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A theoretical analysis is presented of optically induced diffusion of gases. In this phenomenon the atoms, 
upon absorbing radiation from a traveling monochromatic wave, can be displaced by collisions with the buffer 
gas either along or against the wave vector, depending on certain conditions. The effective force that causes 
this directional motion exceeds the light-pressure force by several orders. The phenomenon can be used to 
separate isotopes or isomers, to investigate the transport cross sections by excited states, etc. 

PACS numbers: 5 1.10. + y 

1. INTRODUCTION 

We have previously reported briefly1 the optically 
induced diffusion (OID) of gases, a phenomenon that 
appears in the field of a traveling light wave whose 
frequency is close to the resonant frequency of the 
transition in the atom. Because of the Doppler effect, 
the excitation of the atoms by the light is selective in 
velocity, as a result of which opposing fluxes of excited 
and unexcited atoms a r e  induced. Since the dimensions 
of the atom in different states a r e  different, these 
fluxes encounter different resistances in the buffer gas 
(Fig. I), and a s  a result the absorbing gas is set  in 
motion a s  a whole. 

A task-oriented experiment on the observation of O D  
was performed r e ~ e n t l y . ~  The results of the experiment, 
which so far  a re  only approximate, have shown that the 
effect manifests itself very strongly. 

"diagonal" collision integrals (S,, S,) consists of three 
parts. For example, 

where S,, describes the collisions of the excited par- 
ticles with one another, s,, corresponds to collisions 
with unexcited atoms, and Smb.corresponds to collisions 
with particles that do not interact with the radiation (the 
buffer gas), for which the following kinetic equation 
holds 

The collision integrals have the following properties, 
which follow from the particle-number and momentum 
conservation laws in elastic scattering (see. e.g., Refs. 
3 and 4): 

In this paper we present a theoretical analysis of the where the subscripts i 2nd 1 take on the values m ,  n, 
O D  phenomenon, determine i ts  dependence on the and b, while M i  i s  the mass of particle of sort  i . 
characteristics of the medium and of the radiation, and When account is taken of relations (2.4), we can ob- 
present some estimates and typical applications. We tain the hydrodynamics equations from the kinetic equa- 
consider a very simple system corresponding to the tions (2.1) and (2.3). To this end we consider the follow- 
electronic transitions in the atoms. ing hydrodynamic characteristics: the particle-number 

densities, p m, p ", and p ,  , the particle fluxes j ,, j ,, 
2. ANALYSIS OF KINETIC EQUATIONS and j , , the pressure tensors P", , PEB , and piB (a, p 

= x ,  y, z ) ,  and the internal friction forces F,, F, , and 
The interaction of atoms with a traveling light wave 

F,. These characteristics a re  expressed in the follow- of frequency o close to  the frequency w,, of the tran- ing manner in terms of the distribution functions and 
sition from the ground1) (n) into an excited state is the collision intergals31 
described by the following kinetic equations for the den- 
sity matrix: p. = J pii(v)dv, j i  = jvp,, (v)dv, 

Here E and k a r e  respectively the amplitudes of the 
- 
C- 

electric field and the wave vector of the radiation, 2y, a 

is the decay constant of the excited states, S, andS, .c- 

C- 

a r e  the integrals of the elastic collisions, and dm, is  the 
dipole-moment matrix element. We assume that in 
the collisions the states m and n a re  quite differently 
excited so that the collisions lead for the off-diagonal - 

I I 
element p,, of the density matrix to impact broadening 

z* 
(r) and to a shift (if necessary, the latter can be re-  FIG. 1. Illustrating the onset of a flux of absorbing particles. 
garded a s  included in the quantity o,,). Each of the The bent arrows represent the radiative transitions. 
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For absorbing atoms we shall consider also the total 
particle densityN= p ,+ p ,, the total flux J= j,+ j,, the 
pressure tensor pB = P: ' + P: ', and the friction 
force F=F,+F,.  

We add the f i rs t  two equations of (2.1) and integrate 
with respect to the velocities. As a result, taking the 
f i rs t  relation of (2.4) into account, we obtain the con- 
tinuity equation for the absorbing particles 

It follows similarly from (2.3) that 

Multiplication of Eqs. (2.1) and (2.3) by v, followed by 
integration with respect to velocity with account taken 
of (2.4), yields an equation of the Euler type. For the 
absorbing particles a s  a whole and for the buffer-gas 
particles, we have 

The friction force F ,  whose components enter in these 
equations, is  given by 

i. e., it is governed by the collisions of the excited and 
unexcited particles with the buffer-gas particles. Ob- 
viously, the partial friction forces F, and F, are  dir- 
ected opposite to the corresponding fluxes j, and j,. In 
particular, 

where we have introduced the proportionality coeffi- 
cients v and v ., which have the dimensionality and 
meaning of collision frequencies. The expression for 
the force F can consequently be represented in the form 

If there is  no radiation, then j, = 0, and the equations 
(2.8) and (2.9), together with (2.6) and (2.7), describe 
the ordinary diffusion processes in a two-component 
medium: at constant total pressure, the spatial inhomo- 
geneity of the density of the components leads to diffuse 
currents which, in turn,  equalize the density of eachof the 
components. Under stationary conditions we have 
simultaneously F = 0 and J = 0. 

On the other hand, a s  noted in the preceding section 
(see also Ref. I), the radiation induces a flux j,. Since 
the interaction of the buffer gas with the excited atoms 
i s  in general different from that with the unexcited ones, 
we have v f v ,, and according to (2.12), simultaneous 
vanishing of the friction force F a d  of the flux of the 
absorbing atoms J i s  impossible. 

If the gas mixture was initially a t  equilibrium, then 
a t  the first  instant after the field is  turned on we have 
J =  0, but with increasing population of the excited state 
a flux j, i s  produced, and with it also a force F ,  which 

in turn produces the flux J of the absorbing atoms a s  
a unit. The buffer gas is  then acted upon by a force 
of the same magnitude but of opposite direction, pro- 
ducing an opposing flux. If the absorbing cell is  open on 
both ends and is contained in the reservoir with the ori- 
ginal mixture, then after the lapse of a certain time a 
stationary flux i s  established, wherein 

If the ends of the absorbing cells a re  closed, then a 
stationary regime i s  established in the course of time, 
such that 

J=O, F=M(v,-v, ,)  j,, (2.14) 

and the friction force (2.14) i s  offset by the produced 
pressure gradient in accordance with (2.8). In other 
words, the absorbing particles flow over to one end of 
the cell or  to the other (depending on the direction of 
j,). The buffer gas, on the other hand, flows to the 
opposite end in accordance with (2.9). 

It follows from (2.8) and (2.9) that the established gas 
pressure i s  uniform over the volume, if the gas was a t  
equilibrium prior to the application of the field. This 
i s  due to the fact that the processes of momentum 
transfer (light pressure) and energy transfer from the 
radiation in the medium a r e  not reflected in Eqs. (2.1). 

Since the transfer process considered here takes 
place a t  a constant total pressure (flow of the different 
gas components through each other), it is  related to 
the diffusion process and we shall therefore call it self- 
induced diffusion. 

The question of the concrete values of the flux J in 
(2.13) and the force F in (2.14) reduces to the calcula- 
tion of the flux j, of the excited atoms. We consider 
first  homogeneous-broadening conditions, when the 
problem can be solved at an arbitrary field intensity. 

3. HOMOGENEOUS BROADENING 

If the luminescence-line half-width I? exceeds the 
Doppler width 

then the interaction of the atoms with the field has a 
low velocity selectivity. The dependence of the density- 
matrix elements p ,,(v) in (2.1) i s  then close to Max- 
wellian and can be represented a s  a sum of a Max- 
wellian distribution W(v) and an anti-symmetrical in- 
crement: 

On the basis of (2.1) we can easily derive equations for 
the zeroth moments ( p i ,  p ) and the first  moments (the 
fluxes ji, and j) of the density matrix. 

We confine ourselves henceforth to the stationary re -  
gime. Integrating (2.1) with respect to velocity, we ob- 

840 Sov. Phys. JETP 51(5), May 1980 F. Kh. Gel'mukhanov and A. M. Shalagin 840 



tain 

In place of the second equation (2.1), we shall use the 
continuity equation (2.6), which yields 

Multiplication of (2.1) by v followed by integration with 
respect to v leads to the equations 

(vm+2rm) jm+L12~2Vp,=-ZRe (ic'j), 

( r - i s )  j+'l2C2(ik+V)p=iG(j,-j,), 
(3.5) 

and in place of the equation for j, it i s  convenient to use 
Eq. (2.8), which reduces in the approximation (3.2) to 
the form 

The collision frequencies v, and v, a r e  governed in 
the approximation (3.2) by the corresponding transport 
cross sections o p and o F: 

0,'' (u) du, 

where u i s  the relative velocity of the colliding parti- 
cles. 

The system (3.3)-(3.6) i s  closed and makes it poss- 
ible to find all the quantities of interest to us. We as- 
sume here that the density of buffer gas is  much higher 
than the density of the absorbing particles, and that the 
intensity of the radiation does not depend on the coor- 
dinates (an optically thin medium). In this case only 
the sought functions a re  spatially inhomogeneous, but 
not the coefficients of the employed equations. 

The simplest solutions of the equations a r e  obtained 
in the stationary-flux regime, when the terms with the 
spatial derivatives in (3.3)-(3.6) vanish and the equa- 
tions reduce to algebraic. As a result of their solu- 
tion, accurate to corrections of order (ks/r)2,  we find 
the steady-state flux J of the absorbing particles a s  a 
whole: 

Here is the so  called saturation parameter and char 
acterizes the degree of equalization of the level popu- 
lations: at n <cl the populations of the ground and ex- 
cited states a r e  approximately equal. 

We now discuss the result. The flux of atoms can be 
directed either along the wave vector or  in the opposite 
direction, depending on the sign of the difference v, 
- v m  of the collision frequencies and on the sign of the 
detuning 62 = w - w ,, of the radiation from resonance. 
For example, at C2> 0 and v m > ~  the atoms move op- 
posite to the light flux (counter to k). With increasing 
1511 , the flux increases, reaches a maximum at  1511 
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- I?, and then again begins to decrease (even a t  a fixed 
saturation parameter). The decrease of J is connected 
with the fact that a t  large I the interaction with the 
field has low velocity selectivity, and this leads to a 
small asymmetry of the distribution p m m ( ~ ) ,  and conse- 
quently to a low value of the flux j. In this respect, 
a large departure from resonance is equivalent to a 
large homogeneous broadening: the velocity selectivity 
decreases with increasing r and, a s  a consequence, the 
OID effect decreases. The dependence of J o n  the radia- 
tion intensity (on n) i s  qualitatively similar to the de- 
pendence on 1 a) : at  small n the number of excited 
atoms i s  small, and consequently the flux J i s  also 
small, since it i s  proportional to H.. In a very intense 
field (n >(2ym+ v ,)/2y ,) the flux again decreases, since 
the field broadening comes into play and leads again to 
a decrease of the selectivity of the interaction. 

We determine now the optimal conditions for the man- 
ifestation of the OID effect within the framework of the 
applicability of Eq. (3.8). With respect to 51 and 
these conditions a r e  obvious: 1521-r, n-1. Since the 
effect decreases with increasing r , it is necessary to 
take the minimum possible r allowed by the approxima- 
tion (3.1), i.e., r" kE It is also seen from (3.8) that 
to obtain the optimal J it is necessary to satisfy the 
condition v ,<< 2y ,. The flux J then ceases to depend 
on y, (if the value of n i s  fixed). We note finally that 
the transport cross sections for the ground and excited 
electronic states of atoms and molecules can differ 
~ubstant ia l ly .~  In the estimates we shall assume con- 
cretely that the cross sections differ by a factor of two 
(V ,/v , = 2). 

For the presented values of the parameters it follows 
from (3.8) that the directional velocity of the absorbing 
atoms u= J/N has the following value: 

which amounts to  a noticeable fraction of the mean ther- 
mal  velocity. 

We examine now the solution of Eqs. (3.3)-(3.6) in an 
absorbing cell with closed ends, when J=  0. Accurate 
to corrections of order (kE/r)', we can discard the 
terms div j, and (ik +div)j in Eqs. (3.3). We assume al- 
so the condition y, 4< r, which allows us  to neglect the 
term V p in the second equation of (3.5). Thus, the 
spatial derivatives remain only in the first  equation 
of (3.5) and in (3.6). From (3.3)-(3.5) we obtain j, a s  
a function of N and VN, after which we obtain in lieu of 
(3.6) the following differential equation for the density 
of the absorbing particles: 

Expression (3.10) describes the exponential variation 
of the density along the wave vector. The direction in 
which the density increases, just a s  in the case of the 
flux tensor (3.8), i s  determined by the sign of the dif- 
ference v, -v, and by the sign of a. The character of 
the dependence of ( VN/NJ on 51, r, and n i s  the same 
a s  for the stationary flux J in (3.8). At R - r- kc, 

F. Kh. Gel'mukhanov and A. M. Shalagin 



n- 1, V,/V, = 2, 2y ,- v, we get from (3.10) 

This means that the characteristic dimension I of the 
layer in whichthe absorbing atoms a r e  gathered amounts 
to approximately 10 mean free paths. For  C- lo5 cm/sec 
and v; 10' sec-I we have I- lo-' cm. 

We note that in both analyzed cases we have assumed 
the radiation field to be uniform over the c ross  section 
of the absorbing cell. If the diameter of the light beam 
is less  than the cell diameter, then circular fluxes 
should arise. In addition, effects of " transverse" 
diffusion come into play, i. e., the picture becomes 
complicated and will not be considered here. 

4. INHOMOGENEOUS BROADENING 

Under conditions of inhomogeneous broadening 

rcfi, (4.1) 

the interaction of the atoms with the field is highly se- 
lective in velocity, the velocity distributions contain 
Bennett dips and peaks, thus complicating the solution 
of (2.1) at arbitrary field intensities. If, however, we 
assume the condition 

then in this case i t  becomes quite simple to  calculate 
the sought characteristics 

In homogeneous broadening, as follows from the f o r e  
going, the scale of the spatial inhomogeneity produced 
on account of the O m  greatly exceeds the wavelength of 
the radiation. This result is valid in the general case, 
so that in Eq. (2.1) for  p ,,(v) we can neglect the term 
with the spatial derivative compared with the term 
containing the Doppler shiftk v. Thus, 

The solution for the diagonal elements in (2.1) will be 
sought in the form 

The Bennett peaks and dips a r e  contained in this case in 
the increments r,,(v) . This subdivision is somewhat 
arbitrary and we eliminate i t  by assuming that the R,, 
satisfy the following equations: 

We have introduced here the symbol 

while the angle brackets denote averaging over the vel- 
ocities with Maxwellian distributions. To avoid mis- 
understandings, the written-out arguments of the colli- 
sion integrals a r e  the corresponding distribution func- 
tions. 

From the initial Eqs. (2. I) ,  with allowance fo r  (4.4) 
and (4.5), follow the following equations for r,,(v): 

(2y,+vV)rm,(v) =ymx'[r,n-rm,+2~-zv(j,-jm) W ( v )  1 
+ y m ( p n - p , )  W ( v )  [x'-(x')-2v-2v<vx')]+Sm[r,,(v) 1, (4.7) 

vV [r,,(v)+r,,(v) I =S,Lr,,(v) I+S.Lr,,(v) I. 

For r,,(v) we confine ourselves to the f i rs t  term of the 
expansion in the field intensity (in n'). In the absence 
of a field, r,, and j, a r e  equal to zero, and therefore the 
terms containing r,, - r,, and j, - j, in (4.7) a r e  pro- 
portional to n I 2  and will be neglected. It can be shown 
that discarding these terms means the use of condition 
(4.2). Recognizing also that the scale of the spatial 
inhomogeneity as larger than the mean free path, we 
neglect the term vVr,, in  (4.7). We see  then that r,,(v) 
has the following properties: 

j r,, ( v )  dv=O, j vrmm (4 &=a (4.8) 

Similar relations a r e  valid also for r,,(v) and indicate, 
in particular, that the quantities p, and j, in (4.4) have 
respectively the meaning of the total population of the 
level i and the total flux in the state i. 

Thus, to find the fluxes and the spatial distribution of 
the absorbing particles in the approximation (4.2), i t  
suffices to consider only Eqs. (4.5). On their basis, 
in analogy with the preceding section, we derive the 
equations for the total populations and fluxes: 

In addition, relatiors (3.4) and (3.6) remain in force. 
In the stationary-flux regime i t  follows from (3.6), 
(4.9), and (4.10) that 

For an absorbing cell with closed ends we obtain the 
following differential equation for the density of the 
absorbing particles (the term div j, in (4.9) is neglected, 
since its weight is determined by the ratio of the mean 
f ree  path to the scale of the spatial inhomogeneity) 

We note that in the derivation of (4.11) and (4.12) we 
did not use the relation (4.1) and confined ourselves 
only to the condition (4.2). Thus, the obtained formulas 
a re  valid a t  any ratio of I' and kV within the framework 
of the condition (4.2). In particular, i f  r >> kV, then 

and we obtain Eqs . (3.8) and (3.10) in the approxima- 
tion of (4.2). 

For inhomogeneous broadening (T<<kV) we have 

Despite the limitation (4.2) with respect to the field, 
the quantity ( x l )  can be quite large i f  subject to sat- 
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isfaction of the condition r (2ym +vm)/2y ,kS>l ,  which 
can be ensured by the large collision frequency v,. 

At r<<kB expressions (4.11) and (4.12) as functions 
of Q have an extremum at  1 Q 1 - kB. Practical interest 
attaches also to the dependence on the pressure of the 
buffer gas. In inhomogeneous broadening, only v, and 
v, in (4.11) and (4.12) depend on the pressure.  As 
seen from (4. l l ) ,  the flux increases with decreasing 
v, and assumes a constant value at v,< 2ym. It might 
seem that this result contradicts the obvious premise 
that when the pressure tends to zero  there should be no 
OID effect. However, expression (4.11) was obtained 
by implicitly assuming that the length of the absorbing 
cell is unlimited and that collisions must take place over 
i t s  length. Actually i t  is sufficient to  require that the 
length of the cell greatly exceed the mean f ree  path. 
The density gradient (4.12) decreases with decreasing 
pressure, a s  i t  should, and a t  v, > 21, it is practically 
independent of pressure until the line half-width be- 
comes comparable with k z .  If the pressure is such 
that I? > k2), then further growth of the pressure, a s  
shown in the preceding section, leads again to a de- 
crease of I v N / N  I . 

5. SELF-CONSISTENT EQUATIONS FOR THE 
PARTICLE DENSITY AND IRRADIATION INTENSITY 

We have considered above the OID phenomenon in the 
given-field approximation. Moreover, we have assumed 
that the intensity of the radiation remains practically 
unchanged when it passes through the absorbing cell 
(optically tenuous medium). If the radiation absorp- 
tion is substantial (optically dense medium), then new 
interesting features of the OID appear, one of which 
consists in the following. Let the absorbing cell be 
closed on both ends and let the radiation be absorbed 
over a length I,, much less  than the cell length L. At 
the initial instant after it is  turned on, the radiation is 
absorbed in a region adjacent to the entrance end of the 
cell. At (v, - v,) > O  the absorbing particles in this 
region a r e  displayed by the OID in the direction of the 
wave vector. The particles move away from the entry 
window and compress the remaining gas of absorbing 
particles. At the same time, the region of effective 
radiation absorption also moves in the k direction. The 
process continues until the density drop over the effec- 
tive absorption length compensates for the force due to 
the OID. Thus, the described process is equivalent to 
the action of a piston (optical" piston") that compresses 
the absorbing gas in the wave-vector direction. In con- 
trast  to the ordinary piston, the optical "piston" has 
selectivity-it acts only on one component of the gas. 

Obviously, in the analysis of the OID in an optically 
dense medium it i s  necessary to solve the self-consis- 
tent equations for the particle density and radiation 
intensity. We shall consider this problem under condi- 
tions of homogeneous broadening ( D k a  for a cell 
closed on both ends, and assume that the intensity of 
the traveling monochromatic wave is uniform over the 
cell cross section. 

From the kinetic equations for the density matrix and 

for the associated gasdynamic equations, which were 
analyzed above, we obtained the following equation for 
the density N of the absorbing particles (the z axis is 
directed along the wave vector k): 

We assume next that the collision frequencies v, and 
v,  and the quantity r do not depend on the coordinates. 
This corresponds to the assumption that the buffer-gas 
density i s  much higher than the absorbing-gas density. 
In this case the coordinate dependence is concentrated 
in the quantities N and u. 

In the medium is optically tenuous, then the change of 
the saturation parameter in (5.1) can be neglected, and 
we return to Eq. (3.10): the particle density has an ex- 
ponential dependence on z ,  and its maximum i s  either 
a t  the entrance o r  a t  the exit window of the cell, depend- 
ing on the sign of the combination 52 (v . - v ,). 

The radiation intensity i s  represented in (5.1) by the 
quantity x, for which we can deduce, on the basis of the 
abbreviated Maxwell's equations and Eqs. (3.3) (the 
t e rms  which spatial derivatives and the term i k - j  a r e  
discarded in the latter because they a r e  small) the 
following differential equation: 

where a has the meaning of the photon-absorption 
cross  section. 

We obtain finally the spatial distribution of the par- 
ticle density and of the radiation intensity it is neces- 
sary  to add to (5.1) and (5.2) the relation (the condition 
for the conservation of the total number of particles) 

where No i s  the density of the absorbing particles in 
the absence of radiation. 

To simplify the analysis we confine ourselves to 
fields of moderate intensity in accord with the condi- 
tion (4.2). Within the framework of this condition, the 
saturation parameter may be not small if the buffer- 
gas pressure is large enough (v , > 2 y ,). 

When the condition (4.2) i s  satisfied, Eq. (5.1), with 
allowance for (5.2), has a rather simple integral of mo- 
tion, which connects algebraically the particle density 
with the saturation parameter: 

The sign of the coefficient A i s  determined by the sign 
of the combination Q(v, - v,). The parameter B can 
take on values in the range from one half (at urn>> v,, , 
2y,) to (at v,>> v,, 2y,,,). It is actually bounded from 
above by values of the order of unity. If v, = v, then B 
= 1 and in this case A = 0. 
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If the radiation is absorbed over a distance much which can thus be rewritten in the form 
shorter than the cell length L, then the integral of mo- I+% 
tion (5.4) has the rather simple meaning of the asymp- N - -  1+Bx (xo -x )  A. (6.2) 
totic value of the particle density N, beyond the ab- 
sorption region (x.- 0). It follows then from (5.4) that Some of the plots of N against x ,  describing this rela- 

tion, a r e  shown in Fig. 2. 
I+% N = -  I+Bx ( N - - A X ) .  (5.5) 

As N,-AX,, a logarithmic divergence appears in (6.1), 
which we shall reduce, to simplify the analysis, to a 

Since N is positive, a t  A > 0 we should have N ,a Ax O' different form. We separate on the z axis the point z' 
where x ,  is the value of the saturation parameter a t  the at which the radiation intensity decreases by a factor 
entry to the cell lz = 0). This already leads to  the possi- of 2. By identity transformations we can obtain from 
bility of the optical "piston" effect. In fact, assume 

(6. I) ,  taking (6.2) into account, that in the absence of the field the particle density No -- - 

was less  than the value N, =Axo. Then, to ensure the 
condition N, 3 Ax,, the absorbing-particle gas  must be 
compressed in the k direction, and this means a piston 
effect, which thus takes place when the initial particle 
density is lower than a certain critical value. 

In the case of an optically tenuous medium at exact 
resonance (62 = O), the equilibrium value of the density 
N is not (disturbed. On the other hand if we put 51 = 0 
in (5.5), which means the vanishing of the coefficient 
A,  then N still can depend on the coordinates to the 
extent that %is spatially homogeneous and to  the extent 
that the coefficient B differs from unity (the latter is 
connected with the relation between vF and v,). The 
noted spatial inhomogeneity of the density has a direct 
counterpart-the effect of drawing particles in and 
out of a light beam, dealt with in Ref. 6. The effect 
considered in the present paper can be explained as 
follows. The concentration of the excited particles is 
larger in that region where the field intensity is 
higher, s o  that there exists a diffusion flux of excited 
particles from the region of increased intensity of the 
field. The unexcited particles diffuse in the opposite 
direction, since the field makes their deficit larger the 
higher its intensity. Thus, in this case, too, we have 
opposite fluxes of excited and unexcited particles. 
Consequently, owing to the difference between the 
transport c ross  sections in the states m and n, the 
collisions with the buffer gas produce an absorbing- 
particle flux a s  a whole. If v, > v,, then the particles 
a re  drawn into the region of increased field intensity, 
and at v ,< v, they are  pushed out of it.  The maximum 
density drop occurs at x o  ->> 1 and i s  determined by the 
ratio. 

We determine now the characteristic regions of the 
variation of u on the right and on the left of the point 
2'. We denote by I +  the value of the difference z - z '  at  
which H. = x d 4 ,  and by 1 ,  the difference z1 - z ,  where z 
is the point a t  which x = 3 u d 4 .  Obviously, 1 ,  and 1 - 
determine the dimensions of the corresponding regions, 
and i t  follows for them from (6.3) that - 

The values of 1 ,  and 2 - a r e  practically the same, and 
in the case of practical importance when B- 1 and U, 

2 1  they a r e  determined by the quantity l /aA. The 
asymptotic behavior of x (at 1 z - 2'1 >> I , ,  I - )  is des- 
cribed by an exponential dependence on the coordinates: 

From (6.2) and from the plots of Fig. 2 i t  follows that 
the particle density, just a s  the radiation intensity, 
changes substantially only in the region adjacent to the 
point z = z1 . The characteristic dimension of the region 
of variation of N is described completely by expres- 
sions (6.4), and the asymptotic behavior is given by 
the formulas 

A x o - N = A x o ( l + x o ( B - l ) } ~ 2 B x ~  exp(-oAxo(z-z ' ) }  (z-z'>l+) ; 

6. OPTICAL "PISTON" AND OPTICAL "PLUG" 

We examine now in greater detail the solutions of Eqs. N'N- 

(5.1) and (5.2) a t  A > O ,  when the OID effect causes a 
displacement of the absorbing particle in the direction 
of the wave vector. In addition, we assume that No 
< N,=Axo. 

0.5 

The solution of (5.2), with (5.4) taken into account, 
is of the form 

Under the assumed conditions, the absorbing particles FIG. 2. Examples of the dependence of N on x at N,= Axo : 
near the input window (2 = 0) a re  practically nonexistent, curve 1 -xo = 5, B = 1/2; 2 - no= 5,.B=3/4; 3 -%=1/2, 
and consequently N,-AX,, in accord with Eq. (5.41, B = 1/2; 4 - x o = l ,  B =3/2; 5 -no= 5, B =  3/2. 
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FIG. 4. Optical plunger. 

FIG. 3. Plot of the density against the coordinates in the 
transition region: curve 1 - u o = 5 ,  B = 1 / 2 ;  2 - u 0 = 5 , B = 3 / 2 ;  
la l / d .  

On both sides of z1 , the function ~ ( z )  has an exponential 
asymptotic behavior: the density tends exponentially to 
zero on the left of z1 and to Ax, on the right. 

Figure 3 shows two characteristic N(z) curves cal- 
culated from formulas (6.2) and (6.3). The curves differ 
in shape and this difference i s  due to the influence of 
the spatial inhomogeneity of the field on the particle 
density. At B < 1 (v , > v ) the particles a re  drawn into 
the region of increased intensity (the curve with the 
extremum), whiie a t  B > l ( v m  < v, ) they a re  pushed out. 
This i s  precisely why the curve i s  l e s s  steep in the 
second case. 

Thus, both from qualitative considerations and from 
a formal analysis of the equations and their solutions 
i t  follows that there exists a situation in which the re -  
gion of substantial absorption of the radiation is not ad- 
jacent to the entrance end of the absorbing cell, but i s  
situated near a point z1 located a t  a certain distance 
from the entrance. Simultaneously, in the vicinity of 
z1 the density of the absorbing particle changes from 
zero to the asymptotic value N, =Ax,. 

The characteristic dimension of this (transition) r e -  
gion i s  determined according to (6.5) by the quantity 
(1 + ~x,) /oAx, ,  which se ts  the scale of the spatial in- 
homogeneity of the density also for optically tenuous 
media (see Sec. 3). Consequently, the thickness of the 
optical piston can reach 0.1 mm, which i s  less  by a 
large factor than the length of the customarily employed 
absorbing cells. 

The coordinate z1 can be easily obtained with the 
aid of relation (5.3). Neglecting the dimension of the 
transition region, we obtain 

Since the quantity Ax, depends on the frequency and on 
the intensity of the radiation, we can shift the position 
of the optical piston along the z axis by varying these 
parameters. This obviously changes also the value of 
the density on the right of z l ,  equal to N, =Ax,. 

Let us  estimate the density N, to which the optical 
piston can compress the gas  of absorbing particles. 
At v m = 2 v n ,  Q=r, 2rm-vm, x,- 1 we have ~ , - 1 0 / k ' ,  
which amounts to 1013-1014 ~ m - ~  for the optical region 
of the spectrum. We note that a t  this density the radia- 
tion is absorbed within a very short distance (-lo-' cm). 

We can consider now the following situation. Let the 
vessel containing the mixture of absorbing and buffer 
gases be separated by a partition with an opening (Fig. 
4) through which the radiation (shown by an arrow in 
the figure) passes. If the thickness of the partition is chosen 
tobe larger than o r  of the order of the thickness of the opti- 
cal piston, thenthe absorbing gas  can under stationary con- 
ditions be "locked" in the right-hand (shaded) part of the 
vessel. Thus, on account of the O D ,  the radiation can 
assume the role of a plug. The density N, of the absorbing 
particles retained by the optical plug was estimated 
above. The radiation is then absorbed within the limits 
of the partition thickness, which can be decreased 
to - lo-' cm. 

We recall that both the optical piston and the optical 
plug a re  impermeable only to the absorbing component 
of the mixture. The remaining components can diffuse 
freely through them. 

7. CONCLUSION 

The OID effect is characterized a s  one of the effects 
wherein the radiation influences the translational mo- 
tion of particles. We note, however, that previously 
known examples of such an influence (the usual, pre- 
sently called spontaneous light pressure,  stimulated 
light pressure,  striction forces7' 9, a re  connected with 
the direct force action exerted by the radiation on the 
individual particles. In this respect OID occupies a 
special position. The onset of OID does not call at all 
for dissipation of the radiation energy, it suffices to 
assume that the absorption of the radiation is accom- 
panied by its isotropic scattering without change of the 
frequency. The role of the radiation consists of sorting 
the particles by velocities (selective excitation), and 
the remainder is done by the collisions. Thus, the 
energy of the direction of motion of the particles, pro- 
duced in the case of OID, is drawn from the thermal en- 
ergy of the gas. This decreases,  of course, the en- 
tropy of the gas mixture, but this decrease is offset 
of the entropy of the radiation produced when it is 
scattered in the gas. 

The same effect a s  the OID is produced qualitatively 
also by spontaneous light pressure,  i. e. ,  i t  produces 
fluxes of absorbing particles in the gas phase, and 
leads to a spatial redistribution of the density. We 
compare now the degrees of manifestation of the OID 
and of spontaneous optical pressure. In the case of 
homogeneous broadening, the force due to the spontan- 
eous optical pressure is given by the expression (see, 
e.g., Ref. 7). 

F L  = f i k l , N x / ( l +  x ) .  (7.1) 

845 Sov. Phys. JETP 51(5), May 1980 F. Kh. Gel'rnukhanov and A. M. Shalagin 845 



We compare this force2) with the force (2.14), using 
the result (3.10). For each of the effects we choose 
the conditions that a re  optimal for its manifestation 
and as a result we get 

The principal factor that determines this relation is 
~v/fik-the ratio of the thermal momentum of the particle 
to the photon momentum. For the optical region of the 
spectrum and at room temperatures ~ c / f i k  - 104. Thus, 
the forces causing the OID can exceed by three or  four 
orders of magnitude the force of the spontaneous light 
pressure. This is precisely why we have neglected in 
the initial equations the recoil effect in absorption and 
emission of photons. 

The O D  phenomenon can find extensive applications 
in scientific research. We must emphasize particularly 
in this connection the possibility of investigating the 
transport cross sections of short-lived states of atoms 
and molecules, for which there a re  no reliable methods 
at present. Since the OID effect is directly sensitive 
to the difference between the transport cross  sections, 
it becomes possible to register in experiment even 
small differences of these cross  sections, which a re  
characteristic, for example, for vibrational-rotational 
transitions of molecules. 

Owing to the selectivity of the resonant action of the 
radiation on matter, the OID phenomenon can be used 
to separate isotopes and isomers, to obtain ultrapure 
chemical substances, etc., i.e., in problems calling for 
separation of one of the components of a gas mixture. 

Let us assess the possibility of using OID for isotope 
separation. In a number of cases a suitable scheme for 
this purpose is based on the optical-piston effect (Fig. 
4). We assume that a mixture of two isotopes enters in 
the right-hand side of the vessel. One of them is locked 
in this part by the optical plug, and the other diffuses 
freely through the opening. We estimate now the flow 
(3 = DSVN, - DsN,/~ of the second isotope (D = ?/2v, 
is the diffusion coefficient, S is the area  of the opening 
cross section, 1 is the partition thickness, and N, is 
the concentration of the second isotope in the right-hand 
part of the vessel). Substituting in this relation the 
value 1 - cm and using the estimate for the maxi- 
mum density of the first  isotope contained by the optical 

plug, we obtain for S =  1 cm2 

Q-fX1O1hc-', E-NJN,, C-10' cmlsec, , 

h=5X10-' cm, 2v,-10' sec-', (7.3) 

where t i s  the ratio of the isotope concentrations in the 
initial mixture. Estimates for 1 and for the contained 
density of the first  isotope were made for a saturation 
parameter n- 1. On the other hand, this value of n is 
ensured by a power flux - 1 w/cm2 (see,  e.g., Ref. 6). 
Thus, the isotope flux (7.3) is made possible by a 
radiation power -1 W. For  the optical region of the 
spectrum, a power of 1 W corresponds to a photon flux 
- 10lg sec-l .  k t ,  for example, 5 = 1. Then the es- 
timate (7.3) means that - 10 photons a re  needed to se- 
parate one atom of the isotope. This estimate inspires 
optimism with respect to the ability of the isotope- 
separation method, based on the OID, with other meth- 
ods, including laser methods. 

'%he transition from the ground state is considered because 
in this case the OID effect is maximal. 

')The forces of stimulated optical pressure can be higher by 
several orders of magnitude,?J0 but they do not manifest 
themselves under the conditions of our problem. 
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