lagrange function (1) i s  also invariant with respect to 
the rotations. As a result of the fact that the invariants 
(2) form a complete set  of invariants, the form of the 
Lagrange function (1) follows uniquely from the sym- 
metry requirements proposed above. 

In the absence of invariance to time reversal, it is 
possible to add to the Lagrange function (1) terms that 
a r e  linear in wu (8,, 8,): 

The Lagrange function (3) describes the s o  called mag- 
netic top-a charged solid with an intrinsic magnetic 
moment that i s  rigidly fixed in the body.iz Thus, the 
invariance requirements lead to a definition of the La- 
grange function of the rotating body, accurate to phe- 
nomenological constants that have the meaning of the 
tensor of the moment of inertia and of the intrinsic 
magnetic moment. 

To proceed to the consideration of spin waves, we 
generalize the Lagrangian (3) to the case of interacting 
tops that a r e  uniformly distributed in space. To con- 
struct the invariant Lagrange in this case it suffices to 
add to (3) invariant terms that depend on the gradients 
of the Euler angles. The simplest invariants containing 
gradients a r e  of the form 

were wa (O,, V,B,) a r e  the invariant forms (2) in which 
the derivatives of the Euler angles with respect to time 
a r e  replaced by their gradients, and D, a(6x) are  known 
Euler functions, which transform the components of a 
vector from an immobile basis to a mobile one. Ex- 
pression (4) has the meaning of relative rotation of the 
tops in neighboring points of space. The invariance of 
expression (4) relative to rotations is ensured by the 
fact that both the relative rotation and the relative dis- 
placement of the tops a r e  expressed in a moving basis. 
Since rotation i s  an axial vector and the displacement is 
a vector, expression (4) reverses sign when the spatial 
coordinates a r e  reversed. Taking the foregoing into ac- 
count, we obtain in the long-wave approximation the fol- 
lowing expression for the Lagrangian of interacting 
tops, which is a t  the same time the phenomenological 
Lagrangian of the Goldstone excitations that appear upon 
spontaneous breaking of the group of spatial rotations 
(without upsetting the translational invariance): 

The Lagrangian (5) can be used, in particular, to de%- 
scribe spin waves. In this case, when account is taken 
of only the exchange interactions, there is additional 
symmetry with respect to rotations only in spin space. 

In the exchange- interaction approximation we have 

which leads to the expression7 

in which the Euler angles determine the orientation of 
the basis in spin space, and the gradients form a scalar 
product and a r e  not affected by the spin-rotation trans- 
formations. The terms of (5) which a r e  not included in 
(7) a r e  in this case small and describe the relativistic 
spin-orbit interaction. Some possible restrictions on 
the choice of the constants daa,, will be discussed later 
on. In the Lagrangian (7), o r  in the Lagrangian (5) if 
relativistic effects a r e  taken into account, the Euler 
angles have a continuous dependence on the coordinates 
and the time, and a r e  semiclassical magnon fields. 
When the Lagrangian i s  expanded in powers of these 
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fieldsg', kinetic terms (quadratic in the fields) and in- 
teraction terms a r e  separated. 

The kinetic terms determine the spectrum of the mag- 
nons. The interaction between an arbitrary number of 
magnons i s  determined by the terms of the interaction 
(7) via allowance fo r  all the possible tree diagrams. 
The magnon spectrum and the matrix elements of the 
interaction on the mass shell determined on the basis 
of the Lagrangian (7) [ o r  (5)] (i.e., under the condition 
that the energy and momentum of the magnons satisfy 
the spectral relations), do not depend in this case on 
the concrete parametrization of the rotation g r o ~ p . ~ - ~  
The parametrization used above is convenient for con- 
sideration of the analogy with the rotation of a solid. 
When spin waves a r e  considered, it is convenient to use 
other parametrizations, in which the group parameters 
enter in a more symmetrical fashion. 

2. To change over to other possible parametrizations 
of the spin-rotation group, we introduce, for the de- 
scription of the spin excitations, a local orthonormal 
frame e, (x, t) (a = 1,2,3  is the number of the unit vec- 
tor): 

The orthonormality conditions (8) a r e  preserved for dif- 
ferent types of transformations: 

with infinitesimally small transformation parameters 
&,a and E: that a r e  independent of the coordinates xi 
and of the time 1. The transformation (9) effects simul- 
taneous rotation of all the reference frames and conse- 
quently of the entire system a s  a whole in immobile 
spin space. Neglecting relativistic interactions, the 
description of the spin waves should be invariant to such 
transformations. The transformation (10) means a tran- 
sition to another orthonormalized frame. Since the 
orthonormalized frame i s  assumed to be rigidly con- 
nected with the parameters of the spontaneous sym- 
metry breaking, the initial and transformed frames in 
(10) a re  never equivalent for the case of complete spon- 
taneous symmetry breaking.4' Relations (8) a r e  the 
constraints on the components of the reference frame 
e,(x, t). These constraints can be lifted by substituting 
the unit vectors of the reference frame in the form of 
functions of three independent parameters 

This relation defines a transition to new variables, the 
transformation law for which, a s  a result of the non- 
linearity of the constraints, is nonlinear and i s  deter- 
mined from (9) and (11): 

D (cp (z, t )  ) + [ 8LD.z ( c p  ( x ,  t )  ) I =Dn (T  ( x ,  t )  + 68~cp t )  ). (12) 

To determine the law governing the transformation of 
the variables pa(%, t) we use, for example, the so  called 
linear rational parametrization of the orthogonal ma- 
trices D,,(11), i.e., 

where T is a real antisymmetrical matrix Tau= +&,,,(p,. 

Expanding (1 - T)-' in powers of T and recognizing that 
TS= + T S ~ T ~ = -  , we obtain 

D,(cp,) - [1+2(T+T2) / (1 -1 /2  Sp T P )  1- 
=6,+ l~.cp,-6,cp'+2e~~tp~1/2 (1+cp2/4). (14) 

Equations (12) and (14) lead to the following transforma- 
tion law for the variables: 

We note that Eq. (15) corresponds to a definite para- 
metrization of a vector representation (S= 1)  of the ro- 
tation group. The transformation law (15) derived from 
it determines uniquely the parametrization of the other 
representations. In particular, the spinor representa- 
tion ( ~ = 1 / 2 )  takes the form 

where o, are  Pauli matrices. Equation (12) with the 
generator E : ,  replaced by the matrix - iq, a s  well a s  
the succeeding formulas (19)- (20), does not depend on 
the representation employed. To calculate the explicit 
form of the functions (15), the spinor representation 
(16) turns out to be more convenient. It can similarly 
be shown that the transformation (10) corresponds to the 
following law of parameter transformation: 

Because of the connection of the transformation (15) 
with the transformation (12), the spin-wave equations of 
motion expressed in terms of the variables cp,(x, t) 
should be invariant to the transformations (15). To con- 
struct expressions that a r e  invariant with respect to (15) 
i t  i s  convenient, however, to use not the variables p, 
directly, but the vectors D,(cp) (14). As a result of rela- 
tions (8) and 

all the possible invariant combinations of D, which do 
not contain derivatives a r e  constants. The simplest in- 
variant combinations that a r e  linear in the derivatives 
with respect to time o r  with respect to the spatial co- 
ordinates x i  a r e  the products 

A s  a consequence of (8), the products (19) a r e  antisym- 
metrical with respect to permutation of the indices CY 

and @, a fact explicitly taken into account the right-hand 
side of (19). Using the explicit form (14) of the function 
D,((p), we obtain from (19) the following expressions for 
the left- hand invariant Cartan forms: 

The expression for the phenomenological densities of the 
Lagrangians in the considered parametrization i s  ob- 
tained by substituting Eqs. (20) in (5) and (7). 

Products of the type 

define the so-called right-hand differential Cartan forms 
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which a r e  vectors with respect to the spinor rotations 
(9) and (15) and scalars with respect to the transforma- 
tions (10) and (17).5' The right and left Cartan forms 
a r e  connected by the simple relation 

3. The recent1 analysis6' of spin waves in spatially 
disordered media was carried out with the aid of the so  
called hydrodynamic approach based on the representa- 
tion of the Hamiltonian density in terms of conserved 
spin density and current. In Ref. 1, however, the trans- 
formation properties of the spin waves considered in 
Sec. 2 were not taken into account with sufficient con- 
sistency, and this led to incomplete allowance for the 
possible variants and to neglect of nonlinear effects. 

We shall show that the Lagrangian density (6) admits 
of a transition to the hydrodynamic analysis with pre- 
servation of all i ts  symmetry properties. To this end 
we change from the Lagrangian density (6) to the Hamil- 
tonian density g, defined a s  usual, a s  

where 75 a r e  the canonical momenta: 

To verify that the Hamiltonian density (24) is a function 
of the spin density and current, we define the latter by 
means of the relations 

where E ( X ,  t)  is an infinitesimally small transformation 
of only the spin variables and depends on the coordi- 
nates and on the time. For the Lagrangian density (8), 
the spin density and current a r e  of the form 

Taking (25) into account, a s  well a s  the relation 

obtained by comparing (25) with (26), we obtain the fol- 
lowing expression for  the Hamiltonian density 

which depends only on the density and current of the 
spin, expressed in the moving coordinate system." 
For the Poisson brackets of qo, with the spin densities 
p, and pa (28) and for the brackets between the latter we 
obtain 

The Poisson brackets for p, and j ,  a r e  the consequence 
of (3) and (27), and duplicate the standard Poisson 
brackets of current algebra.*' 

The equations of motion corresponding to the Hamil- 

tonian density &P (30) take for the quantities p, and qo, 
the form of generalized Euler equations fo r  the mag- 
netic top: 

From (32) we obtain for the conserved density pa and 
the current ja(Viqo) the continuity equation 

The Hamiltonian density g (30) takes into account all  
the nonlinear exchange interactions of the magnons, 
and depends explicitly on the spontaneous-breaking pa- 
rameters. Such a dependence ar ises  in natural fashion 
when the microscopic volume integral o r  its hydrody- 
namic approximation i s  averaged. We note that in the 
latter case, when the Hamiltonian is a function of only 
the current variables, allowance for the spontaneous 
symmetry breaking calls for f i rs t  replacing some of 
the products of the densities and currents by their mean 
values of the form ( p, . . . P,) = Da,(q). . . D,(cp)f, ...,, 
where fa,.,, a r e  the spontaneous symmetry-breaking 
parameters, followed by a transition to the long-wave 
approximation (30). When the indicated sequence i s  
v i ~ l a t e d , ~ '  i.e., when the exchange integral i s  repre- 
sented in the long-wave approximation by the lower 
powers of the density and current of the spin, followed 
by allowance for the spontaneous symmetry breaking, 
additional conditions a r e  imposed on the coefficients in 
the Hamiltonian (30), namely aaB- caB- Bas, and this 
raises the symmetry of the Hamiltonian a t  b ,  = 0 to the 
symmetry of the O(4) group.10' For  the Lagrangian den- 
sity (6), which takes relativistic corrections into ac- 
count, the spin current (27) takes the form 

and the Hamiltonian density &P is correspondingly 

%E'/~ (a- ')  .@,PA+ (a-')aebo~s 
+'/sfa@, T~(i.(Vcp)DT(cp)) ( i ~ ( v ( P ) ~ b ( ( P ) )  (3 5) 

where the coefficients f,,,,, a r e  defined by the relation 

For the spin current (34) and i ts  density (28), the con- 
tinuity equation does not hold, since the relativistic 
corrections disturb the invariance of the Hamiltonian 
(35) with respect to only spin rotations. 

4. As noted above, in the Lagrangian (5), and ac- 
cordingly in the Hamiltonian (35), there a r e  terms that 
change the symmetry of the spin rotations to the sym- 
metry of the group of total rotations. These terms 
ar ise  a s  the result of relativistic interactions, and a r e  
therefore small. However, their presence leads to new 
effects which do not occur for the Lagrangian (8). 
These effects a r e  the presence of spatial anisotropy in 
the propagation of spin waves, a correlation of the spin- 
wave polarization with their propagation direction, the 
onset of polarization in the scattering of spin waves, 
and others. As noted earlier,  the Lagrangian density 
terms (5), which contain field gradients, take the fol- 
lowing form when the relativistic interactions a r e  taken 
into account: 
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This expression is a convolution with respect to the in- 
dices of quantities of three types: the gradients in the 
combinations DaV, which represent the orbital motion, 
the currents j,(V,cp), which represent the spin degrees 
of freedom, and the spontaneous symmetry breaking 
parameters d,,,,,, which a r e  also connected with the 
spin degrees of freedom. In expression (36) the com- 
ponents of all  the foregoing quantities are represented 
in a moving frame. 

Let us determine now which changes of the angular 
momentum for the oribtal and spin degrees of freedom, 
a s  functions of the coefficients doarb, a r e  contained in 
(36). The coefficients d,,,, can be either symmetrical 
to permutation of the indices a and P, in which case 
they a re  also symmetrical with respect to permutation 
of y and 6, o r  else antisymmetrical with respect to the 
indicated pair of indices. In the former case the change 
of the orbital angular momentum in (36) is equal to 
zero o r  to 2, the change of the spin angular momentum, 
which is connected with the current, is also equal to 0 
o r  2, and the change of the spin angular momentum con- 
nected with the parameters of the spontaneous sym- 
metry breaking can take on values from 0 to 4, in ac- 
cordance with the conservation of the total angular mo- 
mentum. 

In expression (36) with antisymmetrical d with respect 
to a and P (and y, 6), the spin momentum change con- 
nected with the currents is  also equal to unity. The 
change of the spin angular momentum connected with the 
spontaneous breaking of the symmetry is equal to zero, 
unity, o r  two. It can be shown, however, that in the 
case when the change of the spin angular momentum a s  
the result of symmetry breaking is equal to zero o r  
two, expression (36) reduces to a total divergence. To 
prove this statement it suffices to rewrite (36) in the 
case of antisymmetrical coefficients d,,, in the form 

and to use the following identity 

e,,,or, (T@) ~ , i . . ( ~ , , i ~ ) ~ i p ~ a f i i ~ ( j ~ r c ~ l r ! ~ - f i , i i ~  SP!) 
=-2Yt{al(Thq)~c,,,fi,,,i,>:}, 

which is the consequence of the Maurer-Cartan equa- 
tions 

Thus, the number of independent variants defined by 
Eq. (36) is equal to 39. Six of these variants with orbi- 
tal angular momentum equal to zero correspond to the 
exchange interaction. 

We shall show now that by using the known properties 
of the microscopic relativistic interactions it is possible 
to decrease substantially the number of possible vari- 
ants. To this end we note that the maximum number of 
particle- spin operators in the Hamiltonian of the micro- 
scopic relativistic interactions is equal to two, and on 
going over to the hydrodynamic description each ex- 
pression represented in the form of a spin current cor- 
responds to a t  least one spin operator of the micro- 
scopic Hamiltonian. Taking the foregoing into account, 

we obtain the following permissible invariants for the 
description of the relativistic interactions1') 

vt(i.(Vhcp)) ewD.oeanfT. (374 
- ' /~d { i~ (V tcp ) i~ (V~cp )+ i e (V tcp ) i= (V~cp )  

-'/s~tJm(Vcp)ie(Vcp)~D*.(cp)D,(cp). (37b) 
We note that the invariant j,(Vcp)D,(cp), which is com- 
patible with the requirements considered above, vio- 
lates spatial parity and therefore will be disregarded 
from now on. 

From (37) and (36) we obtain the following expressions 
for the antisymmetrical and symmetrical components 
of the tensor daa,: 

5. The interaction with the external magnetic field hi 
is introduced in standard fashion in the form yp. h. Al- 
lowance for the external magnetic field changes the 
magnetic-moment current, s o  that we can interpret ya,, 
a s  the components of the magnetic-susceptibility tensor. 
To determine the dispersion spectrum of the spin waves 
with allowance for the relativistic effects and for inter- 
actions with the external magnetic field, we obtain from 
the Lagrangian density (5), with account taken of the 
restrictions (38), the following free equations of motion 
for the spin waves relative to the equilibrium state with 
bll h: 

where 

From (39) follows the dispersion equation7 

where 

a=loasl,  6=-le"=p(kt) 1, 
p=- ('l,b.a.&e+ (1/3!)e5ne5,vl~aaa.ZTl. (k i )  ), 

~=' /~Le"=p(k t )  6e+ (1131) e.~lea~e.r.aa,~Eee~ (kt)  ?l,p (kr) . 
The dispersion equation (40) is the most general disper- 
sion equation and it  leads to the classification of all the 
possible magnetic structures by the type of their spec- 
t r a  and by the number of elementary branches, depen- 
ding the number of nonzero eigenvalues of the matrices 
a,,, Ea,(ki) and on the orientation of their eigenvectors 
relative to one another and to the vector b. 

We consider now a general case, when all the eigen- 
values of the matrices a,, and Ea6(ki)  differ from zero. 
In this case, for spin glass o r  for more complicated 
structures of the antiferromagnetic type, characterized 
by b = 0, Eq. (40) can be solved exactly in the absence 
of an external magnetic field (h = 0), and the spectrum 
is characterized by three branches of the Goldstone 
formi2' 

o,'=x,(n)kz ( r= i ,  2 ,  3 ) .  (41) 

For structures of the ferromagnetic type, characterized 
by b+ 0, an exact solution of (40) is obtained by using 
the well known Cardano formulas for cubic equations, 
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and is quite  complicated in form. We can, however, 
confine ourse lves  to the approximation of small k and, 
considering the dependence of the  coefficients of (40) on 
k, determine the c h a r a c t e r  of the spectrum.7 In the ab- 
sence  of a n  external magnetic field (h= 0) EQ. (40) has  
a t  k = 0 only one nonzero root,  inasmuch as in this  case 
f=  6= 0. The product of the roo ts  that vanish at k = 0 is 
proportional to 6-k6, and the sum of the i r  pairwise pro- 
ducts  is proportional to 7-k2; therefore a t  small k w e  
have the following dependence of the roo ts  of EQ. (40) on 
k and n: 

w 2 = A + D  (n) k', oII'=F (n) kZ,  ~ L I I ' = G  (n) k', (42) 

w h e r e  the coefficients A, D, F, and G are determined 
by the following relations: 

We note that in con t ras t  to ant i ferromagnet ic  media, in 
ferromagnet ic  media there  appears  one non-Goldstone 
branch because bz 0 in such  media. An important  gen- 
eral property of the dispersion relat ions (41) and (42) is 
that  the relat ivis t ic  cor rec t ions  do not change the Gold- 
stone charac te r  of the spectrum, but lead to a correla- 
tion of the polarization proper t i es  with the direct ion of 
propagation of the spin waves,  to the appearance of 
spa t ia l  anisotropy, and to onset  of polarization in spin- 
wave scattering. 

In the presence  of O(2) s y m m e t r y  in the ground s t a t e  
of the system, the  behavior of the spin waves is de te r -  
mined by two angles  cp, (see, e.g., Ref. 7). A descrip-  
tion of such sys tems  is obtained by making the substitu- 
tions a,, =a,,# 0, (with the remaining coefficients equal 
to zero)  in  the Lagrangian density (7) and in the subse-  
quent formulas. 

"see also Chap. VII of the monograph6. 
"see, e.g., Ref. 10, Sec. 35. 
3 ' ~ t  any point except = 0 or  el =r. 
"ln the case when the parameters of the spontaneous symmetry 

breaking are  tensors of third and higher order, a symmetry 
with respect to the transformations (10) can appear in the 
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