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It is shown that the corrections of second order in the gradients of the parameters of the expression for the 
momentum-flux tensor lead to a new solution of the equations of two-velocity hydrodynamics of a magnetized 
plasma 

PACS numbers: 52.30. + r 

In this paper we present an example of plasma motion 
in the magnetic field that is determined by the higher- 
order terms (those following the Navier-Stokes terms) 
in the equations of motion of two-velocity hydrodynam- 
ics. Interest in such "Burnett" terms has greatly in- 
creased recently. In particular, in the review of Kogan 
e t  al.' a r e  given examples in which these terms play an 
important role in ordinary gasdynamics. It has turned 
out that the Burnett approximation2 (second-order ap- 
proximation in the Knudsen number) leads not merely 
to a refinement of the Navier-Stokes approximation 
(first-order approximation, see Ref. 3), but also to new 
solutions. In other words, gas can flow as a continuous 
medium in such a way that, no matter how small the 
Knudsen number, the flow cannot be described by Nav- 
ier-Stokes gasdynamics. 

We shall show that exactly this situation ar ises  in 
natural fashion in a magnetoactive plasma, and we shall 
consider the case that distinguishes more strongly this 
medium from an ordinary gas: we shall assume the 
ionization to be complete and the magnetic field strong, 
so  that 

(e, , ma, v, a re  the charge, mass,  and effective frequen- 
cy of the collisions of the particles of species a, cy =e ,  
i). Under these conditions, the small parameter of the 
hydrodynamic approximation is the ratio of the Larmor 
radius pa =v,,/w,(v~, - Ta/ma) to the characteristic 
inhomogeneity dimension a. 

It is known that in two-velocity plasma hydrodynamics 
the Navier-Stokes approximation corresponds to the 
system of equations obtained by ~ r a ~ i n s k i y ~ q ~  by the 
Chapman-Enskog method? The Burnett approximation, 
in turn, corresponds to additional terms in these equa- 
tions; these terms were calculated by a number of work- 
ers .  The complete system of equations, which takes 
into account all the terms of second order in the gradi- 
ents of the parameters, i s  given in ~ikhailovskir 's  
book7 (see Appendix I of Chap. 16). It will be shown be- 
low that allowance for these terms in the equation of 
motion of the ions leads to a new type of laminar con- 
vection in a plasma. 

1. EQUATION OF MOTION. POSSIBILITY OF ONSET 
OF CONVECTION 

We consider the stationary equations of two-velocity 
hydrodynamics, which describe the equilibrium of a 
plasma in a magnetic field: 

ap. arr,,, 
( V , V ) V = , = - - - - i n ( e . E , f m , [ V , ~  o,],)+R,,: i , j = x , y , z .  

a x ,  ax, 

(1 .I) 
Here Pa =nT, is the partial pressure, nuif  and Ra i  a re  
the momentum-flux tensor and the friction force, which 
a re  defined in the usual manner in terms of the particle 
distribution function (see Ref. 4). In the zeroth approxi- 
mation in the small parameter v,/w, and in first-order 
approximation in p,/a, the hydrodynamic velocity takes 
the form 

V,= (rnoazn)-I o, x [ V P = - n e . ~ l .  (1.2) 

We assume that the gradients of all the parameters in 
the field EL =E x H/H2 a re  directed along a specified x 
axis in space, perpendicular to the magnetic field 
(H 11 2) .  By the same token we neglect the bending of the 
force lines of the magnetic field. We shall also assume 
that the plasma is bounded along the x axis, so  that un- 
der  stationary conditions we should have' ' V,, = 0. 
Then, adding together the y components of Eqs. (1.1) 
and recognizing that R,+R, =O,  we arrive at the equality 

-I 

in which we can, however, neglect the electronic part 
of the viscosity tensor. 

Indeed, estimating the viscosity tensor with aid of ex- 
pression 

obtained by ~ r a ~ i n s k i i ,  and substituting here (1.2), we 
find that ll,,,<< IT,,,. Physically this means that the 
force of the friction of the ions against the light parti- 
cles (electrons) has a negligible effect on the motion of 
the former. Thus, 

Substituting here (1.3) we obtain an equation for the 
velocity Vi; this equation, in conjunction with the fre- 
quently encountered boundary conditions 

has the solution Viy(x) = 0. In the second condition of 
(1.5), the coordinate x, marks the boundary of the fully 
ionized plasma. The wall or neutral gas that bounds 
the plasma is assumed immobile. 

The just-obtained solution of (1.4), which expresses 
the absence of convection, is in fact in error .  The point 
is that in the Chapman-Enskog method the velocity V, 
is assumed to be a quantity of zeroth order in the pa- 
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rameter p,/a, s o  that expression (1.3) is valid only in 
first  order in p,/a. This approximation is analogous to 
Navier-Stokes gasdynamics. If, however, we now sub- 
stitute (1.2) in (1.3), then we obtain n i r y m  (pi/@, which 
in the given approximation is an exaggeration of the ac- 
curacy. Thus, expression (1.3) is not valid in the case 
of drift flow, and it is necessary to use in (1.4) the vis- 
cosity tensor calculated accurate to terms of order 
3 [see Eq. (2.1) below]; in ordinary gasdynamic this 
would correspond to the Burnett approximation. The 
plasma motion considered by us  is thus analogous to 
slow flow of gas.' 

We note that the plasma flow has a velocity of the or- 
der  of the ion drift velocity vf -vi,pi/a, i.e., the con- 
vective flux turns out to be quite appreciable and of the 
same order a s  the flux due to boned diffusion in a tur- 
bulent plasma (diffusion along x is forbidden in this 
case because of the stationarity condition). Our flux 
has, however, a laminar thermal-stress character. 

2. THE COMPONENT nix, ACCURATE TO TERMS 
OF ORDER p:/a2 

We shall consider hereafter mainly ions, and use the 
subscript a = e  only for quantities pertaining to elec- 
trons. If the velocity V is of zeroth order in p/a, then 
the sought expression should coincide, accurate to p/a, 
with (1.3) and therefore the velocity dependence always 
takes the "Navier-Stokes" form (1.3). The remaining 
terms of second order in the gradients should be pro- 
portional either to d2T/d2,  o r  to (dT/dx) (dA/dx), 
where A stands for T, n,  or  H. In fact, the electric 
field should not enter explicitly in the expression for  
nXy, since it can be expressed in terms of V, by means 
of (1.2). On the other hand, there should be no temper- 
ature-gradient terms in II,,, since the gradients Vn and 
VH by themselves do not take the plasma out of the 
equilibrium state. As a result, II,, should vanish a t  
constant V(x) and constant T(x). This conclusion is ob- 
viously valid for all components of the momentum-flux 
t e n ~ o r . ~  ' 

As already discussed, the sought terms of second or- 
der in the gradients were already calculated in various 
papers (see, e.g., Ref. 8). These calculations, how- 
ever, were not aimed at revealing new effects, and this 
is apparently why no correct expression for II,, in the 
approximation needed by us  is cited explicitly anywhere. 
Nonetheless, there is no need to perform all the calcu- 
lations anew. Using expressions 26, 21, and 22 in 
Appendix 16 of the book by ~ikhaylovskiy,7 we obtain 
accurate to terms of first  order in v/o and of second 
order in p/a the component II,, in the drift stationary 
approximation3 ): 

11 d l n T  d l n n  35 d l n T  d l n o  + - - - - - - -- I I 3 dx dx 12 dx dx ' (2.1) 

here Vy= Vi, is given by (1.2), 77 =qi [see (1.3)], X is the 
Coulomb logarithm, and the ions remain singly charged. 

For a magnetized plasma, such a s  in our case, we 
can calculate the viscous-stresses tens$r by a more di- 
rect method, the one used by Braginskiig to find the 
transverse particle and heat fluxes. It is necessary to 
consider here in the expansion of the distribution func- 
tion of the ions in spherical functions, besides the har- 
monics of zeroth and f i rs t  order, which were taken into 
account by ~ r a ~ i n s k i r ,  also the second-order harmonic. 
This harmonic makes it possible to find the component 
nxy. As a result, after rather cumbersome manipula- 
tions, we obtain again Eq. (2 .I). 

The viscosity tensor was calculated accurate to terms 
of order p2/a2 by F'radkin." His result, however, dif- 
f e r s  from (2.1) and is in our opinion in error:  i t  con- 
tains the "forbidden" t e rms  discussed at the beginning 
of this section. It is impossible to indicate the concrete 
cause of the e r ro r ,  since almost all the intermediate 
steps have been left out of Ref. 10. 

We note that expression (2.1) is valid if the ion veloc- 
ity distribution function differs little from Maxwellian. 
Summarizing all the assumptions used in the derivation 
of (2 .I), we find that the plasma parameters should sat- 
isfy the conditions (see Ref. 9) 

where 

3. THERMAL-STRESS CONVECTION 

To determine VJx) from (1.4) we must know the func- 
tions T(x), and n(x), and H(x), which can be obtained 
only by solving completely the problem of the equilibri- 
um of the plasma in a magnetic field. To this end, at 
any rate, i t  is necessary to use the heat-transfer equa- 
tion (see Ref. 4) 

-- = m, ' dqx Q=3 - v. (T, -T)  n .  
d r  rn 

(3 .I) 

Here 
2nTv 20 dl' 

% = = -  m o 2  j m q Z  

is the heat flux carried by the ions along x, In (3.1) ac- 
count is taken of the ion-electron collisions, which we 
have neglected up to now. 

In the equation of motion for the electrons 

dIIeq/&=Rsv (3.2) 

the component II ,,, is obviously of the same order as 
qedVey/dx, where Vey is determined by relation (1.2). 
At the same time R,, is generally speaking of the order 
of 

which is much more than the left-hand side of (3.2). 
From this we obtain the condition Re, =0, which is equi- 
valent, if we recall the expression for Re, (see Ref. 4) 
and take (1.2) into account, to the equation 
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Finally, we must take into account Maxwell's equa- 
tions, from which it follows that the pressure in the 
plasma, including the magnetic pressure, must be con- 
stant: 

Thus, the functions n(x), T(x), and H(x) can be obtained 
from equations (3.1), (3.3), and (3.4) only if one knows 
the function Te(x), which determines completely the 
state of the plasma. The Te(x) distribution, however, is 
not universal, is determined by the energy balance for 
the electrons, and depends on the concrete manner in 
which the plasma discharge is maintained. 

We assume that the conditions 

a re  satisfied, and obtain then from (3.3) and (3.4) 

d l n n  1 d l n T .  T  d l n T  d l n H  
-= ----- -= 

d z  2 dx  T. d x  ' d x  0; 

while Eq. (3.1) takes the form 

If we assume that the plasma layer is symmetrical 
about the ( y , z )  plane, then the boundary conditions for 
the temperature a t  x = O  a re  

and the solution of (3.7) can be easily found: 

where 

is the characteristic dimension of the inhomogeneity. 

Substituting (3.6) in (1.41, we reduce the latter to the 
form 

where T(x) is expressed in terms of Te(x) by means of 
the relation (3.8). The quantity II'& in (3.9) is an inte- 
gration constant that must be chosen on the basis of the 
boundary conditions of the problem. 

We note that if the variation of the electron tempera- 
ture in space is not faster than that of the ion tempera- 
ture, 

then the concrete form of the function Te(x) does not in- 
fluence significantly the' final answer, since the solution 
V,(x) is determined by the largest of the terms in the 
square brackets of (3.9). For  this region the charac- 
teristic value of the conduction velocity is Tlmwx,. As 
to the boundary conditions, one of them, obviously, is 
Vy(0) =0, and the second must be specified at the point 
where the ion temperature vanishes. According to 

(3.8), this temperature is a monotonically decreasing 
function and must vanish a t  the end point x =x$ provided 
that Te(x) does not increase more rapidly than 3P to- 
wards the plasma periphery. 

It is natural to assume that a t  Ix I > x,* the plasma i s  
surrounded by a quiescent neutral gas, and that the 
transition region in the vicinity of x,* (which is small 
compared with a) is occupied by a partially ionized 
plasma. The friction between the ions and the neutral 
atoms (this friction force, in contrast to electron fric- 
tion, is not small and cannot be neglected in the equa- 
tion of motion) leads to vanishing of the macroscopic 
velocity of the neutrals a t  the point xd. On the other 
hand, our theory does not take into account this friction 
force, and according to the definition (1.2) the boundary 
condition at x$ should take the form 

but is not necessarily equivalent to Vy(x,*) = 0, i.e., in 
the transition region Vy(x) decreases rapidly (over a 
length on the order of the Larmor radius) from the val- 
ue (3.11) to zero?' 

It may happen, however, that a t  x =x,* not only the 
temperature but also i ts  derivative dT/dx vanishes [see 
formula (3.13) below]. Then, assuming the electric 
field outside the plasma to be equal to zero [this means 
that also E(x,*) = O  by virtue of the condition D,=c,$,(x) 
=const], we find that (3.11) reduces to Vy(x,*) = O .  As a 
result, the conditions (1.5) take place. 

The final solution of (3.9) can be obtained, for exam- 
ple, by assuming 

This assumption is not formal. Actually, the electron 
temperature is determined a s  a rule not by the laminar 
thermal conductivity but by the enhanced thermal con- 
ductivity due to the turbulent fluctuations. In a plasma 
with unequal temperatures, at Te/T > 5.2, the turbu- 
lence due to the drift instability (which i s  always pres- 
ent in the considered model of the plasma) turns out to 
be more substantial for electrons than for ions, inas- 
much a s  ve/w: < vi/wT [w: = w,(~,/a)~ is the character- 
istic drift velocity]. Assuming now in (3.8) that the 
electron temperature is independent of x, we find 

This formula was obtained also by Kapitza.lz 

The point x,* where the temperature vanishes coin- 
cides thus with x,. Therefore the boundary conditions 
at a zero external electric field take the form (1.5). 
Solving Eq. (3.9) with allowance for (3.12), (3.13) and 
(1.5), we obtain ultimately 

3T x' v =-a_ - -  
x "  ( x X )  

(3 -14) 

Accordingly, the mechanical moment per unit area of 
the layer is 

We note once more that the order of magnitude of Vy and 
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L is determined only by the conditions (3.5) and (3.6), 
and not by the condition (3.12). 

We consider  now the case of a cylindrically symmet-  
rical plasma, which cor responds  to a g r e a t e r  degree  to 
real experiments. All  the  gradients  are assumed di- 
rec ted  along the  radius. The  expression f o r  the  compo- 
nent lI,, of the momentum-flux tensor  are of the f o r m  

d V , ,  1 - 1 9  d 1 d T  n,,=-q r--7-- - r T -  
d  r r i m  112 dr ( rT dr I 

i n  which V, is determined as before by Eq. (1.2). 

The equations of motion and of the energy balance now 
take the f o r m  

where q, is given by (3.1,) i n  which x is replaced by r. 
By means  of a s i m i l a r  substitution w e  can obtain the 
two other  equations f r o m  (3.3) and (3.4). If all the  as- 
sumptions made above are valid as before, then 

the expression f o r  V, di f fe rs  f r o m  (3.14) in the  substi- 
tutions y -cp; x,xo -r,ro, and the mechanical moment 
per unit length is 

4. CONCLUSION 

We make a few r e m a r k s  concerning the applicability 
of the resul ts .  It is well known that  an inhomogeneous 
p lasma in a magnetic field is never  stable. The pres -  
ence of gradient instabi l i t ies  l eads  to the  development 
in the p lasma of a turbulent state. A s  a result, allow- 
ance f o r  diss ipat ive effects  with the aid of the  pair-col- 
lision integral is frequently insufficient, and it is nec- 
e s s a r y  to take into account t h e  nonlinear mechanism of 
ion scattering by turbulent fluctuations. T h i s  scat ter ing 
mechanism can be  formally considered by adding to the 
fr ic t ion f o r c e s  R ,  the corresponding fr ic t ion f o r c e s  due 
to the turbulent noise. Thus, the right-hand s ide  of 
(1.4) is not equal  to zero, but contains a f o r c e  R ,  ,,,. 
There  are grounds, however, f o r  assuming  that  under 
those conditions which we are assuming the level of the 
turbulent fluctuations is relatively low, so that  we can  
put R ,  ,,,= 0 and u s e  as before Eq. (1.4) f o r  the solution. 
T h i s  conclusion follows f rom the second inequality of 
(2.2), which can be  t ransformed into 

The instability growth rate is as a ru le  of the s a m e  or- 
d e r  as w t  (at any rate, it d o e s  not exceed th i s  value); it 
follows there fore  that  the p a i r  collisions will  dominate 
as before, and the solution obtained by u s  r e m a i n s  in  
force.  

A s  already noted, the  e lec t rons  can  be substantially 
influenced by the turbulence. This  follows f r o m  the fact  
at T,>> T i  it is possible to have the inequality v,<< w:, 

even if the  condition (4.1) is satisfied." 

Among the  possible consequences of the p lasma con- 
vection we note, f o r  example, the  change of the dielec- 
tric tensor ,  as well as the  appearance in the medium of 
an additional instability channel as a r e s u l t  of the  mac-  
roscopic motion of the ions.14 

l ' ~ o r  further conclusions, in fact, the condition V i x / V i ,  
<< V , / W  ,) ( ~ , / n ) ~ ,  i.e., a/at << v,(o~/cz)~. 

2'The reason why the expression for the tensor w does not con- 
tain terms proportional to h n / d g  and ( d n / d ~ ) ~  i s  the neglect 
of the interaction of the ions with the electrons. In this sense 
our plasma is a single-component gas. In a mixture of 
gases, these terms a re  present in the expression for the 
momentum flux and can even cause a concentration-stress 
convection (See Ref. 1). 

3 ' ~ e  note that in the same book,' in  Appendix 5 of Chapter 16, 
there is given, for w,, , as stated, an expression corre- 
sponding to the drift stationary approximation. This expres- 
sion, however, has not been written down accurately, name 
namely, the tensor w,,"', which enters in the expression for 
w, ,  (See Eq. 26 of Appendix 16 in Ref. 7 ) ,  does not contain the 
terms described by the first and third terms in the correct 
formula 21 of Appendix 26, 

"This behavior of the velocity is similar to the effect of 
thermal slippage in ordinary gasdynamics, when the velo- 
city jump is proportional to the tangential component of the 
temperature gradient on the gas boundary (see Ref. 11). The 
singularity of the plasma manifests itself in the presence in 
(3.11) of an electric field, and also in that the tangential 
component of the gradient i s  replaced, owing to the strong 
magnetic field, by a normal component, and the particle 
mean free path is replaced by the Larmor radius. 

 he f a d  that the transverse viscous hydrodynamic stresses 
turn out to  be more important than the fluctuations at high 
collision frequencies, while a t  small v i ,  on the contrary, the 
noise is more significant, is due to the presence in the med- 
ium of a strong magnetic field, and is valid only so long as 
v i  < wi  . In an ordinary non-magnetoactive hydrodynamics, 
the opposite relation holds true (see Ref. 13). The fluctua- 
tions predominate at large vi (i.e., at small Knudsen num- 
bers) ,  and in liquids the fluctuation thermal correction to 
the equation of motion turns out to be more important than 
the Burnett correction, while in gases, when the collisions 
are  small and the Knudsen munber i s  much larger than in 
liquids, the fluctuations can be neglected. 
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We investigate the motion of nuclear magnetization under conditions of microscopic inhomogeneity of the 
hyperfine field (HFF) at low deviations from the equilibrium position. It is shown that if the HFF has a 
Lorentz distribution function the free-precession damping coefficient depends little on the ratio of the 
dynamic shift of the NMR frequency to the width of the distribution function. For a quadratic Lorentz 
function, which falls off more rapidly on the wings, the damping coefficient of the free precession decreases 
sharply with increasing dynamic frequency shift. Both the frequencies and the damping coefficients of the free 
precession are independent of the parameters of the pulse-exciting high-frequency field. 

PAC3 numbers: 76.60.J~ 

Theoretical and experimental investigations1-6 car- consider the simplest phenomena that can be analyzed 
ried out during the last  ten years have shown that most without restrictions on the value of the HFF-we in- 
typical for magnets is a microscopic inhomogeneity vestigate the motion of nuclear magnetization a t  small 
of the hyperfine field (HFF): the correlation radius deviations from the equilibrium positions. 
ro of the HFF is usually much smaller than the effec- 

We consider for the sake of argument a ferromag- 
tive exchange-interaction radius r .  In this situation, 

netic sample in the form of a sphere magnetized par- 
the electronic magnetization M connected with the allel to the external constant magnetic field H. We 
strong exchange interacts with the resultant field of assume that the Z axis is directed along H and that i t  
the nuclear i s o c h r ~ m a t s ~ ' ~  and the density of the macro- is possible to apply to the sample a high-frequency (HF) 
scopic energy of the hyperfine interaction (HFI) is ex- field -exp (iwt) polarized in the XY plane. In place 
pressed in the form 

of p: r i t  is convenient to introduce the relative --, -,- 
a = ~  J A ~ A ~ A ,  ( I )  components 

where A is the HFI constant, p4 is the magnetization 
u = p x A l p A ,  u = - p y A l p A  

of the nuclear isochromat, and by isochromat is meant . m = - p z A / p A ,  (2) 

the se t  of nuclei for which the HFI constant has the where is the static magnetization of the isochro- 
same value. Naturally, under conditions of micro- mat and is determined at not too low temperatures 
inhomogeneity of the HFF the motion of the nuclear by the Langevin formula 
magnetization is described by integro-differential ynah"t(l+i) 

y A = N g ( A )  3kT (AM-11) .  equations, since the dynamic HFI M, f ApfdA, and 
(3) 

c&sequently also the NMR dynamic f Eequency shift 
(DFS) due to this interaction, a re  "turned on" only a t  
those time intervals when the total transverse nuclear 
magnetization differs from zero. A mathematical an- 
alysis of this situation is in the general case a very 
complicated problem. Up to recently, the theoretical 
calculation was carried out either for a model of a 
macroscopic inhomogeneity of the HFF,~-" wherein 
in the sample is broken up into a quasi-non-interacting 
sections within which the HFF is homogeneous, o r  for 
the case when the inhomogeneity of the HFF is micro- 
scopic but the DFS is small. '*' In the present paper we 

Here N is the concentration of the magnetic nuclei, g(A) 
is the distribution function of A, y, is the nuclear gyro- 
magnetic ratio, and I is the spin of the nucleus. In a 
coordinate system rotating with frequency w,  the mo- 
tion of the nuclear magnetization is described by the 
equations7. 

i- ( A + ~ ) V + ~ , U + L ~ = O ,  
df (A+6)u+F,v+Lx=-o ,m,  

m+ ( m -  I)lT,+L,=o,u. 

Here A is the difference between the frequency of the 
HF field and the average undisplaced NMR frequency 
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