
APPENDIX I I  ition 3 - 2, and the dip is transferred to the transition 

Transfer of Singularity at Arbitrary Saturation 
Parameters 

At G;3, GG 2 1, the gains in (4.1) a re  given by the 
exact expressions ua = u,(I1, 12, Sti, Q2), which can be 
obtained, for example, after averaging the expressions 
obtained in Appendix I over the velocities. The absorp- 
tion coefficient is u = %(A w, Iz). Assuming u << x7, we 
obtain the rapidly varying increments bI,(Aw) to the 
generation intensities, due to the nonlinear absorption: 

611 (Am)=-qc612(A~), 612 (Am) = 
x (Ao, 12) 
E,z(f-q1qz) ' 

where 

I, and I2 are  the stationary lasing intensities in the ab- 
sence of an absorbing cell, with x, taken to be func- 
tions of only I, after eliminating the frequencies a, 
with the aid of the equations for the phases. The con- 
trasts of the singularities 

h.=[6I.(m) -6I.(O) ]/I. (11.2) 

have opposite signs in the case of normal competition 
q1 >0, with 

From the condition of the stability of the generation 
when account is taken of the fact  that ti ,  5, < O  (satura- 
tion under the influence of the intrinsic field) i t  follows 
that 1 - q1q7 >0, SO that a peak is formed on the trans- 

'heglect of the higher spatial harmonics means smallness of 
the parameters ( F & / y h ) ~ ~ < < l ,  a=1 ,2  (cf. Ref. 12), where 
the saturation parameters G and T,,,,, are  given in (2.8). At 
y3a/y3a << 1, which is the case, e.g.. for neon,'*12 neglect of 
the harmonics is  permissible also for a saturation G 21 
which is not small. 

2 ' ~ i t h  the aid of (4.3) it  is  easy to investigate also the line 
shape for two-frequency lasing, in analogy with the proce- 
dure used by ~e lekhin '  for the transition scheme 3 -1, 
2 -1. 

'v. S. Le$khov and V. P. Chebotaev. Printaipy nelineLoT 
lazernoi spektroskopii (Principles of Nonlinear Laser Spec- 
troscopy), Nauka. 1975 [Springer, 19771. 

'v. S. Letokhov, Pis'ma Zh. Eksp. Teor. Fiz. 6, 597 (1967) 
[JETP Lett. 6, 101 (1967)j. 

'G. Radloff, Pat. DDR, KL21g53/00 (HOls3/09). 
*v. M. Kontorovich and A. M. Prokhorov, Zh. Eksp. Teor. 

Fiz. 33, 1428 (1957) [Sov. Phys. JETP 6, 1100 (1958)l. 
5 ~ .  V. Rogova, Opt. Spektrosk. 25, 401 (1968). 
6 ~ h .  ~Gnsch ,  Z. Physik 236, 213 (1970). 
' ~ . v . ~ e l e k h i n ,  Opt. Spektrosk. 31, 628 (1971); 36, 382 (1974). 
'A. K. Popov, Zh. Eksp. Teor. Fiz. 58, 1623 (1970) [Sov. Phys. 

JETP 31, 870 (1970). 
'YU. M. Golubev and V. E. Privalov, Opt. Spektrosk. 22, 449 

(1967). 
''A. L. Bloom, W. E. Bell, and R. C. Rempell, Appl. Opt. 2, 

317 (1962). 
"v. M. Fain, Kvantovaya radiofizika (Quantum Radiophysics). 

Sov. Radio, 1972. 
12yu. L. Klimontovich, Volnovye i fluktuatsionnye protsessy v 

lazerakh (Wave and Fluctuation Processes in Lasers), 
Nauka, 1974. 

Translated by J. G. Adashko 

Reflection and refraction of a plane wave by the interface 
of two media, with allowance for positron polarization of 
the medium 

0. N. Gadomskil 
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Zh. Eksp. Teor. Fi. 78,1705-1711 (May 1980) 

Integral equations are obtained for the propagation of electromagnetic waves in an atomic system in whose 
spectrum negative energy states are included as intermediate states (positron polarization of the medium). 
Additional terms that depend on the coherence properties of the medium are obtained in the Lorentz-Lorenz 
and Fresnel formulas for a plane wave. It is shown that they are likely to play an important role in systems 
with small inhomogeneous broadening of the spectral limes (for example, in a rarefied gas). 

PACS numbers: 42.10.Fa, 32.70.J~ 32.80. - t, 5 1.70. + f 

1. When optical radiation propagates in a medium, fields produced by the surrounding atom at the location 
the resultant field ac t5g  on an arbitrary j-th dipole is of the j-th dipole. Usually in the calculation of the field 
made up of the fields H,, E j  of the incident wave (which of the surrounding atoms one confines oneself to the so- 
propagates at the speed of light in vacuum), and the called dipole field H;,E;.' AS shown by us  in Ref. 2, the 
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dipole field can be calculated if the interactions of the 
atoms in the external radiation field a re  regarded a s  
effects of third order of perturbation theory. The phys- 
ical meaning of this description is illustrated by Fig. 1, 
where m and n are  the initial states of the I-th and j-th 
atoms. As a result of the interactions of the atoms via 
the field of the virtual photons, the j-th atom goes over 
into a certain final state p ,  while the 1-th atom goes in- 
to an intermediate state 1, with positive energy. Under 
the influence of the external radiation field, the I-th 
atom then goes from the intermediate state I+ to the 
initial state m,  a s  a result of which an energy quantum 
Aw is emitted (absorbed). Simultaneously with these 
processes, we took into account in Ref. 2, the interac- 
tions between the atoms in the radiation field with al- 
lowance for the intermediate positronic states I - .  This 
led to the appearance of additional internal field acting 
on the fixed j-th atom (positronic polarization of the 
medium). It then becomes possible to describe pro- 
cesses in which intermediate states 1- participate within 
the framework of first  rather than third-order perturba- 
tion theory, if one uses the Hamiltonian of the interac- 
tion of a system of N atoms with the radiation field in 
the following form (r,, >> X): 

where r,, is the distance between the atoms, P , , ~  ) are  
, the operators of the momenta of the I(j)-th atom, (,, 
is the vector potential of the radiation field n,, = rlj/rIj, 
X is the wavelength of the external radiation field, b l j  
= exp(ic-'w,,r,,), w,, is the natural frequency in the 
spectrum of the atom and is equal to I w,- w, I, and w,, 
w, are  the frequencies of the states p and n of the atom. 

A similar interaction Hamiltonian was obtained also 
by Drake3 for the case of one helium-like atom, in 
which account was taken of the interaction between the 
electrons in the external-radiation field within the 
framework of third-order perturbation theory, with 
satisfaction of the obvious condition rIj<< X , where rIj 
is the distance between the  electron^.^ Thus, allowance 
for the negative-energy intermediate states of the atoms 
with interactions between a system of atoms and an 
external radiation field leads to the need for considering 
the resultant field acting on an arbitrary j-th dipole of 
the system, in the form of three components: the ex- 
ternal radiation field, the internal field of the dipoles, 
and the internal field due to allowance for the negative- 
energy intermediate states in the atoms. 

FIG. 1. 

In the present paper we derive integral equations for 
the propagation of electromagnetic waves, with allow- 
ance for the positronic polarization of the medium. We 
obtain the additional terms in the Lorentz-Lorenz form- 
ula and in the Fresnel formulas for the reflectivity 
(transmittivity) of the interface between two media. 
These terms a re  due to positronic polarization of the 
medium and depend on the coherence properties of the 
medium. 

2. The resultant field acting on the j-th dipole in an 
optical medium is given by 

E , = r  +C ' E ~ . *  + ' E ,  .9, (2.1) 
1 

where the superscript e(p)  denotes the electronic (posi- 
tronic) component of the electric-field intensity. To 
calculate E;, we start  out with retarded potentials. 
Recognizing that the displacements 5, of the electrons 
from the equilibrium positions of the I-th atoms a re  
small compared with the distance between the nuclei of 
the j-th and I-th atoms, and performing a gauge trans- 
formation of the potentials, we obtain the scalar (cpje,) 
and the vector (A; , )  potentials of the field of the 1-th 
dipole at the location of the j-th dipole. 

We change now from potentials to the corresponding 
electric field intensities: 

Here d, =e5, is the dipole moment of the I-th atom, and 
the symbol [. . .] denotes that the corresponding quantity 
depends on the time t - rj,/c. The expression for the 
field intensities Eq, is obtained from (1 .I): 

er - - 
E,,p = -- bj l [E,-n, l (nj ,El)  l l r ,~ .  

mc' 

Since the external radiation field E j  is replaced in the 
medium by the field E we obtain, taking (2.2) into ac- 
count, the following integral equation 

D(r',  t-Hlc) 
E (r, t )  =k (r ,  t )  + r rot rot - dv' 

where D is the electric dipole moment per unit volume 
of the medium, N(r') is the concentration of the atoms 
as a function of the coordinates, 

The obtained integral equation of propagation of the 
electromagnetic waves in the medium differs from the 
known equations1 in that i t  contains terms due to the 
positronic polarization of the medium. We examine 
their influence on the dielectric constant of the medium 
and on the reflection (refraction) of a plane wave by the 
interface between two media. 

3. We consider the case D =NaE, where LY is the po- 
larizability of the atom. Let x be the boundary of the 
considered media. Then, for the observation points 
located inside the medium, the integration in (2.3) is 
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carried out over the entire volume bounded by C + u, 
where u is a sphere of small radius 6 enclosing the 
atom at  the point of observation with a radius vector r. 
The external radiation field is assumed to be a plane 
monochromatic wave 

k=Eo(r)e- '*l ,  

propagating with velocity c,  and the solution of (2.3) is 
sought in the form of a plane monochromatic wave 

propagating with velocity c/n, where n is the refractive 
index of the medium, with 

The electric-polarization wave propagates in the medi- 
um with velocity c/n and is given by 

D(r, t) =Q (r) e-'"l, VaQ+n2k'Q=0. (3.3) 

Taking (3.3) and the fact that div Q = O  into account, we 
obt ainl 

G=e*'IR, 

where a/av# denotes differentiation along the outward 
normal to the boundary 2 .  Taking (3.2) into account, we 
obtain the value of the following integral in (2.3): 

where w, is the natural frequency of the atom, 

Integration with the aid of Green's theorem yields 

Since the obvious approximate equality 

is satisfied, the last integral of (2.3) can also be calcu- 
lated. In real  systems the natural frequencies w, of in- 
dividual atoms differ from the mean-statistical value 
wdO) because of the inhomogeneous broadening of the 
spectral lines, due to the scatter of the local fields, to 
the motion of the atoms, etc. 

If the condition I w0 - w I>> A wo is satisfied, where A w, 
is a certain shift of the natural frequency of the atom 
from the mean-statistical value, then the influence of 
the inhomogeneous broadening of the spectral lines on 
the dipole field (3.4) is negligible and we shall disre- 
gard it. The positronic polarization, as seen from (3.5) 

and (3.6), depends more strongly on the inhomogeneous 
broadening of the spectral lines and will be taken into 
account by us  with the aid of a Gaussian distribution of 
the frequencies g ( A w ) .  We then obtain in place of (3.5) 

aEo + j a o ( ~ )  { E  aG'o),(R) - G:" ( R )  -) N] , (3.7) av av' 
z 

where the angle brackets (. . . ) denote averaging over 
Aw,, y o i s  the constant of the radiative damping of the 
atom, Aw, is the inhomogeneous line width at half- 
height, k? ' = wJO '/c, and GE ' is obtained from Go by re- 
placing k, by k J O )  

We now separate in the right-hand side of Eq. (2.3), in 
which we substitute the obtained values of the integrals 
(3.4) and (3.5), the terms corresponding to waves pro- 
pagating with velocity c/n. We then obtain a formula 
that connects the refractive index of the medium with 
the polarizability of the atoms and with their concentra- 
tion when a monochromatic plane wave propagates in the 
medium: 

Without the second term in the right-hand side, Eq. 
(3.8) is the Lorentz-Lorenz formula. For gases, Eq. 
(3.8) is somewhat simplified, since n2+ 2= 3, and takes 
the form 

4. The processes of reflection and refraction of a 
plane wave by an interface between two media depend on 
the properties of the surface and a r e  described by the 
surface integrals that enter in (3.4) and (3.5). Allow- 
ance for the positronic polarization of the medium 
changes the field that participates in the extinction of 
the external wave on the surface of the optical medium, 
and the extinction theorem takes the form 

where J is the surface integral that enters in (3.4) and 
is cited in Ref. 1, 

aR exp {i[ (k+ko) R+kn(r's,) ]} 
J.=~E. ,  { (k+k,)=-  nk (%a)} 

R 
dS, 

, 
(4.2 

and st is a unit vector along the direction of propagation 
of the refractive wave with amplitude E,,. We calculate 
(4.2) by using the stationary-phase method for the case 
of normal incidence of the plane wave on the interface. 
At a sufficiently large distance in the optical medium 
from the interface, such that k,r >> 1, and at a suffi- 
ciently large distance above the surface, the forms of 
the transmittivity and reflectivity of the interface of the 
two media, a s  well a s  the laws of reflection and refrac- 
tion, do not differ from those given in Ref. 1. The in- 
fluence of the electronic polarization of the medium on 
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the refraction and reflection enters via the value of the 
refractive index n in accordance with (3.8). 

5. DISCUSSION OF RESULTS AND CONCLUSIONS 

A consistent analysis of the processes of interaction 
with the radiation field of a system of interacting atoms, 
including the intermediate states of the atoms with neg- 
ative energy, leads to the need for taking into account, 
besides the field of the dipoles (the electronic polariza- 
tion of the medium) also the positronic polarization of 
the medium. This means that in a medium each atom 
"feels" a resultant field consisting of three components. 
In the present paper we consider the effects of coherent 
optical radiation incident in the form of a plane mono- 
chromatic wave on the interface between two media. 

We compare the quantities E:, and E:, at an arbitrary 
j-th atom, assuming 

At small interatomic distances r,, << X there is no re- 
tardation in the interaction between the atoms, and 

Then the ratio of (5.2) and [E:, I - a JE, I /r,, takes the 
form 

In the optical frequency band, even far from resonance, 
this quantity is much larger than unity, i.e., in this 
case it is meaningless to speak of positronic polariza- 
tion of the medium. The situation is entirely different 
a t  r,, >> X if the retardation in the interatomic interac- 
tion is taken into account. In this case there remain in 
ET, only terms inversely proportional to the first  power 
of rj,. Then 

As seen from (5.4), in the case of resonance (w=wo) 
this quantity is much larger than unity, a fact noted by 
us  back in Ref. 2. Fa r  from resonance, the ratio (5.4) 
is of the order of unity. Thus, in coherent optics, 
where the main contribution to the polarization of the 
medium is made by atoms located in the wave zone, the 
influence of the positronic polarization of the medium 
may turn out to be of the same order a s  the electronic 
polarization. 

We analyze now Eq. (3.8), which is a generalization 
.of the Lorentz-Lorenz formula for a gas medium, in 
which positronic polarization is also taken into account. 
The frequency dependence of the dielectric constant of 
such a medium is shown in Fig. 2, where the solid 
curve corresponds to the known dispersion curve for a 
gas.' The dashed curve corresponds to allowance for 
the positronic polarization of the medium. The change 
of the dispersion curve is more substantial the larger 
yoKO. In rarefied gases it is apparently possible to 

, have a situation wherein yo&- 1 and the change of the 
dielectric constant can be determined experimentally 

FIG. 2. 

from the reflection spectra. In fact, in the case of 
normal incidence, the reflectivity I does not depend on 
the distance r and takes the usual form: 

where n and x a re  respectively the refractive index and 
the absorption coefficient of the medium, with account 
taken of the positronic polarization of the medium in 
accordance with (3.8). F a r  from resonance we have 
n->> x ,  and we obtain the dependence of the width of the 
spectral line with center at wo on the concentration of 
the atoms and on the reflectivity of the interface (be- 
tween a vacuum and a rarefied gas) on which a plane 
monochromatic wave of frequency w is incident: 

We estimate now the value of (5.6) at the numerical 
values of the physical quantities given in Ref. 4, where 
an experimental investigation was made of the broaden- 
ing of a number of spectral lines of krypton a t  various 
concentrations of the atoms in the region (0.025-20) 
x 1017 atoms/cm3. Let wo = 2.483 x 10'' rad/sec, w 
=16.35 X id4 rad/sec, N =20 X 10'' atoms/cm3, and .@ 
=0.00002%. Then rwo/yo - 1. Allowance for the posi- 
tronic polarization of the medium changes the concen- 
tration dependence of the refractive index and the coef- 
ficient 8 of reflection from the interface. This cir- 
cumstance can apparently lead to a change in the linear 
dependence of the width of the spectral line on the con- 
centration, a s  was the case in the experiments of Ref. 
4. For a detailed comparison of the proposed theoreti- 
cal interpretation of the anomalous broadening of the 
lines at small concentrations4 we need data on the de- 
pendence of the reflection coefficients 8 on the concen- 
tration of the atoms. These can be obtained by investi- 
gating the reflection of laser radiation from the inter- 
face between a vacuum and a rarefied gas. 
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