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It is shown that in the general case the singularitis of A ( p , o )  in p,a space are due to changes in the topology 
of the line of intersection of the Fermi surface ~ ( p )  = E, with the equal-energy phonon surfaces a, ( q )  = w .  
The singularities of the averaged quantity A ( o )  = <A (p,o)>, are the consequences of the singularities in 
A (p ,o ) .  The function A (a) can have singularities of two types. The first is due to the fact that at a defmite 
value p = p* the surfaces ~ ( p *  + q )  = E~ and oA (q)  = a are tangent at the point q = a ,  where the vector 
satisfies the conditions of Kohn singularity for the surfaces ~ ( p * )  = E, and ~ ( p *  + a )  = E,. The second type of 
singularity of A (o) exists if the surface o, (q) = o changes its topology at some value q = Q, while the 
surfaces ~ ( p )  = E~ and 4 p  + G) = E, intersect or are tangent. 

PACS numbers: 74.20. - z, 74.90. + n, 63.20.K~ 

The most complete information on the energy spec- for the surfaces &@*)=&, and &@* +q,) =&,. The 
trum of a superconductor can be obtained by investi- second type of singularity in A1(w) exists if the surface 
gating the tunnel effect. From the tunnel characteris- w,(q) = w changes its topology at a certain value q =q,, 
tics obtained for polycrystalline samples one deter- while the surfaces &@) = &, and E @ +%) = &, intersect 
mines the averaged value of the order parameter in the or  a r e  tangent. 
superconductor, Aw =(A@, w)),.' Here and below the 
symbol 1. DERIVATION OF THE INITIAL EQUATIONS 

means that the integration is carried out over the Fermi 
surface s (p) = E,; dS, is the surface-area element, v, 
= V, (p) at E (p) = C, i s  the quasiparticle velocity and 
u,(c,) is the electron-state density. 

It was observed in experiment that the quantity A1(w) 
= a ~ ( w ) / a w  has singularities.'  h he functions f'(w) 
designate hereafter derivatives with respect to w.] 
Scalapino and AndersonZ proposed that these singulari- 
ties a re  due to the presence of a singularity in the de- 
rivative of the irregular increment to the density of the 
number of phonon states with respect to energy when the 
topology of the equal-energy surfaces of the phonons is 
changed. 

To investigate the singularities of A@, w) = $@, w)/ 
Z(p, w) in p, w space we start  from the ~ l i a s h b e r g ~  sys- 
tem of equations for the functions $@, w )  and Z@, w), 
which for our purposes a r e  best written in the form 

1 - 
R s * ( p , u ) = -  J d d  l m * ( p ~ m ' )  +**, 

-- 0-0' 

do' dp' g ( p f , o ' )  0' *== J -  n ( 2 4  J y l m { T ) ~ ( ~ , ~ f ) t h F ,  Q ( P  

1 - , I m Z ( p ,  o') of  
[ 1 - R e Z ( p , o ) ] o = -  j d o  

-- or-0 ' 
(1 

The singularities of A1(w) a r e  the consequence of sin- 
. 

gularities of the generalized order parameter A1(P, o), 
which depends on the momentum p and on the frequency 

1 
w. The nature of the singularities in A1(p, w)  in p, w XX ~ g i , ~ + , l " ( o ~ ( q ) + o ' - o ) ,  

space was not established in Ref. 2. The conditions for 
the realization of the type of singularity chosen in Ref. 
2, as  well as  the possibility of existence of other singu- Here &@) and w,(q) a r e  the electron and phonon disper- 
larities in A'(@), were therefore left unexplained. sion laws, g k,. i s  the parameter of the electron-phonon 

In this communication, following the previously de- interaction, Xis the number of the branch of the phonon 

veloped3 concepts, we consider from a unified point of spectrum, c, is the Fermi energy, 56 i s  the volume of 

view the possible singularities of At@, w)  and of A1(w). the unit cell in momentum space, T is the temperature, 

It is shown that in the general case the singularities of and U@, p') is the screened potential of the Coulomb in- 

At@,  w )  in p, w space a r e  due to a change in the topology teraction of the electrons. 

of the line of intersection of the Fermi surface with the It is seen from the system (1) that the singularities of 
phonon equal- energy surfaces w,(q) = w. The function the functions Re$@, w )  and ReZ(p, w)  a r e  connected with 
A1(w) can have singularities of two types. The first the singularities of Irn$@, w) and ImZ@, w). To investi- 
type of singularity in A1(w) is due to the fact that at a gate the singularities in Im$@, w) and in ImZ(p, w)  it i s  
definite value of p =p* the surfaces E@* +q) = c ,  and convenient to change from integration with respect to 
w,(q)=w are  tangent at the point q=q,, where the vec- dq to integration with respect to the variables w,(q), 
tor q, satisfies the conditions of the Kohn singularity E (p +q), and 2,"-the length of the contour of the line of 

930 Sov. Phys. JETP 51(5), May 1980 0038-5646/80/050930-07$02.40 O 1981 American Institute of Physics 930 



intersection of the surfaces E (p + q) = E and wA(q) = w 
(henceforth referred to a s  the "l, line" for brevity).3 
In the general case there can be several such 1: lines, 
since the functions ~ ( p )  and w,(q) a r e  multiple-valued 
and periodic. To determine how many 1: lines a r e  
realized, it is convenient to consider the functions 
E (p) and wA(q) in the repeating-band scheme. In this 
scheme it is easy to take into account the umklapp pro- 
cesses in the electron-phonon interaction, and also to 
determine the I, lines corresponding to these processes. 
The length of the 1; line depends on the external param- 
eters p and w. We assume hereafter that the summation 
is over all the possible 1 :  lines. 

Integrating with respect to the variables wA(q) and 
E @  +q), we obtain expressions for Im$(p, w )  and 
ImZ(p, w)  in the form 

z J d~$l2~?~+~l2 Re o' 
Iv,+,l IS,"(o-of) Isin 6, [o"-Aa(p+q, o') 1'" ' 

where 

I ~ ~ ~ + , I ~ = I ~ ~ , + , I * / ( ~ ~ ) ~ ~ ~ ( ~ R ) ;  

9, is the angle between the vectors v, and SqA(w ) 
= V,wA(q) at wA(q) = w ,  and depends on p and on w. 

As seen from (2), when the parameters p and w are  
varied the integral with respect to dl: can have singular 
parts at certain values p =p* and w = w* , namely: 1)  
at the points q=q,  at which sin,, =0, and 2) at the 
points q=q, at which S;,(w*) =O. 

The geometrical interpretation of these cases is the 
following. In the first case the surfaces c@* +q) =c, 
and wA(q) =w* a r e  tangent at the point q =q, and the 
vector p* is determined from the conditions c(p* +&) 
=cp and ~ ( p * )  =c,. In the second case the surface 
E($ +q) =cp intersects the surface wA(q) = w  near the 
direction q=q,  where a change takes place in the topolo- 
gy of the equal-energy surfaces of the phonons, and the 
vector p* satisfies the conditions E (p*) =cp and E (pi+ q,) 
=E,. Infinitesimally close to the points q=q ,  and q 
=q,, the I, line changes its topology. It will be shown 
later that the singular part of the integral with respect 
to dl, is very sensitive to the type of topological changes 
of the I, line. Under these conditions, following integra- 
tion with respect to dl,, the integrand has a singularity 
that manifests itself in the functions Im$(p, w)  and 
ImZ(p, w),  owing to the square-root singularity of the 
integrand [w2 - A ~ @ ,  w)] -'I2; this singularity i s  propor- 
tional to the density of the number of states of the quasi- 
particles in the superconductor. 

To establish the analytic form of the singularities in 
Irn$(p, w) and ImZ(p, w), we separate in the volume S?, 
the smaller volumes 6 q i  near the points qi  =q, and 

q, =q,. The expressions (2) can then be written in the 
form 

Im $(P, o) =Im %(P, o) + Im S$,, (p, o), 

where Imq0@, w )  and ImZo(p, w)  a re  the smooth parts 
and Irnb$,,(p, w)  and Im6Zqi(p, w) the singular parts of 
the considered functions, due to the change of the 
topology of the 1: line near the points qi = q, and qi =%. 

The functions Irnq0(p, w) and ImZo(p, w )  a re  known.2 
We represent the functions h16$,~@, w) and ImbZ,,(p, w)  
in the form 

where 

In the derivation of the expressions in (4) we took into 
account the fact that the surfaces c(p) =E, and w,(q) = w  
have substantially differing gradients v,, >> S ,'(w) and 
effective masses [ a2c @)/ap2 >> a2dA(q)/aq2]. We have 
also neglected the terms I S , ~ I W ' / I V ,  I ,  since the char- 
acteristic interval of variation of the parameter w and 
of the variable w' is  of the order of the end-point fre- 
quency of the phonon spectrum. 

2. SlNGULARlTlES OF A1(p,w), DUE TO TANGENCY 
OF THE SURFACES&(p + q) = &,AND ~ ~ ( q )  = u 

In the calculation of the expressions Im6Jhc@, w)  and 
Im6Zqc(p, w )  it i s  convenient to introduce in q-space 
rectangular Cartesian coordinates, taking the common 
tangency point q=q,  of the two surfaces c(p* +q) =c, 
and wA(q) = w* to be the origin, and the tangent plane at 
the point q = &  to be the xy plane, the normal to which 
(normal to the surface) is the z axis. The expressions 
for c (p +q) = c, and wA(q) = w* , assuming the deviations 
of the vector p from p* and of w from w* to be small, 
can then be represented in the form 

~(p+q)=e(p+q,)+Jv,-,,Iz/(nn,)+f,(.~. 11 ) ;  

<,lk (q) =lo**+ 1 sq; (me-) 1 z+f: (x. y) . oc.=(tl&(qG), (5) 

where fin ,(x, y)  a re  polynomial functions that are  the 
first nonvanishing Taylor-series terms of the functions 
c(p) and wA(q); n and no a r e  unit vectors in the direc- 
tions of v,,+,,, and v@+,,, respectively. 

Substituting (5) in' (4) we get for g,,@, q) 

g,, (P, '1) = Cake J dx dy s (f, (x, Y, 71) 1, 
A 

(6 
a,"=l~,:+~~ 12(nna)/lv,+,c I IS,: (o.') I. 

The equation f,(x, y, q) = 0 defines the behavior of the 
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1; line in the vicinity of the tangency points. It follows 
from (6) that the analytic form of gqc@, q) is very sensi- 
tive to the form of the function f,(x, y, q), which reflects 
the distinguishing features of the tangency point. To 
obtain the singular part of the function gqc@, q) fo r  dif- 
ferent topological changes of the 1; line near the tan- 
gency point, one can use the results of Kaganov and 
Semenko. 

1. In the vicinity of the tangency point, the most 
probable description of the 1: line is  by the equation for 
a second-degree curve: 

The frequency w;(q,, p) corresponds here to the case 
when the vectors n and no become parallel as p - p* , 
and w,-(q,, p) corresponds to the case when these vec- 
tors a r e  antiparallel. 

When the parameters p and w a r e  varied, two topo- 
logical changes of the 1; line a r e  then possible: 1 )  the 

is an ellipse that degenerates into a point, gqc(p, q) 
- B[b,(q)] (elliptic tangency point), 2) the 1: line is a 
hyperbola that degenerates into two straight lines, 
g%@, q) - ln ] 6,(q) I (hyperbolic tangency point). 

To establish the form of the singularities in 6qUc@, W )  

it is convenient to use the calculated results for the 
derivatives 6$qC'@, W) = wbZUc1@, w) a t  T = 0: 

1. 

f (B' (p ,  o) + iAk (p,  w) ) ,  1; - ellipse 
6Wq, ( P .  w) = C ahvo(e~)  

- (A' (p ,  o )  +- i~~ (p, a ) ) ,  1; - hyperbola' 

Bk(p,  o)  =n2Ao(p+qc) { ~ ~ ~ ( p + q , )  - (@--or* (9.. P )  )'I-'" 
x e ( A O ( p + q , ) + o ~ * ( ~ . , ~ ) - ~ ~ ,  

Ak(p,  o )  =nzA0(p+q,) { ( o - o L f  (q., p))2-A,z(p,  q ) ) -"  
xe(o-o,* (q., p)-Ao(p+qc) ), 

where B(x)=l a t x z O a n d  e(x)=Oatx<O.  

If the 1, line i s  an ellipse, the minus sign corresponds 
to a positive definite form of C,,x,x,, and the plus sign 
to a negative definite from of C,, x,x, 

2. It i s  possible that near the tangency point the co- 
efficients C,, xaxs of the quadratic form vanish, i.e., 
if we confine ourselves to the second-order approxima- 
tion, then the tangency takes place over a section of the 
surface (flattening point). In this case the change of the 
topology of the 1; line leads to stronger singularities in 
64,'@, w) and 6ZqC1(p, w) compared with (8). 

Assume for the sake of argument that the equation for 
the 1; line is of the form 

where the coefficients c i  a r e  expressed in obvious 
fashion in terms of the corresponding coefficients of 
the functions fi(x,y) and f,&, y) [expression (611. The 
calculations lead to the result 

where 

The upper line in the right-hand side of (lob) corre- 
sponds to the case c5, c g  < 0, and the lower to the case 
c,,c9> 0, while the function w:(qc,p) is of the same 
form as in (7). 

In the derivation of (8) and (10) a s  well a s  later on we 
make the substitution 

At w >> h o b )  the main contribution to the integral of (4) 
is made by the values w' = A,@), where A,@) 
=Ao[p,A(p)] is obtained by solving the equations w2 
- ha2@, W) = 0. 

Thus, i t  follows from (8) and (10) that the functions 
6JbcP(p, w) and bZuc'(p, w) have singularities a t  w 
= w:(qc, p) + A,@ +qc). The analytic forms of these 
singularities a r e  very sensitive to the types of the 
topological changes of the 1; line near the tangency 
point. For example, elliptic and hyperbolic tangency 
points correspond to square-root singularities, while a 
flattening point corresponds to a singularity of the type 
l/x. 

A schematic representation of some of the obtained 
types of singularity i s  shown in Fig. 1. 

3. Af(p,w) SlNGULARlTlES CONNECTED 
WITH THE CHANGE OF THE TOPOLOGY OF THE 
SURFACE w,(q) = w 

To obtain expressions for Irn6qqk@, w) and Im6Z,@, w) 
[Eqs. (5)] we choose the origin in q-space to be the 
point q=qk. Near this point, it suffices to retain in the 

FIG. 1. a-c) Plots of the functionsAR(P,w), Bk(P,w) and 
A!@, w) against the frequency w as  w - w:, where w: 
-'w% (g, , p) +Ao@ +&); d) dependence of wi (q,, p) on p: curve 
1-for w{Cqc ,p), curve 2-for w < b c  ,p). 
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b 

FIG. 2. Variation of the surfaces &@ + q) = E ~  and w A  (q) =w 
near q = q,: a) the function wA (q) =w has a maximum or a 
minimum at q = q, ; b) the function w~ b) =w has a conical point 
atq=q,.  

function o,(q, +q) the quadratic terms. The expres- 
sions for gq,(p, q) can be represented in the form 

where (Mi)-' = aZwA(q)/aq2 a t  q =qk a r e  the principal 
values of the effective-mass tensor, and E =f 1 i s  a pa- 
rameter that takes into account the different topological 
changes in the surface w,(q) = w, namely formation o r  
vanishing of individual sections of the surface, o r  else 
formation o r  vanishing of the 'bridge" between the sec- 
tions of this surface. The investigation of the singulari- 
ties of the function g,,(p, q) is similar to the investiga- 
tion of the singularities of the absorption coefficient of 
ultrasound in metals in a phase transition of order 2iS6 

We consider now the singularities in 6@(*(p, o )  
=wbZ;,(p, w). 

1. Let the function o,(q) have a t  q=q, a maximum 
(ci < 0) o r  a minimum (ci > 0); then the 1: line in the ex- 
pression for gqk(p, q) i s  an ellipse (Fig. 2a). Integrating 
in this case we arrive a t  the result 

where v* is a vector with components 

v'={v:+~,M:, v : + q , ~ ? ,  

u P = + q , d > .  

The plus and minus signs correspond to the minimum 
and maximum of the function o,(q), respectively. 

2. Let the function w,(q) have near q=q, a conical 
point (for example, 0, c3  < 0); then the 1: line in 
the expression for gqk@, q) can be either an ellipse ~.., 

(8" < O,,") o r  a hyperbola (0°> @,,")-see Fig. 2b @"is 
the angle between the vector v,,,, and the 9 ,  axis, 
tane", = (M~/M~) ' /*] .  In these cases the expressions for 
64!ik(p, o )  =wbZ;,(p, w) take the form 

where 

The upper and lower lines in the right- hand side of (13) 
pertain to the case when the I ,  line is an ellipse and a 
hyperbola, respectively. 

The expressions for A,Ok(p, w) and B$@, w )  coincide 
with ~ " ( p ,  w) and ~ ' ~ ( p ,  a )  if we replace w t ( a ,  p) by 

Consequently, the functions bqqk(p, w) and 6Z&,(p, o) 
have a t  w - w;(q,, p) +Ao@ +qk) square-root singulari- 
ties due to the fact the 1; line experiences in the general 
case, near the directions q =q, and following the con- 
sidered topological changes in o,(q) =o, only two types 
of topological changes: 1) the appearance o r  disap- 
pearance of an 1: line (the 1; line is an ellipse), and 2) 
the 1; line has a self-intersection point (the I: line i s  a 
hyperbola). In this case the singularities differ from 
those due to tangency points in the form of the depen- 
dences of the functions w:(q,, p) and wt(qk, p) on the 
direction of the vector p (see Figs. 1 and 3). 

Thus, from the calculations of Secs. 2 and 3 it fol- 
lows that the singularities of the order parameter 
Ar(p, o )  of the superconductor in p, w space a r e  due to 
the change of the topology of the line of intersection of 
the Fermi surface with the equal-energy surfaces of the 
phonons. 

4. SINGULARITIES IN  A1(w) 

Using the expressions obtained in Secs. 2 and 3, we 
can obtain the singularities of A1(w). In fact, it follows 

FIG. 3. a,b) Plots of the functions d s @ , w )  and B %$,w) 
against the frequency w as w-  w:,  where w,* =wfXbr.p) +Ao$ 
+q,)_; C) dependence of w{ (qk ,p) on p-curve 1-and dependence 
of wx(qk,p) onp-curve 2. 
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from (3) that a#,, (q) m - - = - n' CL I+ (q - %91-''% (f (ti- uc*)), 
atl 

~ m q ( o ) - ~ m ( @ ( p ,  W ) ) , - - I ~ ~ ~ ( O ) + C  ~m a*,, (a ) ,  L 

I 

(0 (1) 
(17) 

I ~ z ( ~ ) - I ~ ( z ( ~ ,  r ~ ) ) ~ - I ~ n ~ . ( o ) + z  Imaz., (a ) ,  cs-as a, . 
1 

with the functions Imqo(w) and ImZo(w) known.' We ex- 
press the singular part of the function Imb$,(w) a t  T 
= 0 in the form 

(1) 

Im$, (a)  = n do' Re 
0 

1. We determine the singular part of the function 
b~),'~(w)=w6z&(w). We note that we have assumed that 
a t  a definite value p = p* the surfaces c (p* + q)  = c, and 
w,(q) = w* a r e  tangent at  the point q =qc. From the form 
of the function g,(q) i t  follows that: 

1)  if the vector p = p* does not satisfy the conditions of 
the Kohn singularity for the surfaces c@*) =cF and 
E(# +&) =E,, then the function A(q) can be regarded 
a s  constant in the vicinity of the point q, =qc; 

2) if the vector p=p* satisfies the conditions of the 
Kohn singularity for the surfaces c@*) =c, and c@* 
+qc) = E,, then the function A(& + q) has a singular part 
that depends on the character of the topological changes 
of the line of intersection of the surfaces c($) =&, and 
E (p* +Q, +q) =cF (referred to henceforth a s  the 2, line 
for brevity). 

Here z:" coincides with a: of (lo), in which n=no and 
p = p* . The plus and minus signs correspond respec- 
tively to the cases c,, c, < 0 and c,, c,> 0 [c, and c 9  a r e  
the coefficients in Eq. (9)]. We can determine analo- 
gously the form of the function a&(q)/aq and of other 
different forms of the 1: and 1, lines. It follows from 
(16) and (17) that the form of the function aZec(q)/aq 
depends on the character of the topological changes of 
the 2, and 2: lines. 

Knowing the function aiqc(q)/aq, we can determine the 
singular parts of the functions 6JlQr(w) and 6Za;(w). We 
introduce the variable 

a)  If a&(q)/aq is determined by formulas (16), then 

iBk (o), I:-line is an ellipse 
asq, ( m )  =,a B~ (a)  + iAk (a), 1;-line is a hyperbola 

b) If agec(q)/aq is determined by formula (17), then 

A? (a)  + t ~ ?  (a), sign + in (17) " qc ("1 = " -$ CL + iA? (a), sign - in (17)' 
(1 9) 

BIk(a)  =- (AO(p'+qS)/2)'nJO(x,,), 
AiL(a) -(Ao(p*+q,) 12) "n'ln lz-I. 

Consequently, in the second case the function ageC(q)/ It is seen from (18) and (19) that the analytic forms 
aq has a singular part a~,(q)/aq due to the change of the ' of 6 ~ ) ~ ~ ' ( o )  and 6Zec1(w) a r e  very sensitive to the changes 
topologies of the 2: and I, lines. We present a number of in the topologies of both the 2, line and 2: line. 
concrete calculations of the function agac(q)/aq. 

2. We proceed now to consider the expression for the 
Assume for  the sake of argument that the I, line i s  de- singular part of the function b$,,'.(w) a t  T=O. -" 

scribed near the tangency point by an expression analo- 
gous to (7), in which The analytic form of the function agek(q)/a77 depends on 

the character of the topological changes of the 2, and 2; - - - 
b ( q )  +G,L(q) =(e  (p'+q)--el) (nno)/lv,.l, lines. By way of example, we consider certain possible 

cases. 

a)  Let the surfaces c (p) = c, and c (p +%) = cp intersect 
where n = ~ , * + ~ / l v , * + ~  1. We shall assume that C,txx,x6 in a certain interval of the values of the vector p. Then 
is positive-definite. Then the function a~ec(q)/aq takes 
the following form: +(OX (qk) - q)-'"0 (or ( q ~ )  - q) 

t- (7 - or (qk))-'/'e (q - (qk))' 
a) If the 2, line is described by Eq. (7), then (20) 

where 

A&=z*a:I), 

( 1 )  
al = IC~kC~-(C,L)aI-'h/(2n)'ISq>(a~) I Ivp~l. 

where ol,, is the angle between the vectors v, and v,,,,. 

The upper line in the right- hand side of (20) pertains 
to the case when an increase of w is  accompanied by a 
transition from a closed surface w,(q) = w to an open one 
(with a minus sign), o r  to the vanishing of one of the 

Here ii, coincides with a, of expression (7), in which we parts of the surface w,(q) =w (with a minus sign), while 
must assume that n =no and p = p* . The upper line of the lower part pertains to the cases of the opposite 
(la) pertains to the case when the ea6xax6 is poSi- transitions. Consequently, in this case the singularities 
tive definite (the 1: line is  an ellipse); the lower line in a&(q)/aq coincide with the singularities in the de- 
pertains to the case when the 2: line is  a hyperbola. rivative of the irregular increment to the density of the 

b) If the 1: line is described by Eq. (lo), then number of phonon states with respect to energy with 

934 Sov. Phys. JETP 51(5), May 1980 V. I .  Makarov 934 



changing topology of the surface w,(q) = w. 

b) The surfaces & (p) =&, and & (p + q,) = &, have only a 
tangency point a t  p=p*. We consider severa l  tangency 
cases. If the I, l ine near  the point p =p* is an  ellipse, 
then the function aijar(rl)/a17 is determined by formulas 
(20), in which i t  is necessary to replace NA by Ni. To 
obtain an expression fo r  N:, i t  is necessary to replace 
the integral with respect  to dl, in the expression fo r  N X  
by the following: 

where the coefficients EL,, coincide with the coefficients 
C:, of expression (16), in which we must put q = e ,  and 
n=no.  

If the I, line near  the point p=p*  i s  a hyperbola, then 
the calculations lead to the following result. When the 
1: line i s  an ellipse, then 

0 ( o x  (qk)  - q) ln (2a)4 
( b > & ( q k ) - T , ~ "  ~ k ( q k ) - q  

0 ('I - (qk) )  1, (20)4 ' 

(T, -- o &  (qk)fla T, - U &  ( q k )  

The plus and minus signs have the s ame  meaning a s  in 
(20); a is a parameter  that defines a certain region 
where the hyperbolic form f o r  the I, line i s  a good ap- 
proximation. 

In the ca se  when the 1: line i s  a hyperbola we have 

0 (& [(o& (%I) - T,l) 
[h (ox (% - T,))Y1* 

o(-l- ltl - ( q k ) l )  In 4n4 -- 
[k (q - a,, (qk))]'" k [r) - U?" ( q k ) \  

The plus sign in (23) corresponds to the c a s e  when the 
closed surface wA(q) =w becomes open with increasing 
w, and the minus sign corresponds to the opposite topo- 
logical transition. 

We note that the change of the topology of the 1, line 
enhances the contribution made to the function agai(17)/ 
aq by the topological singularities of the density of the 
number of phonon states. In these cases  wA(q) = w can 
undergo topological changes that lead weaker singulari- 
ties in the density of the number of phonon states. If 
the surfaces E (p) = 6, and E (p +a) = C, intersect in 
some interval of the values of p and have also a tangency 
point a t  p =p* , then the function a&,(q)/all consists of 
two terms,  the f i r s t  of which i s  given by (21) and the 
second by (22) o r  (23), depending on the type of topo- 
logical changes of the 1: and I, lines. Knowing the func- 
tion aiar(q)/an, we can determine 6$ik(w) =w6Zt (w). 

a,. We substitute for  this purpose (20) in (15). Puttlng x,, 
=w- w,(q,)- Ao(p+e,), we obtain 

It is seen from (24) that, depending on the type of the 
topological transition in the surface wA(q) =w, the rea l  
and imaginary par t s  of the functions 6+ir(w) and 6Z(,(w) 
have ei ther  a logarithmic singularity a t  w = w,(q,) 

+A,@* +&), o r  a discontinuity. 

It follows f rom (22) and (15) that 

Using the results  (24) and (25), we can easily obtain 
the form of o r  6Zart(w) fo r  the ca se  of the topological 
changes of the I, and I ,  lines corresponding to (23). 

It is seen f rom the results  of the present section that 
the singularities of At(w) a r e  due to the change in the 
topology of the 1: and I, lines of intersection of three 
surfaces:  &(p) =&,, &(p +q) =&,, and w,(q)=w in p ,q  
space. The results  obtained by Scalapino and i4nderson2 
can be attributed to a particular case  that is realized 
when, with change in the parameter  w, a change takes 
place in the topology of the surface wA(q) =w, while the 
surfaces &(p)=&, and c (p+q)=&,  intersect o r  have an 
elliptic tangency point. 

5. DISCUSSION O F  RESULTS 

1. It i s  known' that the main contribution to the tunnel 
cur rent  in a sys tem consisting of two metals interlined 
by an insulator i s  made by electrons that move prac- 
tically perpendicular to the separation boundary (bar- 
r ier) .  Therefore the singularities in At(p, w), con- 
sidered in Secs. 2 and 3, can apparently be experimen- 
tally observed in investigations of the tunnel effects in 
single crystals. The tunnel effect in single crystals  
has been investigated relatively little. Principal at- 
tention was  paid to the anisotropy of A(p, 0), which i s  
determined a t  w =eV=A(p ,  o).' The existing experi- 
mental technique makes i t  possible to investigate tunnel 
effects in a single crystal-insulator-polycrystal (film) 
system. Observation of the singularities of At@, w) 
would uncover new possibilities of investigating singu- 
la r i t ies  of both the phonon and electron spectra of su- 
perconduc tors. 

2. In the ca se  of S-N tunnel junctions between poly- 
crystals ,  the f i r s t  derivative of the tunnel current  ( j , )  
with respect to the voltage (V) is proportional to the 
tunnel density N ,  (w)/N(o), which takes a t  w >> A(w) the 
form2 

Taking (14) into account, we can,rewrite (26) in the 
fo rm 

Consequently, singularities of two types can be ob- 
served in the dependence of @,/a v on V. The f i r s t  
type, due to 6$,=(w), manifests itself primarily in a?,/ 
av3, and in some cases,  depending on the character  of 
the topological changes in the I, and I, lines, also in 
a2jT/a v2. The second type of singularity, due to 
61Ch,(w), will be observed in a2jT/av2. 
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The geometric interpretation of the singularities of 
A' (w) is the following. 

Firs t  type of singularities of Ar(w). There exists a 
se t  of vectors q =qc a t  which the surfaces c@) =&, and 
c (p +q)  = cF a r e  tangent. Knowing the vectors &, we 
can construct the surface c (q,) = c,, which constitutes 
a surface of Kohn singularities. The singularities in 
Ar(w) can ar ise  a t  a definite value of the parameter 
w=wc* +AO@* +go), if the surfaces c(q,)=cF and w,(q) 
=w* a r e  tangent a t  the point q=q,. 

Second type of singularities of A'@). It is brought 
about by the fact that a change of w i s  accompanied by a 
change of the topology of the surface o,(q) =o, in which 
case the surfaces c @) = c, and c @ +q,) =cF should 
either intersect o r  by tangent. These singularities a r e  
observed a t  o = A@* +q,) + w,(q,). 

We note that in some cases the analytic forms of 
these types of singularity can coincide in some cases 
[ see  expressions (19) and (24)l. Therefore for an b- 
ambiguous interpretation of the observed singularities 
with respect to the tunnel characteristics of supercon- 
ductors it is necessary to use neutron investigations of 
the phonon spectrum. In the general case, the numbers 
of the singularities in A'@) and in the phonon state den- 
sity a r e  not equal. 

We wish to point out that the tunnel effect in super- 
conductors is presently used only to determine the func- 
tion of the electron-phonon interaction g,(w), which i s  
obtained from the dependence of ajT/a v on V. The quan- 
tity a%/av2 is  resorted to for a qualitative assessment 
of the singularities in A'@). It seems that modern com- 
putation techniques make i t  possible to use the depen- 
dence of asjT/av2 on V to determine ReA'(w) and 
ImA'(w), and consequently to determine the nature of 
the singularities in Ar(w). Such experiments would be 
the next step in the study of electron-phonon interac- 
tions. 

3. We note in conclusion that the recently developed 
microjunction spectroscopy makes i t  possible to deter- 
mine the "transport" electron-phonon interaction func- 
tion& G(w), which we represent in the form 

G(a)= C Jdq8(ar(q)-o)~'(q), 
L (1 

We investigate now the singularities of G(w). We 
represent for this purpose this function in the form 

G ( ~ ) = G , ( o ) +  CG,~ (a) ,  

Here Go@) is the smooth part  of the function G(w), while 
Gei(w) a r e  the singular parts due to the change of the 
topology of the 1: and I, lines near the points q, =q, and 
Qi =%. 

If the function K(v,,v,+,) a t  the points q = &  and q = %  
do not vanish and have no singularities, then the analytic 
form of the singularities of bG;(w) coincides with age 
azei(w)/aw. According to Kulik et al.,' the function G(o) 
can be obtained from the second derivative of the cur- 
rent j, with respect to the voltage applied to the micro- 
junction. It i s  seen from (16), (17), and (20)-(23) that 
the singularities appear in the quantity Gr(w), which 
determines the third derivative of the current with re- 
spect to voltage. 

It is of interest to investigate jointly the current- 
voltage characteristics of tunnel junctions of supercon- 
ductors (azjT/a v2) and of microjunctions (a3j,/a v3),  
which can yield some information on the function 
K(v,,v,+,). Thus, for example, if the total number of 
singularities in a2j,/a v2 is larger than in a3j,/a v3, 
then K(v,, v,, ,) vanishes a t  some points of p space. If a t  
a definite value of V a stronger singularity appears in 
a3j,/avs than in azj,/av2, then this can serve a s  an in- 
dication that K(v,, v,, ,) has a singularity a t  some point 
of p space. 
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