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A microscopic theory of the nonlinear Faraday effect is developed for cubic crystals containing paramagnetic 
impurity ions. The autorotation and deformation of the polarization ellipse are calculated for strong 
electromagnetic radiation propagated in such crystals. It is shown that a change of polarization of the 
radiation occurs even for ions whose ground state is a "nonmagnetic" doublet, for which the ordinary 
paramagnetic Faraday effect is absent. Allowance is made for the effect of the change of polarization of the 
wave on the magnetization of the crystal, and this permits refinement of Pershrtn's theory of the inverse 
Faraday effect. Nonstationary phenomena are considered, and it is shown that a relaxationless change of the 
crystal magnetization by a short light pulse is possible by virtue of the combinational light scattering that 
occurs between magnetic sublevels of the ions, split by a constant magnetic field. 

PACS numbers: 78.20.L~ 

1. INTRODUCTION 

In a magnetic field, degenerate states of paramagnetic 
ions a r e  split and, a t  not very high temperatures, a re  
occupied with unequal probabilities. Consequently a 
crystal with paramagnetic impurities possesses circu- 
l a r  birefringence, which leads to a Faraday rotation of 
the plane of polarization of radiation propagated along 
the magnetic field. The amount of this rotation is pro- 
portional to the magnetic field and inversely proportion- 
a l  to the temperature. But if the radiation is suffici- 
ently strong, i t  also perturbs the spectrum of the ions, 
and this leads to a dependence of the Faraday rotation 
on the intensity of the radiation. 

Besides the effect on the index of refraction, ellip- 
tically polarized radiation leads also to magnetization 
of the medium. This phenomenon is known a s  the in- 
verse Faraday effect (WE)' and is similar to the recti- 
fication effect known for ferri tes.  The terminological 
difference is due to the fact that the IFE i s  observed in 
the optical range and is caused by interaction with the 
electric vector of the wave, whereas the rectification 
effect observed in the radiofrequency range i s  caused 
by magnetic interaction. 

without allowance for the change of the polarization 
characteristics of the wave during is propagation. 
Also, no analysis was made of the nonstationary phen- 
omena that occur for pulsed electromagnetic radiation, 
although the existing experimental methods of observa- 
tion of the IFE a re  based precisely on the pulsed char- 
acter of the phenomenon .'- Furthermore, the possibil- 
ity of the presence of a constant external magnetic field 
leads to new features of the IFE, connected with a 
change of the populations of the magnetic sublevels a s  a 
result of the process of combinational (Raman) scatter- 
ing (CS).= 

In section 2 ,  the effective Hamiltonian is given for in- 
teraction of an ion with external fields. In section 3, 
the kinetic equation for an ion is obtained in the relax- 
ation approximation. In section 4 ,  the permittivity 
tensor of a paramagnetic crystal is calculated with al- 
lowance for nonlinear effects, and a closed system of 
equations is obtained for the field and the material, with 
allowance for  the change of polarization of the radiation 
during propagation in the crystal. These equations a r e  
solved in the subsequent sections: in section 5 for ions 
whose ground state i s  a Kramers doublet (in this case 
the equations can be solved exactly for an arbitrary 

The nonlinear corrections to the Faraday rotation and variation of the radiation intensity with time), and in 
the IFE a re  closely related to each other. In the pre- section 6 for ions in nonmagnetic doublet, triplet, o r  
sent paper, a microscopic treatment of both these phen- quadruplet states (for the case of a slow variation of the 
omena is given for cubic paramagnetic crystals. In intensity with time, in comparison with the paramag- 
Ref. 1, the IFE was treated phenomenologically and netic relaxation times). The results obtained make it 
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possible to calculate the nonlinear corrections to the 
paramagnetic Faraday effect and a r e  used in section 7 
to calculate the IFE. In section 8,  the IFE i s  calculated 
for  a shor t  light pulse, when relaxation processes a r e  
unimportant and CS i s  the determining mechanism of 
magnetization of the crystal .  

The Appendix presents  some propert ies of the i r r e -  
ducible tensor operators of the cubic symmetry group; 
these a r e  necessary for  carrying out the calculation. 
Throughout the paper, the Planck constant ti and the 
Boltzmann constant a r e  s e t  equal to unity. 

2. THE EFFECTIVE HAMlLTONlAN 

Let a plane quasimonochromatic wave, for  which the 
rea l  value of the e lec t r ic  field i s  

E(z, t )  =Re {E,(z, t )  exp [ i ( k z - o t )  I ) ,  

be propagated along a principal crystallographic axis  
of a cubic crystal ,  which we take as the Z axis. A con- 
stant magnetic field B i s  also directed along this axis .  
If the frequency w of the radiation i s  sufficiently high, 
the perturbation of the spectrum of the ions reduces to 
a dynamic quadratic Stark effect. The perturbation of 
the spectrum is strongest  when w is close to a charac- 
ter is t ic  absorption frequency of the ion.' The perturba- 
tion of i ts  crystalline environment may then be neglec- 
ted. 

In the dipole approximation, the effective Hamiltonian 
describing the interaction of the ion with the fields B 
and E has the form" 

Here p i s  the magnetic moment operator, and Z=Eo. E,* 
is the intensity of the acting alternating field. The 
Stokes parameters a r e  determined by the formulas 

We recall that [, determines the degree of circular  pol- 
arization and ((; + ( : ) ' I 2  the degree of linear polariza- 
tion. The parameter  [, characterizes the linear polar- 
ization along the crys ta l  axes,  [, along axes rotated 
with respect  to the crystal  axes through an angle nj4.  
The radiation is assumed to be completely polarized, 
s o  that ( ~ + ( ~ + [ ~ = 1 .  

The operators T in (1) have the following form: 

d is the electr ic  dipole moment operator ,  and the oper- 
a tors  G"' a r e  determined by a sum over al l  excited 
states I A) of the ion: 

where E b o  a r e  the unperturbed energies. 

The indices of the operators T,, denote the irreduci- 
ble representation of the cubic group according to which 

these operators t ransform. We note that the part of 
the Hamiltonian (1) proportional to the intensity of the 
radiation leads to splitting of a level only in the pres-  
ence of orbital degeneracy. 

The s ta te  of an ion i s  conveniently characterized by 
an effective spin S and i ts  projection m.7 For the Kra- 
m e r s  doublets r,, ,, S = & and rn =&*. For the triplets 
I?,,,, S = l  and m=O,*l ;  fo r  the quadruplets I?,, S = #  
and m =*#,*i. The nonmagnetic doublet I?, we shall 
characterize by effective spin S = 2 and i ts  sublevels by 
& and 8. 

The values of the magnetic elements of the operators 
T,, that a r e  needed for  the present paper a r e  given for  
s tates Ism) in the Appendix. 

3. THE KINETIC EQUATION 

By supposing that only sublevels of the ground state 
of the ion a r e  occupied and by using methods developed 
in the theory of magnetic relaxation,' one can obtain the 
equation for  the density matrix 

where R i s  a relaxation operator ,  and where p"' i s  the 
equilibrium density matrix,  determined by the expres- 
sion 

p'" ( t )  = e s p  ( - H / B ) / S p  [ e x p  ( - H / B )  1, 

o i s  the temperature of the crystal  in energy units. 

Supposing that H/o  << 1 ,  one can rewrite the expres- 
sion for  do' in the form 

where Q i s  the multiplicity of the ground state degener- 
acy.  The matrix 6'' may vary with time when the radi- 
ation intensity is  not constant. If 7 i s  a characteristic 
t ime of variation of the function Z(t), then formulas (3) 
and (4) hold when the inequality 

is satisfied, where 7, is the correlation time of the lat- 
tice. Fo r  typical c rys ta ls ,  7, -lo-'' - 10-l3 set.' The 
relation (5) means that the lattice, which in this case 
plays the role of a thermostat, changes i ts  s tate rapid- 
ly, forming an equilibrium state of the ion for  each new 
value of the radiation intensity. 

When, along with (51, the relation HT, << 1 i s  also sa-  
tisfied, the relaxation times a r e  independent of the field 
intensities. Introducing. in accordance with general 
custom, longitudinal and t ransverse  relaxation times 
T, and T,, we write the operator R in the form 

In the Hamiltonian ( I ) ,  only the operators TrQE and 
TrS0 possess nondiagonal matrix elements, connecting 
the states m and m * 2 of the tr iplets  and quadruplets 
and the states 8 and c of the doublet I?,. Consequently, 
in the system (3) no more  than two sublevels at  a time 
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a r e  coupled, to which correspond three equations. In 
general, equations (3) can be rewritten in the following 
manner : 

(01 
apmm/dt-i(pmnH,m-pm.'H.m')+ (plm -pmm)/T~, 

Here rn and n take the following values: rn = 6 ,  n = & fo r  
the doublets r,; m = -n= 1 fo r  the tr iplets;  m = and 
n = -4 o r  m = 4 and n = -* fo r  the quadruplets. F o r  the 
Kramers  doublets, m = -n = $ , and the diagonal and 
nondiagonal elements of the density matrix satisfy in- 
dependent equations, since the right s ide of the las t  
equation (6) in this case  disappears. 

Transforming in (6) to rea l  quantities and parametri-  
zing the Hamiltonian H, we rewrite these equations a s  
follows : 

where 

The three equations of the sys tem (7) determine the 
difference of populations of the magnetic sublevels. 
The sum of the populations of the sublevels of the doub- 
lets remains constant. The magnetic sublevel 10) of a 
triplet does not display magnetooptical activity; there- 
fore for  the tr iplets ,  i t  is sufficient to know the differ- 
ence of populations of the sublevels 1*1). But f o r  the 
quadruplets i t  i s  necessary to know the relative popula- 
tion of each pair  of sublevels, 

0-48 (pc, sf p-11..  PI.,., n-P-7.. -41.).  

The equation for  o is easily obtained from the f i r s t  
two equations (6): 

Furthermore,  fo r  the quadruplets the values of u, v ,  
w ,  and A in equations (7) depend on the index m ,  which, 
a s  was stated above, takes two values: $ and $. This 
index was omitted, fo r  brevity, in (7); but i t  must be 
restored in the cases needed. 

4. THE PERMITTIVITY TENSOR 
Paramagnetic impurity ions make a contribution to 

the polarization of the crystal  in accordance with the 
relation 

where a,, is the polarizability tensor. This expression 
may be regarded a s  the definition of a,,. The compon- 
ents  of the tensor a,, can be expressed in t e rms  of the 
operators T,, that occur in the effective Hamiltonian: 

1 
a,,,,,=Sp p Tr, - =Tr.e*Tr,s , I (  13 11 (9) 

~ = a , , ' = S p  [p(Tr,o-iTr.0) I ,  arZ=%,=0. 

The anisotropy of the permittivity is determined by 
the formulas 

e,-e,= (16nNIQ8) hw, 
e,=e,'= (8nN/QB) [xu-i(p(+'w+B'-'a) 1, (10) 

$(*l=' / , ( (m(Tr,olm>r(nl  Tr,ol n ) ) ,  

where N is the concentration of the ions. In the case  of 
doublets and tr iplets ,  the values of u, v ,  and w a r e  de- 
termined in (7). For  such levels, P"'=o, and the par-  
ameter  o drops out of equation (10). But in the case  
of quadruplets, the quantities that occur in (10) a r e  

where the lower index determines the value of the quan- 
tum number m in equations (7), in accordance with the 
remark  made a t  the end of the preceding section. 

If the density matrix p corresponds to equally proba- 
ble occupancy of the ion sublevels that are degenerate 
in the absence of a field, the quantities (10) disappear. 
In fact ,  in this case  zo= o = 0, and the parameters  u and 
v may be regarded a s  random quantities, equal on the 
average to zero .  In the presence of fields, an optically 
isotropic crystal  acquires the properties of a biaxial 
gyrotropic crystal .  In this connection i t  must be noted 
that under the action of an  axially symmetric perturba- 
tion, a cubic crystal  becomes uniaxial.'' The biaxiality 
that occurs in the present  case  ( E ,  f cyy)  is due to the 
absence of axial symmetry for  the field of a plane elec- 
tromagnetic wave with arb i t ra ry  polarization. 

Fo r  doublet s ta tes  of the ions, the anisotropy of the 
crystal  decreases .  For  the doublet r,, H. = (3'"' = 0 ,  and 
the crystal  i s  biaxial and nongyrotropic (&,,=O). But 
if the ground s ta te  of the ion i s  a Kramers  doublet, then 
X = u = 0,  and the crystal  becomes uniaxial and gyro- 
tropic. 

The functions u,  v ,  and w ,  and consequently also the 
quantities ( lo) ,  a r e  determined by the intensity and the 
Stokes parameters  of the radiation a t  a l l  instants of 
t ime preceding that considered. Therefore propagation 
of waves in a crystal  with allowance fo r  nonlinear ef- 
fects  leads in the general ca se  to complicated equations. 
Here we shall res t r ic t  ourselves to the case  in which 
the nonlinear effects may be considered small .  

Setting the permeability equal to unity, we write the 
abbreviated Maxwell equations fo r  slowly varying am- 
plitudes: 

By introducing the variables g= t + kz/w and q = t - kz/ 
w, one can derive from (11) the following equations fo r  
the Stokes parameters:  

- ( E = - E ~ " )  E ~ + E ~  ~m E X ,  [nut,- ( P ( + ) w + B ( - ) o )  e 3 i ,  
at, 21 

1 4noN 3 = 2 [ t I ~ e  I ,  + - 2 ( E . . - E ) E .  [xvE~-huEil, 
at, 2eo (12) 

a e ~  -=- 
4noN [ E l  Im e,-El Re E , ~ ]  = - [ ( P ( + ) W + ~ ( - ) O )  Er-xvEz]. 

66 ~ E O  Q@E" 
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Equations (12) must be  solved simultaneously with 
equations (7). We turn now to an  analysis of the solu- 
tions. 

5. KRAMERS DOUBLET 

For Kramers  doublets, the effective Hamiltonian (1) 
has no nondiagonal matrix elements. Therefore the 
nondiagonal elements of the density matrix pl12,-I12 do 
not change after  application of fields. Then the phases 
of p,l,,_llz may be considered random quantites, and 
only the diagonal elements of the density matrix make 
a contribution to the observed effects. 

The equation for  the population difference of the sub- 
levels of a Kramers  doublet i s  obtained from the third 
equation of the system (7): 

where 

Here i t  has been taken into account that the matrix 
elements of the operator T r j  in this case  vanish. 
Since the matrix elements of the operators Trg and 
Tr5@ also vanish, we get from equation (12) 

af , lag=-awf3,  af , /ag=o,  ag,/ag=awg,, 
(14) 

a= (noN/Beo)  (I / ,  I T,,, 1 '/,). 
It follows from equations (14) that the polarization 

ellipse of the wave does not change during propagation 
of the wave in the crystal .  This becomes intelligible 
if we notice that the anisotropy of the crystal  in the 
case  considered i s  caused solely by the element ImE,,; 
this, a s  i s  well known,'O leads only to rotation of the 
polarization ellipse. 

It follows from the second equation (14) that the 
Stokes parameter  5, may be an arb i t ra ry  function of 
the phase variable q = t - kz/w. If the polarization of 
the radiation incident on the forward plane of the cry- 
stal i s  independent of time, then {, is a constant quan- 
tity. Then equation (13) i s  easily integrated: 

Since I( t ,z)  actually depends only on the single varia- 
able q ,  i t  i s  easily shown that the quantities 1 and w a r e  
also functions of the single variable 7. Therefore equa- 
tions (14) can be integrated in the general form 

f i ( t ,  z ) = f i ( ~ ) )  cos [ a w ( q ) S l + f z ( q )  sin [ a w ( q ) f l ,  

f $ ( t ,  z ) = - f i ( q )  cos [ a w ( q ) S l + f i ( q )  sin [ a w ( q ) 5 1 ,  
(1 6) 

where fl,, a r e  a rb i t ra ry  functions. If we take the values 
of the Stokes parameters to be constant in t ime on the 
forward plane of the crystal  z = 0,  then these functions 
must be chosen a s  follows: 

Substituting these expressions in (161, we get 

f ,  ( t ,  z) = f ! @ '  cos ~ q - f : "  sin 2q, 

bs( t ,  z )  = f J O '  cos ~ ~ J + E ! O '  sin 2q, 
(1 7) 

rp=(akz/o) w ( q ) .  

The angle cp in (17) determines the rotation of the axes 
of the polarization ellipse in the plane z a t  the instant 
t with respect  to the axes of the ellipse in the plane z 
= O .  With neglect of effects that a r e  nonlinear in the 
radiation intensity, the angle cp determines the ordinary 
Faraday rotation, characterized by the paramagnetic 
Verdet constant V: 

cp=VBz, V=(2nkN/6eo)  ('/,I p,l ' /Z ) ( ' / , ITPLO~' / , ) .  (18) 

The nonlinear autorotation of the polarization ellipse 
i s  determined by the second te rm in the formula (15) 
for  W(~). '  In the present  case  the effect has an inertial 
character ,  s ince it i s  due to the splitting of the doublet 
sublevels in a variable field and to the consequent 
change of their  populations a s  a result  of relaxation 
processes.  

Fo r  pulses of long duration, T >> TI,  the form of the 
function i(rl) practically coincides with the envelope of 
the pulse This fact has a simple physical signifi- 
cance: fo r  fas t  relaxation processes,  the ionic sub- 
system succeeds in readjusting itself to the instantan- 
eous value of the intensity. In the contrary limiting 
case,  T<< TI, the relaxation processes a r e  unable to op- 
e ra te ,  and the nonlinear autorotation i s  small .  

For Gaussian intensity envelope I ( ~ )  =I, exp( -$ /~~) ,  
we have for  the function ? 

where @ i s  the e r r o r  integral. Figure 1 shows the 
function (19) for  several  values of the parameter  ?/TI. 

We shall give numerical est imates of the nonlinear 
autorotation. Fo r  7 >> TI,  5, - 1, E,, -5 . lo4  V/cm, N 
= 1018 ern-=, T-10 K, and a mistuning of the frequency 
o with respect  to the ion absorption line -100 cm-', we 
get an angle of rotation of a few radians for  a crystal  of 
thickness -1 cm.  

Typical crystals  of the type considered in this section 
are :  CaF, : Yb3+, Er3+; CeO, : HoZ+; and others.  

6. THE QUASISTATIONARY REGIME 
When the inequalities 

a r e  satisfied, the values of the matrix elements of the 
density matrix follow after the change of radiation in- 

r/G =/ ,= , I  

- 2 U l ' V  lU i'u ?!* 

f ~ ( q ) = f l ' "  sin[aw(q)q]-~,'O'cos[aw(q)q]. Fig. 1 .  

865 Sov. Phys. JETP 51 (5). May 1980 B. A. Zon and Yu. N. Mitin 865 



tensity adiabatically. In this case we get from equa- 
tions (7) and (8) 

Substituting (21) in (121, we get 

where vQ = 1 for doublets and triplets, vo = 2 for qua- 
druplets. 

The quantity V is the paramagnetic Verdet constant, 
which determines the Faraday effect for a weak wave. 
In the derivation of (22) i t  has been taken into account 
that the matrix elements of the operator Tr3@ cancel 
each other for triplets and quadruplets, and that for the 
doublets r3 they a r e  multipled by the vanishing coeffi- 
cient 6". 

We shall consider specific cases of equations (22). 

T h e  d o u b l e t  I?,. ~ n t h i s c a s e $ * ) = ~ = O .  Sincethen 
V = 0, the ordinary Faraday effect i s  absent in such 
crystals. We then find from the last  equation (22) that 
E3 can depend only on 11 = t - k z / o  . If the parameter 5, 
is constant in the incident wave, then i t  remains con- 
stant also in the crystal. This fact is a consequence of 
the fact that the principal axes of the tensor coincide 
in the present case with the crystal axes. 

The solution of the first  two equations (22) when [, 
= const can be written in the form, analogous to (17), 

E z b ,  t )  ==~:"cos 2v-gr' sin 2 q ,  
2nNk 

q = - Es?:I(q) z. 
8 e 0  

As is evident, the parameters [, and [, are  oscilla- 
tory functions of the distance of the forward plane of the 
crystal, varying within the limits [?'+ ti'. The period 
of the oscillations depends on the value of 5,. In par- 
ticular, when [, = 0 the oscillations a re  absent, and the 
polarization ellipse is not deformed during propagation 
of the wave. It is easily shown that such a solution for 
[,=0 exists for an arbitrary ratio between T and T,,,, 
and not only when the inequalities (20) a r e  satisfied. 

An example of a crystal of this type i s  CaF, : Dy2+. 

T r i p l  e t . For triplet states, p(- )  = 0. The perturba- 
tion of the ionic state is strongest if the frequency of 
the wave is close to the frequency of the dipole transi- 
tion of the ion. In this, the most interesting case, one 
can use for the operators T,, the single-level approx- 
imations; that is, one can neglect in the sum (2) the 
contribution of other excited states than the resonance 
state. By using the explicit expressions for the oper- 
ators T,,, one can show13 that in the single-level ap- 
proximation, for  the triplet states under consideration 
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the parameters p'",  X ,  and X a re  equal in absolute val- 
ue, provided the resonance state is not the doublet r3. 
In the contrary case, $'" = K' = i X 2 .  In the f i rs t  case,  
effects nonlinear in the radiation intensity disappear 
from equation (22). Change of polarization occurs only 
in consequence of the ordinary Faraday rotation. 

But if the resonance state is the doublet r3, then in 
the absence of an external magnetic field B the para- 
meter 5, i s  constant. The variation of the parameters 

and 6, i s  described by formulas (23) with XZ replaced 
by Ph2. In the presence of a magnetic field, the solu- 
tion of equations (22) becomes considerably more com- 
plicated. One can find two integrals of the system (22) 
by dividing the f i r s t  and third equations by the second: 

Here C, and C, are  constants, related by the condition 
of complete polarization of the radiation: C, + C, = 1. 

Substitution of the integrals (24) in the second equa- 
tion (22) makes it possible to express [, in terms of el- 
liptic functions. Complete analysis of the solution, 
however, requires cumbersome calculations and will 
not be given here. Examples of crystals with triplet 
ions : MgO : Fez+, NaF : Fez'. 

Q u a d  r u p 1 e t . Equations (22) simplify in the single- 
level approximation if the resonance state is  a Kramers 
doublet. In this case, i t  can be shownL3 that X2 = u2 
= &3'*" = qfl'-'2. Then from the second equation (22) 
follows conservation of the parameter [,, which deter- 
mines the degree of circular polarization of the radia- 
tion. The remaining equations for  [, and 4, a r e  easily 
integrated. The result has the form of formula (IT), 
but now 

As i s  evident, the angle of rotation of the polariza- 
tion ellipse in this case i s  the sum of the magnetic rota- 
tion and a nonlinear autorotation. 

But if in the sum (2) the contribution of intermediate 
quadruplet states is substantial, equation (22) can not 
be integrated in terms of elementary functions, since 
in this case no simple relations can be established be- 
tween the parameters that occur in the equations. By 
a procedure similar to the preceding one, one can con- 
struct two conserved integrals of the system (22): 

By means of the integrals (26), the Stokes parameters 
in this case can also be expressed in terms of elliptic 
functions, but the result has a cumbersome form and 
will not be given here. 

Examples of crystals of this type: CaF, : P? , CaF, : 
Dy3+. The numerical estimates of the nonlinear effects 
considered in this section coincide with the estimates 
given in the preceding section for Kramers doublets. 
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7. THE INVERSE FARADAY EFFECT 

The action of a light wave on the paramagnetic ions 
leads to a change of the populations of the magnetic sub- 
levels, and consequently the magnetization of the cry- 
stal changes (the IFE~) .  By definition, 

Since in the Hamiltonian ( I ) ,  f o r  the chosen directions 
of the constant magnetic field and of the wave vector of 
the wave, those operators a r e  absent that produce the 
harmonics r, and r+ corresponding to the operators 
p, and p,, the projections of the magnetization along 
the X and Y axes do not appear. To calculate the mag- 
netization along the z axis,  we shall  use  the formulas 
obtained ea r l i e r  fo r  p(z ,  t). 

K r a m e r s  d o u b l e t .  In this  case  

where the value of w is determined in (13). Using 
formula (15), we find 

where x = (N/8)(4 ( p E l  ;)2 i s  the paramagnetic suscep- 
tibility and where V i s  the Verdet constant (18). The 
second t e rm in the expression (27) dexcribes the IFE 
and reduces to the result  of Ref. 1 when 7 >> T,; then 
? - I .  

T r i p l e t s  a n d  q u a d r u p l e t s .  Forthedoubletsr , ,  
no magnetizationoccurs either under the actionof a con- 
stant  field B o r  under the action of radiation: "non- 
magnetic" doublets. For tr iplets  and quadruplets one 
easily obtains 

where in the case  of quadruplets, w = w,/, + w, /, . 
In the quasistationary regime,  one can show, by using 

the expressions obtained in the preceding section, that 
the magnetization is described by f o r m 9 a  (27) with 
f(z , t) replaced by ~ ( z  , t )  . Then the paramagnetic sus-  
ceptibility has the form 

and the Verdet constant i s  determined by (22). Although 
in form formula (27) will ag ree  with the result  obtained 
in Ref. 1, here  there is actually an important differ- 
ence, for  now the parameter  [, in general depends on 
the coordinate z. Therefore in the general case  the 
magnetization induced by the radiation i s  not constant 
along the trajectory of the light beam. 

8. SHORT LIGHT PULSE IN  THE PRESCRIBED- 
FIELD APPROXIMATION 

In order  to depart  from the framework of the quasi- 
stationary approximation, and in particular in order  
to elucidate the role of combinational scattering (CS) 
of light, we shall consider the limiting case  of a short  
light pulse: 

The inequalities (29) mean that the spectrum of the in- 
incident radiation considerably exceeds both the relax- 
ational width of the magnetic sublevels and their  split- 
ting in the constant magnetic field; therefore, evidently. 
only forced CS is involved. 

When (29) i s  satisfied, the relaxation t e rms  in Equa- 
tions (7) may be neglected. To eliminate quantities 
containing the field B ,  we make the transformation 

u'=u cos x+v sin x, v'=v cos x-u sin x, s=B6(+' % 

by means of which equations (7) can be written in the 
form 

aur/at= (xg ,  cos s-kgs sin x)Iw- (brt3(+'+y) Iu', 
auJ/at=- (kgs cos x+xg, sin x )  Iw+ (SzB(+)+y) Iu', 

aw/at=h~,I(v'cos z+u' sin X )  -xS,I(u' cos X-u' sis x ) ,  

where 

fo r  t r iplets ,  y=O. 

Since the intensity Z(q) is nonzero only within a smal l  
neighborhood of the point q = 0 ,  by virtue of the inequal- 
ities (29) x may be s e t  equal to zero  in equations (30). 
Furthermore,  we shall suppose that the concentration 
of paramagnetic ions is not too large,  o r  that the cry- 
s t a l  thickness is smal l ,  s o  that the variation of the 
Stokes parameters may be neglected (the prescribed- 
field approximation). Introducing instead of t a new 
variable proportional to the intensity a r e a  

1 

J= {(xg,)a+(aC,)2+ ( $ ( + ' & z + ~ ) ~ } ~ ~  J~(t l ' )drl ' .  -- 
we write equations (30) in the following form: 

dRfaJ=[SR],  R=(u', u', w ) ,  

S={(x~l)z+(hb)r+(~(+'fz+y)2}-'h(h6~J % E l l  B'+)E2+y). 
(32) 

Since equations (32) a r e  equations with constant coef- 
ficients, the solutions can be easily found. Supposing 
that before ar r iva l  of the wave u = v = 0 and w = ~ b " ' ,  
we get  

ul-[S,S,  ( I - w s  J )  +S, sin J]B6(+', 
v'=[S2Ss(l-cos J) - S ,  sin J]BG(+', (33) 

W =  [S?+ (1-SSZ) cos J]B6(+', 

where S, ,,, a r e  the components of the unit vector S de- 
fined in (32). It i s  obvious that af ter  passage of the 
pulse the values of u' and u' decay exponentially with 
relaxation t ime T,, while w approaches i t s  equilibrium 
value in the absence of radiation with relaxation time 
TI. 

In the short-pulse approximation, the integral of 
equation (8) is found trivially: a does not succeed, 
during the t ime of the pulse, in changing from i t s  initial 
value 

The physical meaning of this result  i s  clear;  for  CS, 
which, if (29) is satisfied, i s  solely responsible for  
change of the populations of the sublevels, i s  absent fo r  
transitions between the quadruplet level pairs  (3/2, - * )  
and (h  , -3/2). 
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We shall use t l ~ c  relations obtai~led to calculate the TABLE I. 
111;1gnet lzation of the crystal  af ter  passage of the pulse. 
0 1 1  subs t i tu t i~~g (33) ;111d (34) in (28), we get the follow- 
ing r e s ~ ~ l t s .  

For doublets T,..\Iz= 0. 

For triplets. 
.YEP'+" ($'+';:)'+I (x$,)'+ (hE,)']cos 1 .u, = 

ti@ (x:,,2+cA:,)Zi-(p"'::)2 . 

For qu;tdruplets, 
APPENDIX 

SBfi';': 
V, = - [g(+'+g'-'+ ( I -~ '+ ' )cos  I ( + ' - ( ~ - ~ ( - ) ) c o s ~ ( - ~ ] ,  (35) In this paper,  the basis  chosen for  the unperturbed 

8 8  
states of the ion i s  a basis  of characterist ic  functions 

where of the effective spin resulting f rom the presence of a 

(!5-:1*1/3")2 constant magnetic field. Because of the definite sym- 

g"' = jxE,):i().z,)?+ (13~+':,~)./3',~): metry of the crystal ,  there occurs a mutual dependence 
of the matrix elements of the operators Tr,, connected 

and where the values J'*' a r e  determined by formula with the Wigner-Eckart theorem for  point groups. In 
(31) ~vith the parameter  7 in the square root replaced the l i terature (see, fo r  example, Ref. 15, where an 
by i X  3''' respectively. This results  follows from the extensive bibliography is also given), the Wigner coef- 
equality = * A  3'1' for  the quadruplet s tates r8 when ficients a r e  given for  a rea l  bas is  that differs from that 
~n = 3 2 and 3.. which can be obtained after  simple cal- used in the present paper. Therefore we shall briefly 
culations . formulate a rule fo r  calculation of the matrix elements 

We shall discuss the fo rn~u la s  (35). Fo r  tr iplets ,  the TrM in the bas is  I ~ m ) .  
change of nlagnetization i s  greatest  when the intensity We shall use fo r  Tr, the notation proposed in Ref. 15: 
a r ea  takes the values r , = O ,  r 3 = 2 , r , = 3 , r  , = 4 .  Thus we have five different 

I=px. p = l .  3. 5 .  . . . (36) operators: To, T,,, T, , T,, T,,. The magnetic moment 
operator real izes the z component of the irreducible 

But if in fornlula (36) P =  2 , 4 , 6 , .  . . , the magnetization representation P, and therefore possesses the symme- 
remains constant. This result i s  analogous to the well- try properties of the operator T30. 
known one from the theory of self-induced transparency, 
when for  a certain pulse a r e a  the system changes com- We write the Wigner-Eckart theorem 
pletely to the upper one of the resonation s ta tes  o r  re -  

<SmIT,,.ISm")= (-l)S+"+'n ( 
S J S  

mains in the lower state.', The difference consists of mu m' -m 
) Tis. (A.1) 

the fact that instead of the pulse a r ea ,  (36) contains the 
intensity a rea .  This is due to the fact that in the pre-  
sent case the basic process i s  a two-photon process ,  
CS, and not single-photon absorption and radiation a s  
for  self-induced transparency. It is also noteworthy 
that the greatest  change of magnetization occurs fo r  
linearly polarized radiation ( 5 ,  = O), when after  passage 
of the pulse the magnetization is  changed in direction 
but remains the same in absolute value a s  before inci- 
dence of the radiation. Furthermore,  for  completely 
circularly polarized radiation the crystal  magnetiza- 
tion, in the approximation considered, does not change, 
since then no CS occurs.  Here l ies  the basic difference 
of the magnetization mechanism determined by CS a s  
compared with the stationary IFE,  which is due solely 
to the circular  polarization of part  of the radiation. 

Similar results  follow also for  the magnetization of 
crystals  with ions in quadruplet s tates.  But in this 
case it is  impossible to obtain a change of sign of the 
magnetization without change of i ts  value. 

We shall consider a numerical example. In fields B 
- 1 kOe, magnetization reversal  of the crys ta l  i s  pos- 
sible for  E , - 3  lo4 V/cm, tuning out of the resonance 
frequency -10' cm-', r - 1 V 9  sec .  The change of mag- 
netization by a short  light pulse may prove useful fo r  
measurement of short  relaxation t imes,  and also in 
optoelectronics. 

where (. . .) in the right s ide i s  a Wigner coefficient of 
the point group, and where T,, i s  a reduced matrix 
element. One can c a r r y  out the calculations of a Wig- 
ner coefficient by expansion of the harmonics of the 
irreducible representations of the symmetry group of 
the crystal  in spherical harmonics, a s  was proposed 
in Ref. 15,  o r  by representing the operators T,, in 
t e rms  of components of the effective spin. For  the 
doublet r,, it  i s  customary in (A. 1)  to s e t  8 = -8, & = -&, 

( - l ) e= ( - l )== l .  

Table I gives the nonvanishing Wigner coefficients for  
those irreducible representations tha t  were considered 
in the present  paper. The other Wigner coefficients 
a r e  obtained from those in the table by permutation of 
any two columns. For an  odd permutation, the coeffi- 
cient is multiplied by a factor  ( - I ) ~ ~ ' ~ .  

For  the operator  T,,, odd with respect  to time rever-  
s a l ,  the relation (A. 1)  is not satisfied within the quad- 
ruplet r 8 ,  s ince the symmetrized product { r , xTJ  con- 
tains the representation r, twice. But for  u s ,  the 
property of the matrix elements of T,, that follows 
from the Kramers  theorem is sufficient: (9- m 1 T,,( *- rn) = - ($rn I T,,I +m). The operator  T,, has no non- 
diagonal matrix elements. 

The operator T,, is  even with respect  to time rever-  
s a l ;  and since the antisymmetrized product [ r 8 x  r , ]  
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contains the representat ion I?, once,  (A. 1) is sat isf ied 
f o r  T,,. From the table it is evident that  (gm( T,,I +n) 
= - (tn( T,( tm); the re fore  the  matrix elements  of th i s  
operator  are pure imaginary.  

The authors  e x p r e s s  the i r  deep  grat i tude to I. L. 
Fabelinski! and to the part ic ipants  in the s e m i n a r  con- 
ducted by him f o r  useful discussion of the r e s e a r c h .  

 he saturation range, however, is not considered in this 
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Polarization of characteristic x rays excited by proton 
impact 

N. M. Kabachnik, V. P. Petukhov, E. A. Romanovskil, and V. V. Siov  
Nuclear Physics Research Institute of the Moscow State Uniwrsi@ 
(Submitted 22 November 1979) 
Zh. Eksp. Teor. Fiz. 78,1733-1742 (May 1980) 

The degree of polarization of the x-ray lines L,, L, and L#,,,, of a proton-excited silver atom was measured. 
It is established that the measured degree of polarization of the L, line decreases from 29 to 8% when the 
proton eaergy is increased from 150 to 500 keV. The degree of polarization of the radiation of the investigated 
lines, calculated in the Born approximation with allowance for the Koster-Kronig transitions, agrees well 
with experiment. The effect of the polarization on the measurements of the cross sections of the generated x- 
ray lines is analyzed. 

PACS numbers: 34.50.Hc, 32.30.Rj 

1. INTRODUCTION 

Excitation of a toms  by a direct ional  beam of par t i c les  
produces a n  aligned state, and the light emit ted i n  the 
course of its decay is l inearly polarized. However, 
only relatively recently1 w a s  it understood that the an 
ion with a vacancy i n  the inner  she l l  and with total ang- 
u la r  momentum j 2 3/2, produced when the atom is 
ionized by e lec t ron  o r  proton impact ,  should also be  
in  an aligned state. T h i s  alignment is due to the  fact  that 
the c r o s s  sect ions f o r  the ionization are different f o r  
states with different values of the modulus of the pro- 
jection of the angular momentum on the direct ion of the 

par t i c le  beam. Therefore  the x r a y s  accompanying the 
filling of the vacancies should b e  anisotropic and po- 
lar ized.  The  f i r s t  successful  measurement  of the po- 
lar izat ion of the  charac te r i s t i c  x r a y s  was c a r r i e d  out 
i n  Ref. 2, where polarization of the Lal l ine of mer -  
c u r y  excited by an electron beam was observed. 

A theoret ical  h a s  shown that the polariza- 
tion of the x r a y s  when a toms  are ionized by protons 
can be  much l a r g e r  than the maximum polarization 
reached i n  ionization by electrons.  A high degree of 
polarization was  predicted i n  the proton relat ive vel- 
ocity region v /vo  < 1 (vo is the electron velocity on the 
given subshell,  and v is the velocity of the incident 
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