
We see therefore that a t  r<< Do the damping coefficient 
is determined by the expression 2r3/0; << r. Thus, the 
effect of suppression of the microscopic inhomogen- 
eity of the HFF".'~ is realized even for a quadratic 
Lorentz function. 

If the system is acted upon by a rectangular HF-field 
pulse, then the transform of the function R(t)  is given 
by 

where T is the pulse duration. The pole a t  the point 
p = 0 corresponds to a stationary solution as 7 -m . The 
two other poles describe the frequency and the damp- 
ping coefficients in the transient processes. These 
poles a re  obtained from an algebraic equation for (24) 
only in the substitution (w,) -A. It is therefore clear 
that a t  t >T the frequencies and the damping coefficients 
of the DFP a re  determined by expressions (26) and (27) 
and do not depend on the duration and carr ier  frequency 
of the exciting pulse. 

The authors a re  deeply grateful to V. A. Ignatchenko 
and M. I. Kurkin for constant interest in the work and 
for helpful advice. 
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The electronic absorption of sound in metals with magnetic impurities is considered. An expression is 
obtained for the absorption coefficient of transverse sound a, with account of effects connected with the 
motion of impurities in the field of the sound wave. This expression is connected with the electron self-energy 
part B(w). Two types of dilute magnetic alloys are analyzed. In alloys with disordered magnetic impurities, 
the characteristic temperature dependence of the absorption coefficient is obtained. In spin glasses there is an 
anomalous frequency dependence of a,. At frequencies at which a, am-' in metals without magnetic 
impurities the relation of spin glasses is a, a w -'. The latter result is obtained without recourse to any specific 
model of the spin glass and is the result of the impurity spin's being "frozen in". The proposed method can 
also be employed in calculating the absorption of longitudinal sound. 

PACS numbers: 75.80. + q, 75.30.H~ 

1. INTRODUCTION for example, Refs. 3 and 4) is established. Inasmuch 
as the basic contribution to the sound absorption at low 
temperatures is made by the interaction of the conduc- 

A number of interesting effects, which a re  due to the 
tion electrons with the incident sound wave, it is natur- 

interaction of the conduction electrons with the magnet- 
a1 to expect that the characteristic features of the dilute 

ic  impurities, have been observed in dilute magnetic magnetic alloys a re  essentially manifested in the sound 
alloys (see, for example, Refs. 1 and 2). The specific absorption. 
character of this interaction leads to a characteristic 
dependence of the lifetime of the electronic excitations The problem of the sound absorption has been posed 
on the energy and temperature, and also to rearrange- and solved in many researches. There exist several 
ment of the electron spectrum in the case in which any approaches to its solution. One of them-the phenome- 
of the types of magnetic ordering of the impurities nological-is based on the use of the kinetic equation of 
(ferromagnetic, antiferromagnetic, spin glass, see, Boltzmann with a single relaxation time T . ~ ~ ~  This ap- 
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proach is distinguished by i ts  simplicity and clarity, 
but i ts  essential inadequacy is that it is difficult to ex- 
press T in terms of the microscopic characteristics of 
the system. This inadequacy is especially evident if 
there a re  several relaxation mechanisms for the elec- 
trons or ,  just a s  in the present case, if the times of the 
electronic excitations depend significantly on the energy 
of the electron. 

Another approach consists in the calculation of the 
phonon polarization operator P with account of all the 
interactions, the imaginary part of which determines 
the sound absorption?.' However, since there a re  ran- 
domly distributed impurities, over the coordinates of 
which averaging must be carried out, then i t  is not 
clear which quantity determines the sound absorption: 
I m p  (the bar denotes averaging over the locations of 
the impurities) o r  1mP,  where P =Dil - (D)-' (Do is the 
zero phonon Green's function, 4 is the exact phonon 
Green's function averaged over the impurities), since 
F + P .  Moreover, a s  a rule, the interaction of the elec- 
trons with the lattice vibrations is taken into account in 
these calculations only by the Frohlich Hamiltonian with 
the electron-phonon interaction constant g,, (q is the 
momentum of the phonon, X is the index enumerating the 
branches of the vibrations). But, as is well known, at 
q<< Po ( p o  is the Fermi momentum, g,,=O for the trans- 
verse branches, i.e., i t  is impossible to calculate the 
absorption of transverse sound directly by sucha method. 

There is an approach, based on the microscopic con- 
sideration of the interaction of the electrons with the 
sound wave, with account of the deformation of the crys- 
tal and of the vortical electric fields. The kinetic equa- 
tion for the distribution function of the electrons is ob- 
tained in this case from the equation for the matrix 
density, and the ? approximation is not used (see Refs. 
9 and 10). In principle, such an approach would allow 
us  to consider the specifics of dilute magnetic alloys 
and to calculate the sound absorption correctly. How- 
ever, it is very difficult to solve the problem of the de- 
scription of the behavior of the electrons interacting 
with the magnetic impurities in the nonequilibrium case. 
Therefore, for the calculation of the sound absorption, 
we use an approach which recalls the method employing 
the theory of linear response (see Refs. 11 and 12). 
Just a s  in Refs. 11 and 12, we shall find the linear re- 
sponse to the perturbation produced by the sound wave; 
however, we shall determine the sound absorption not 
from the amount of energy transferred to the electron 
subsystem, but from the equation which describes i t s  
distribution in the crystal. We write down the quantum 
equation of motion for the displacement of the atoms in 
the presence of the sound wave. This equation will con- 
tain the nonequilibrium electron Green's function [for 
the definition, see (2.11), cf. Ref. 131 and the mean val- 
ue of the intensity of the vortical electric field. Ex- 
panding the Green's function in the perturbations pro- 
duced by the sound wave, up to linear terms [see 
(2.12)], and eliminating the electromagnetic field, we 
arrive at a homogeneous equatipn of the form 

where cpQl(w) is connected in linear fashion with the 
mean displacements of the atoms [see (2.5)], and the 
summation in (1.1) extends over all branches of the vi- 
brations. From the condition of the existence of non- 
trivial solutions of (1.1), we find the damping of the 
sound. Such an approach is convenient in the given 
problem because, f i rs t ,  it allows us  to express the 
sound absorption coefficient in terms of the equilibrium 
Green's functions of the dilute magnetic alloy, averaged 
over the locations of the impurities. We assume these 
functions to be k n o w n ? ~ ~ * ~  Second, we can calculate the 
absorption of both transverse and longitudinal sound by 
such a method. Finally, the employed method permits 
us  to take into account the effects connected with the 
motion of the impurities in the field of the sound wave, 
without use of a comoving set  of coordinates. These 
effects a re  important in principle, since without their 
consideration even the order of magnitude of the sound 
absorption is incorrect. 

2. BASIC RELATIONS 

Let us  consider a system of electrons and ions in the 
field of a sound wave. The longitudinal electromagnetic 
interaction of the charges is described, a s  usual, by 
the Coulomb potential, and the transverse interaction, 
with the help of the vortical fields which arise upon the 
displacement of the ions from their equilibrium posi- 
tions. The Hamiltonian of such a system has the form 

The Hamiltonian of the electrons i s  

Here $'(r), $(r) a re  the field operators of creation and 
annihilation of th_e electron 6 is the momentum operator 
of the electron, A(r) is the vector potential operator of 
the transverse electromagnetic field, e> 0 is the charge 
of the electron, V(r - R:) is the interaction potential of 
the electron with an ion found at  the equilibrium position 
R:, Vee(r - r r )  is the Coulomb potential of the electron- 
electron interaction. 

The Hamiltonian of the ions is 

where g, is the momentum operator of the m-th ion, 
R, is the position of this ion (for simplicity, a metal 
with a single atom in the elementary cell is considered), 
W(R,,R,,) i s  the potential of ion-ion interaction, M is 
the mass  of the ion. 

The Hamiltonian of the electron-phonon interaction is 

Here q,(r, - r,) is the constant of electron-phonon inter- 
action, 
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where a& and a,, a re  the creation and annihilation oper- 
ators of a phonon with momentum q in the X-th branch of 
vibrations. The operator $a i s  connected with the ion- 
displacement operators by the canonical transforma- 
tion14 

where n is the number of electrons in a unit volume, 
a,, are the "bare" natural frequencies of the phonons, 
&,, are the polarization vectors. We note that the Ham- 
iltonian of the electron-phonon interaction, chosen in 
the form (2.4), actually does not include the interaction 
of the electrons with longwave transverse phonons, 
since g,,= 0 at q<< po (see, for example, Ref. 14). For 
just this reason, the transverse electromagnetic inter- 
action i s  included in the complete Hamiltonian. 

The Hamiltonian of electron-impurity interaction has 
the form 

where Vi,(r - R,) is the interaction potential of the elec- 
tron with a nonmagnetic impurity located at the point 
R,. The interaction of electrons with magnetic impuri- 
ties i s  described a s  usual by the s-d exchange Hamil- 
tonian. 

The Hamiltonian of the electromagnetic field i s  

We again emphasize that a purely transverse electro- 
magnetic field is considered (the entire longitudinal 
part of the electromagnetic interaction is included in the 
other components of the complete Hamiltonian). This 
field is regarded as  a quantum field in order to avoid an 
explicit dependence of the complete Hamiltonian on the 
time. Since the vectors A and aA/at are transverse, it 
is natural that their commutator should be expressed in 
terms of a transverse tensor, i.e., 

[Aa(r), aAb(r')/atl-=4n2iPe,(r, r') ; a, p= (x, y, z). (2 -8) 

The tensor Pa6 should, on the one hand, possess "uni- 
tary" properties (i.e., commutation relations among the 
generalized coordinates and momentum) and, on the 
other hand, should guarantee fulfillment of the condition 
d i v i  = 0 and its consequences. In other words, Pa, 
should be a projection operator on the transverse 
states. The indicated properties are  possessed by the 
operator 

We introduce the mean value of the operator $,(I), 
which is defined on the imaginary time axis 0 s it c 8 ,  
where 0-' = T, T i s  the temperature of the system; 

Here f i s  the time-ordering operator on the imaginary 
axis,13 which depends on the time operators in the Heis- 
enberg representation with the Hamiltonian (2.1), 

arbitrary functions which, after obtaining the corre- 
sponding equations, can be set equal to zero. The ang- 
ular brackets denote averaging over the statistical en- 
semble with the complete Hamiltonian in the presence 
of a sound wave, and also averaging over the random 
distribution of the impurities. Averaging the Heisen- 
berg equation of motion for the operation ~ ~ ( 1 )  in the 
same way, we obtain 

[&+ ~ : ( - i v )  C(I)-4R(-iV)e(2-1)iG(2. 2+)+di(i)=O; I (2 .lo) 

here 

We note that the equation for rpA(l) in the form (2.10) 
was obtained under the assumption that the R: are  the 
real equilibrium positions of the ions with account of 
the presence of impurities and their vibrations in the 
crystal. 

The sound wave in the crystal leads to the appearance 
of a transverse electromagnetic field, a perturbation of 
the electron density, and a nonzero mean displacement 
of the ions. Assuming these perturbations to be small, 
we can write the following expansion for the Green's 
function of the crystal with the sound wave: 

G(1- l P )  i s  the Green's function of the dilute magnetic 
alloy without the sound wave, the subscript 0 of the 
variational derivatives means that after the derivative 
is taken, all the perturbations a re  assumed to be equal 
to zero, the value of Uef  is determined by the equation 

(2.13) 
From the commutation relations (2.8) we obtain the 

equation for A: 
1 aZA(l)  4x 

r o t r 0 t A ( i ) - ~ ~ = - j , ( 1 ) ,  
at, c 

(2.14) 

where 

ila(f) = j p a ~ ( r L ,  rl')ip(ri', tl)drif, 

j(1) is the total current in the system. For j,(l) we can 
write an expansion similar to (2.12). Here it is neces- 
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sary to take i t  into account that, in the absence of a 
sound wave, the total current in the system is equal to 
zero: 

We note that, since Uef characterizes the change in 
the electron density and the screening of the charges, 
i.e., purely longitudinal effects, it follows that in the 
isotropic case, which will be considered further, 
6j;(l)/6Uef(3) I, =O.  

We introduce the notation 

Carrying out the Fourier transformation 
-18 

K ( p ,  z ) =  dr Jdt  exp[ - ip r+ i z t ]K( r ,  t ) ,  z=ZnmTi 

(rn i s  an integer) we obtain in Eq. (2.14), with account 
of (2.15) and (2.16): 

4n 4n [(f - p 2 ) b a 6 f  T ~ 1 ( p , Z ) ] ~ * ( P . ~ ) = - T ~ ~ i ~ a ( P ~ z ) V p ~ 8 ( z ) ~  
h, 

whence i t  follows that 

where 

R,,T, 

e,,, is a unitary antisymmetric tensor. 

We also introduce the permittivity: 

S "" I*) 1 (2 -18) e (1-2)  =6 (1 -2 )  +Bi d3V,.(rJ-r,) 6 ( t l - t 2 ) A  
6Ucf (3 )  o 

and denote 

Taking the Fourier transform in Eq. (2.10), we obtain 

4n 
- -- e-' ( 4 .2 )  Cha (q ,  2 )  

c Ka(q'  ' )  
zZ/c'-q2+4xc-'Q (q ,  z )  1 

o,, is the electron plasma frequency. 

After finding the quantities K,, E, C,, K, and Q, we 
must carry  out the analytic continuation z - o+ i6, 6 
=+O. This is connected with the fact that Eq. (2.2) is 
obtained for the Fourier transform of the function cp,, 
which is defined on the imaginary time axis, while the 
quantity q,( t ) ,  which is connected with the mean dis- 
placements, is defined for real  times, with cp,(t) - 0 a s  
t - -m . After analytic continuation, the sound attenua- 
tion coefficient is found from the condition of existence 

of nontrivial solutions of (2.20). 

3. CALCULATION OF THE VARIATIONAL 
DERlVATlVES 

We f i rs t  calculate C,O(q, z). Inasmuch as the total cur- 
rent consists of the electron and ion currents, then 

whence 

epic CC:~ (4 ,  z)rpqi,(z)=-izen(2MnBqi)-"'cp,~(z) (1-61,) (3 -2) 
ti, 

(X =1 for  the longitudinal branch of the vibrations). 
Since the expression for the electron current has the 
form 

i t  follows that 

We can obtain the following expression for the Green's 
function G(l, 1 '): 

where 

Cee, Cep, Cim a r e  the self-energy parts connected with 
electron-electron, electron-phonon, and electron-im- 
purity interactions, respectively. The function Cee no 
longer contains the long-range part of the electron-elec- 
tron interaction and it3 purely collisional, For simplic- 
ity, we consider the approximation of almost free elec- 
trons. 

Since we a re  interested in the sound absorption con- 
nected with electron scattering from impurities, the 
variational derivative in (3.3) can be calculated without 
account of Cee and C,,, assuming them to be small. 
However, it must be taken into account that under the 
action of the sound wave, the impurities also a re  dis- 
placed. Account of this fact, a s  will be seen below, 
yields a contribution to the absorption of transverse 
sound, corresponding to the contribution made in the 
phenomenological theory by terms appearing when a 
transition to a comoving set of coordinates is made. 

For the impurity self-energy part, we can obtain the 
expression4*15 

where c ,  is the relative impurity concentration, the 
summation is over all the lattice sites, and the function 
T ,(I, 1') is defined by the equation 
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Here V(l, l t ; l)  is the potential of the impurity located at 
the I-th site. With accuracy to terms that a re  linear in 
the displacements, 

T , ( l , l t )  = Tj(1, l t ) +  T:(l, l t ) ,  while it is not difficult to 
show that Ti is determined in the following fashion (for 
brevity, we write down this and several succeeding ex- 
pressions in the matrix form): 

After simple transformations, we get 
ectn dP* c; (q, Z )  = --(zamn,) -lhpab(q) j 
m 

We note that Pa, = 6,, - nan, and II,(l , 1 ') is connected 
with TI(p,,&,z) in the following fashion (similarly for 
fi): 

dp* dpz 1 
I I ~  (1, i f ) =  I I ~  (r,, r,,, t l - t j r ) =  jT- 

(2n) (- i$)  

x esp[ip, (r , -RI0) - ip2(rI1-Rlo)  -izl(t,-t,') l n ( p , ,  p,, z d .  
L-r 

Using the properties of the functions TI and fi, we can 
show that 

II(k, q, z)=(2nJ"(k-q)+G(k, z )To(k ,  q, z ) ,  
n ( k ,  q,  ~ ) = ( 2 n ) ~ 6 ( k - - q ) + G ( q ,  z )T0(k ,q ,  z ) .  

The Fourier components ~O(k ,q ,z )  a re  determinedin the 
the same way as TI (k, q, z). We then get immediately 

We shall consider a 6-function potential of the impuri- 
ties. Then p ( p ,  q, z)  =TO(z),nciTO = Xi,,,. Then 

Starting out from the expressions (3.2) and (3.4b), it is 
easy to establish the fact that the component containing 
CE in Eq. (2.20) does not entangle the branches of the 
vibrations in the isotropic case. If we consider only the 
absorption of transverse sound, then the remaining 
variational derivatives cannot be calculated because of 
the fact that for the transverse branches g_,,= 0 at 
q<<po. Taking i t  into account that the transverse 
branches for the isotropic metal differ only in the direc- 
tion of the polarization vectors, we have 

i 1  
Q*(q,z)=----- zmn (-ib) ~ - $ & P ~ ( ~ - ~ ) G ( P ~ , Z I )  

xG(p,-q, z , -Z) [Z, , (z l-Z) -Z.,(z,) I, (3.6a) 
ezn 

Q ( q , z ) = - -  mc 

here x = c o s m .  The expression (3.6b) is obtained 
from the expressions (2.16), (2.17a), (3.2a) and (3.4a). 

After carrying out analytic continuation we shall as- 
sume in the study of the existence of a nontrivial solu- 
tion that the damping is small in comparison with the 
frequency, that is, w >> y for the complex frequency 
G=w-iy. Also taking into account the fact that m / M  
<< 1, we obtain the following expression for the damping 
coefficient y : 

m wp,2 1-Q1 (q, o f i s )  
r=~o lm I-cZqz/w'+4ncQ (q,  a+&) l o z  ' 

(3.7) 

w =a,, = qs ,, where s, is the speed of transverse sound. 
The absorption coefficient of transverse sound &, is 
connected with y by the simple relation 

al=2ylst. 

The relations (3.6) and (3.7) allow u s  to compute the ab- 
sorption coefficient of transverse sound in dilute mag- 
netic alloys. 

4. ABSORPTION COEFFICIENT 

The Green's function of a metal containing magnetic 
impurities, in the absence of a sound wave, has the 
form 

C ( p l ,  z , )  = L Z ~ - ~ , ~ , - Z ( Z ~ )  I-'; (4.1) 

here z, =(m + l)?riT, m is an integer, 5,, is the energy 
of the electron with momentum p,, calculated from the 
Fermi energy c0. Since we consider an isotropic metal 
in the free-electron approximation, we have 5,, 
=p1/2m - zo. 

I t  is not difficult to see  that the functions Q(q,z) and 
Q,(q, z ) which determine the sound absorption a re  ex- 
pressed in terms of integrals of the form 

where k is an integer, ~ ( x )  is some function of x,N(5,) 
is the density of electron states. For improving the 
convergence, we rewrite (4.2) in the form 

where c 0 ( ~ , z ) = [ z  - The second component in 
(4.3) is calculated in elementary fashion and yields 
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(v, =p,/m is the Fermi velocity). The expression in 
square brackets in the f i r s t  term in (4.3) differs from 
zero in a narrow region -C<< near the Fermi  energy; 
therefore, 

Calculating the second term in (4.4) and using the ex- 
pressions (3.6a) and (3.6b), and also the fact that the 
total sound vector q is connected with the frequency w 
by the relation w =qs , ,  we have 

rnc 

The relations (3.7) and (4.5)-(4.10) allow us  to calculate 
the transverse sound absorption by the electron subsys- 
tem, by starting from the electron self-energy part 
C,,(w). 

We now consider dilute magnetic alloys with disor- 
dered magnetic impurities. It can be shown that for 
such a system Re Xi, is negligibly small, while 
Im c,,(w + i6) = -ir(w)/2, where r(w)> 0 is the recipro- 
cal of the lifetime of the elementary excitations. In the 
expressions (4.5)-(4.1G) ;r.- have wy s w and w - wy s w. 
If w s T, then i t  can be assumed that the quantity I' does 
not depend on the frequency and i s  equal to 

r, =const is the reciprocal of the lifetime of the elec- 
tron excitations connected with scattering of the elec- 
trons by nonmagnetic impurities, T, = E, exp[-n/JN(O)] 
is the Kondo temperature. Here the quantities a,  b,  Go, 
and T become constants, which facilitates the problem 
of calculation of the integrals in (4.5) and (4.6). In the 
limit w << r (0)  we obtain 

p is the density of the metal, a=vow/s,~(0):  

q (a)  =3[ ( l+az)  arctg a-a]/2aa. (4.13) 

The presented expression fo r  a t  is identical with the 
expression obtained in the phenomenological theory at 
7" = r(0). Such an identity will always be the case when 
the self-energy part of the electrons can be represented 
in the form 

7 is the relaxation time, that is, in those cases  in which 
the 7 approximation works well. We note that the func- 
tion r(w) is constant only in the region w s T. The fact 
that the expression for the absorption coefficient a, 
contains r (0)  follows from actual calculations. But, 
generally speaking, there is no basis in the phenome- 
nological approach for setting 7 = I?-'(0). Moreover, it 
is evidently always possible to choose the parameters 
w and T s o  that, on the one hand, w would be greater 
than T, and on the other, (A<< r. Then (4.12) becomes 
incorrect and a, must be found by numerical integration 
of (4.5) and (4.6). 

We also note that in the region w<< T, where the re- 
lations (4.12) and (4.13) a re  valid, at sufficiently low 
sound frequencies [w<< s,r(O)/v,] a, falls off logarith- 
mically with decrease in temperature, and a t  w >> (s t /  
v,)r(O) it does not depend on the temperature. There is 
an essential difference here between dilute magnetic al- 
loys with disordered magnetic impurities and metals 
with nonmagnetic impurities. In the latter, the sound 
absorption, which is connected with scattering of the 
electrons from the impurities, does not depend on the 
temperature throughout the entire frequency range. 

We further consider dilute magnetic alloys with or- 
dering of the spin-glass type. As is known, spin glass- 
e s  a re  characterized by a finite value of the magnetiza- 
tion at each impurity site in the absence of a total mag- 
netization of the sample. Thus there exists a certain 
random internal field which "freezes in" the impurity 
spins. It is interesting that the dependence of the char- 
acter of the behavior of the electron sound absorption 
coefficient on the frequency can be elucidated without 
taking recourse to a particular model of the glass. For 
this purpose, we consider the dependence r ( w )  
= -2 Im~, , (w+ i6). In low frequency regions, the quan- 
tity r is determined by elastic processes of electron 
scattering without spin flip and, consequently, r is 
equal to some constant r, independent of the frequency. 
In the high frequency region, w >> E ,  where E is the 
mean value of the energy necessary to change the orien- 
tation of the spin of the impurity,') the value of r is also 
constant, while r = r, > r,, since the quantity r, is de- 
termined also by inelastic processes of electron scat- 
tering with spin flip. In the intermediate frequency 
range w-E, a smooth increase of r takes place from 
the purely elastic value r, to the value I?,. The region 
of frequencies where the quantity r depends significant- 
ly on the frequency is obviously determined by the dis- 
persion of the internal field AE. The values of the pa- 
rameters r,, r,, E, AE depend on the specific model 
of the spin glass. Knowing the dependence of r(w) from 
the dispersion relations, it is not difficult to find 
Re.Zim(w), which has a peak at o -E. In connection with 
the fact that the quantities Q(w) and Q,(w) a re  connected 
with r(w) by the integral relations (4.5) and (4.6), in the 
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limit in which AE << E , the character of the approxima- 
tion r ( w )  in the transitional region is unimportant. 
Naturally, the integrals in (4.5) and (4.6) cannot be cal- 
culated analytically. However, we can analyze the be- 
havior of the absorption coefficient in the different fre- 
quency regions. 

1) At w << E ,  r(w) = ro, Rex,, = 0, and the expression 
(4.12) with T = I';' is obtained for the sound absorption 
coefficient. We note that I?, for spin glass is not identi- 
cal with r(0) for a metal with disordered magnetic im- 
purities. 

2) The region w z E. Since the characteristic values 
of the quantity E have orders from tenths of a degree to 
tens of degrees, i t  is not difficult to estimate that at 
w E the inequality c ~ ~ ~ / w ~  >> 4 7 ~ ~  ~ Q ( w )  I /w2 holds. 
Then, under the assumption that wr(w, y) 2 1, we obtain 
the following expression for a, with accuracy to within 
terms of order s:/vz: 

nm 1 
a, = --{(I-Re Q, (a)) Im Q(o) +Im Q, (o) x20a), (4.14) 

PSI x1oS 

where the function Q,(o) and Q(w) a re  given by the ex- 
pressions (4.5)-(4.10) with 'Z,, for the spin glass and 
a(w, y) >> b(w, y) 2 1, n = c/stwpe. In the considered fre- 
quency range we have in metals without magnetic im- 
purities a, c~ w9.' This result can be obtained from 
(4.14) if we use the corresponding electron self-energy 
part for the calculation of the functions Qf and a. In the 
case of nonmagnetic impurities, for example, Rex,, i s  
negligibly small, in this case ImQ, = 0, 1mQ - st /vo and 
depends weakly on w, and R~Q,(w)  - s,/vo, i.e., the 
principal term in a, is proportional to w - ~ .  The situa- 
tion is different in spin glasses. The electron spectrum 
in these systems is significantly rearranged and a s  a 
consequence of this, I ~ Q , ( w )  -~mQ(w) - st/uo in (4.14). 
This means that a, c~ w-' at n w - 1. 

5. CONCLUSION 

We estimate under what limitations on the introduced 
parameters do the specific features of the diluted mag- 
netic alloys appear in the sound absorption. In the cal- 
culation of a, we have neglected the quantities Cee and 
C,, in comparison with C,,. The quantity Cee (we recall 
that this i s  only the collisional part of the electron-elec- 
tron self-energy) in good metals is always much less 
than C,,. So far a s  the quantity C,,, i s  concerned, its 
smallness in comparison with C,, can always be insured 
by choice of a sufficiently low temperature. 

In disordered dilute magnetic alloys, the principal 
feature is the temperature dependence of the absorption 
coefficient. It appears at low sound frequencies [w 

<< r(0)s,/uo, w<< TI. For temperatures T - 1 K and con- 
centrations of the magnetic impurities c,- lo-=, the in- 
dicated temperature dependence should be observed for 
sound with frequency w s lo7- 10' sec". 

In spin glasses, a s  analysis of the relation (4.14) 
shows, the absorption coefficient at w-E can vary as  
w". The relation (4.14) i s  valid at n2w2 >> st/uO, i.e., 
for frequencies w 2 10s-lO1O sec", while a, = w" at 
xw2 1, i.e., w 2  1010-1011 sec-l. For E-0.1-1 K 
(109-1010 sec") the range of frequencies w k  E again 
corresponds to the region of validity of the relation 
(4.14). This result is obtained without the use of a 
specific model of spin glass, i.e., it is a manifestation 
of the basic, determinative properties of such systems. 
However, it must be noted that upon further increase in 
the frequency (4.14) ceases to be valid, since the sound 
wave vector q becomes comparable with Po and, conse- 
quently, g,,+ 0. Then the relations (4.5)-(4.10) a re  no 
longer operative. A purely deformation mechanism of 
sound absorption begins to dominate, leading to a de- 
pendence of the absorption coefficient on frequency, 
a t - w .  
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