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The interaction of a material medium and two ultrashort light pulses that traverse it successively is 
investigated for the case in which the frequencies of each of the pulses satisfy the conditions for two-photon 
resonance with some transition of the medium. It is shown that in such resonance four-photon interactions, 
despite the fact that the pulses are not synchronous, there exists a region in which the generated wave 
becomes phase locked, so that the process turns out also to be spatially coherent. Relations are derived, both 
for the case of large wave mismatch (ISk I +  W )  and for the case 6k = 0, that represent the area theorem for a 
process of the type under consideration. It is found that at large distances a subpulse of the trigger field 
should develop within the second pulse, and that a subpulse that satisfies the proportionality condition and 
whose area tends either to zero or to 2 ~ r  should also develop. It is also concluded that subpulses should 
develop in the case of two-photon interaction of pulses that have different frequencies and do not satisfy the 
proportionality condition. The conditions for maximizing the conversion coefficient (for the case Sk = 0) are 
obtained with the aid of the area theorem and approximate solutions for the first stage. It is shown that the 
limitation on the conversion coefficient at high pump energies is not due to an increase in the parametric 
transparency of the medium, as in the quasistationary case, but to the formation of a 2 ~ r  subpulse. It is shown 
that waves that are not present at the input cannot arise in systems having large wave mismatch (i.e., in the 
limit 16k 1 - r~ ) ;  however, the second pulse can be amplified provided both its frequency components are 
present at the input. The pump- and trigger-field intensities necessary for observing the effects in sodium 
vapor are estimated. 

PACS numbers: 42.65. - k 

The current interest in resonant four-wave parame- 
t r ic  interactions (RFPI), which i s  evidenced by a con- 
siderable number of experimental papers (see, e.g., 
Refs. 1-9) is due to the possibility of using such inter- 
actions for frequency conversion of radiation. By now, 
the quasistationary theory of RFPI has been rather 
thoroughly worked out. However, this theory turns out 
to be useless for the case of pulses whose durations a r e  
comparable with or shorter than the characteristic re- 
hxation times of the atoms (or molecules) of the medi- 
ah. This fact and the widespread use of mode-locked 
lasers that produce pulses considerably shorter (of the 
drder of tens of picoseconds) than the relaxation times 
of the atoms (or molecules) make it obviously desirable 
to develop a theory of RFPI for ultrashort light pulses 
(usLP). 

investigated under the assumption that the fields E, and 
E, a r e  weak.14* l5  calculation^^^ have shown, however, 
that the polarization of the atoms (or molecules) of the 
medium near the frequency w,= om,& w, is greater when 
the pulse of the fields E, and E4 traverse the medium 
after the action of the pump pulse. Experimental re-  
s u l t ~ ' ~  indicate that the frequency conversion efficiency 
in the RFPI of USLP is also greater in this case.') 
We shall accordingly investigate frequency conversion 
in the case of successive passage of the pump and 
trigger pulses through the medium. The most impor- 
tant aspects of the problem a r e  the magnitude of the 
maximum conversion coefficient, the relations between 
the frequencies and energies of the pump andstrigger 
fields necessary to achieve the maximum conversion co- 
efficient, and the effect of wave mismatch on the inter- 
action process. In addition, we shall obtain an expres- 

The RFP1 Of USLP that has been studied in greatest sion that amounts to a formulation of the area theorem 
detail i s  frequency degenerate and constitutes third- for RFPI of the type under consideration and also clar- 
harmonic generation via a two-photon resonance at the ify features of the asymptotic behavior .of USLP at large 
pump frequen~y. '~- '~  However, RFPI that a r e  not fre- distances under two-photon absorption. 
quency degenerate a re  of no less interest; they can be . . 

used to transfer the tuning of radiation from one range 
to another. Below we shall examine one of these pro- 1. INITIAL RELATIONS 
cesses-one in which the frequences wf of the fields 

Let the fields propagating in the medium in the z dir-  Ef ( j= 1,2,3,4) satisfy the conditions 
ection have the form 

O,+O2=Ornj, Gl3+O&=Omi, 

Ej=&,e2(*11-%=)'f c.c., Z,=A,e-'W, 
where w,, i s  the transition frequency between levels 1 
and rn of the medium. For definiteness we assume that where Af and cp, are  slowly varying functions of z and 
the input fields-those whose pulses must be fed into t compared with eiwj' and e'Vr, and let the lengths of 
the medium-are the fields of frequency w, and w, the pump and trigger pulses, a s  well a s  the time be- 
(pump fields) and w, (trigger field); the field E4 need not tween passage of the trailing edge of the first  and the 
be fed into the medium. The interaction of simultane- leading edge of the second through a given point, be 
ously propagating pulses of all four frequencies has been much shorter than the longitudinal and transverse re- 
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laxation times. We assume that the pump pulse is and 5 = z - ut. The quantity 
"proportional, " i. e. that the real  amplitudes AlO(t) and 

A,,(t) of i ts  components a t  the entrance to the medium w = -  
satisfy the proportionality condition 

is positive when 0 < B(L ) < n and negative when r < B(p) 
n10 , - 'A102=n20~-1AZo2  

<2n. 
(if the condition (1) is not satisfied it will not be possi- 
ble to store the entire energy of the f i rs t  pulse as co- 
herent excitation: some of the energy will escape from 
the medium without being absorbed). Then if there is 
no phase modulation a t  the entrance to the medium (if 
cp, + cpz= const at z = O), the coherent excitation of the 
medium after passage of the f i rs t  pulse will be des- 
cribed by the following expressions for the population 
difference and the off-diagonal density-matrix ele- 
ment a,,': 

qt=cos 8 ( z ) ,  o,,l=-'/,i sin 8 ( z ) e s p [ - i  (kl+k2)z-i(cp,+q2) I ,  (2) 

in which the a rea  of the pulse, 

Using Eq. (8) and the solution 

of Eq. (7) for  bk=O and noting that A,>>A, near the 
entrance to the medium, we easily see that the phase 
difference A quickly reaches a region close to 2kr o r  
to (2k + 1)n in which i ts  subsequent variation is slow and 
i s  described by the expression 

Thus, phase locking of the interacting waves takes 
place in resonant parametric interactions of USLP that 

lo do not overlap in time and space, just as it doesz0 in 
depends on the coordinate z according to the law1' quasistationary RFPI. 

ctg ( 8 ( 2 ) / 2 )  =ctg ( 8 , / 2 )  +az.  

Here 

(1=2nNx,~c-'(o,o,/n,n~)'", O,=O(z=O), 

(3) Using Eqs. (4)-(6) and relation (9) (and neglecting 
corrections to (9) of the order of 18 k I W - I  << 1), it is 
not difficult to obtain the following equations for the 
real  amplitudes A, and A,: 

N i s  the number of molecules per unit volume, H.,, is the aA3,' 1 aAs i  + - ' =  - nNx,,os,, 
polarizability of the two-photon transition under the ac- rl,,, sin[b,*O (z) I .  

.I2 u at n3.,c (10) 

tion of the fields El and E,, n j  is the refractive index a t  
the frequency wj, and (to, t,) is the time interval during Here and the upper sign is for the case *<@o 

which the first  pulse passes the point z. < 277, and the lower sign, for the case 0 < 0, < n; fur- 
ther, 

Expressions (2) a r e  the initial conditions for the t 

second pulse, whose behavior i s  described by the equa- a,=2~,,ft-l j d , ~ ,  d t ,  

tions I* 

a&3I  1 a&,, 2niNxsbw8,,  where t, is the time at which the second pulse appears 
---- + - - = - ~ ; ~ o , , , , e , t '  +ha ., 

3~ a t  n3 (4) at the point z .  As long a s  A, is so  small  that 

and Eqs. (10) have the approximate solutions 

Here n,, is  obtained from x,, by the substitution w,,, - w,,,, we assume all the group velocities to be equal 
( u j =  u) and we neglect the difference between the polari- 
zabilities x,, and n,,. 

2. FIRST FREQUENCY-CONVERSION STAGE 

It is typical of most frequency-conversion experi- 
ments that the field E4 is not present at the entrance to 
the medium (A,, = 0). Taking account of the fact that 
E, is small during the first  stage, we find from Eq. (5) 
that ~ , ~ ( t , z ) = u , ~ ( t , , z ) = u , ~ ' .  Substituting this value 
into Eq. (4) on the right and writing the equation for the 
phase difference, A = (p, + (p, - q, - p, +z 6k, we have 

in which A,,( t) =A,( t, z = 0) is the amplitude of the trig- 
ger field a s  it enters the medium, and a! 
= 2vNx3~c' 1 ( ~ 3 ~ 4 / n 3 n 4 ) 1 ' 2 .  

It is  evident from (12) that when 0< 8 ,< v , the fields 
A, and A, increase with increasing z while the pulse 
tends more nearly to satisfy the proportionality condi- 
tion. The area  9, of the pulse increases without limit, 
so  that condition (11) must ultimately be violated. Then 
the first  stage of the conversion ends (for the case 0 
< B , < s  ) if it has not ended earlier  because of violation 
of the phase locking condition 

aAla f=6k+W(g ,  f )  sin 4 ,  (7) ISkI W - ' < n .  

If n<  0 ,< 2s . the fields A, and A, also increase at 
where 6k = k,+ k, - k, - k4 is the wave mismatch, I = z ,  first ,  but they reach a maximum when 0 ( z )  comes 
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close to n. Although the first  of the conditions (11) 
is violated near this point, each of the fields A, and A, 
is virtually the same after this point a s  before it pro- 
vided 9, << 1, s o  that one can continue to use formula 
(12) beyond this point. The subsequent behavior of A, 
and A, is the reflection in the point 8 ( z ) = r  of their 
behavior for r < 8 ( z )< 8 ,. Hence we have A, = A ,  and 
A,= 0 at the point 8 ( z )  = 2r - 8 ,= e. The phase changes 
discontinuously by n at  this point, and the subsequent 
behavior of the fields is the same a s  for pumping with 
an input area  between 0 and a .  

Depending on the relation betwen 8 ,, a, and a ,  it may 
turn out that 8 ,  becomes of the order of o r  greater than 
unity before the point where 8 ( z ) =  r is approached. In 
that case formula (12) is no longer applicable. 

We note that the above description of the behavior of 
the fields for [ r  < 8,<2n is valid not only for systems 
in which the wave synchronism i s  exact (bk = 01, but also 
for systems in which Ibk I i s  much smaller than the re- 
ciprocal distance between the maximum [at 8(z) = a] and 
the zero [at 8(z) = 8]  of the field A,. In the opposite case 
the first stage ends not because of violation of con- 
ditions ( l l ) ,  but because of phase breaking. In sub- 
sequent stages the character of the interaction also de- 
pends substantially on the magnitude of the wave mis- 
match. 

3. FORMATION OF PULSES OF THE FIELDS A3 AND 
A4 IN SYSTEMS WITH WAVE SYNCHRONISM (6 k = 0) 

In the most typical experimental situations, A,, i s  
small. In this case the subsequent behavior of the fields 
A, and A, can be calculated under the assumption that the 
second pulse nearly satisfies the proportionality con- 
dition. We introduce the following notation: 

Then it is  not difficult to derive the equation 

alp *2a+a(xZ-I) 2a-+a(lp2-1)=($2+1) 
dx x2+l 

from (10); this equation is  related to the Riccati equa- 
tion and has the particular solution $ = x .  The general 
solution of (13), expressed in terms of the variables 
x and y ,  has the form 

6,*0 (2) (xZ+l) l T a i "  
t = ctg - =*x+ 

2 ~ ( Y ) ~ D ( X ) - '  

where 

For the first  case,  the solution (14) for the total area 

of the second pulse takes the form 

6+ 0 (x) 0 =/..-I 
ctg--- 2 =x+ ( ~ ' t i ) l - - ~ "  [(sin' +) 

where 9, i s  the limit of S ,  a s  t --. When a = a  (this is  
the case, for example, when w,= w, and w,= w,) for- 
mula (16) reduces to the a rea  theorem for two-photon 
absorption of a pulse consisting of two subpulses. In 
the general case, (16) is the a rea  theorem for the 
RFPI that we a r e  considering. Results of an analysis 
of (16) a r e  presented in Table I, from which it follows, 
in particular, that if 9, << 1 (A,, being small, while A,, 
=0)  there a r e  two limiting values a,,, of 9, namely 0 
and 2s (k = 0). 

Using (14) and (15), we can obtain the space-time dis- 
tribution of the fields for a < 8, c 217: 

(17) 
where 

It i s  obvious from this that when a >a the fields A, and 
A, at large distance, near the points a t  which B ( y )  
=D(x), increase without limit a s  x increases, while the 
fields in the rest  of the pulse decrease. If a, < a ,  on 
the other hand, the fields decrease throughout the en- 
t i re  pulse. 

By analyzing Eq. (14) for the case O< 8,< r in a sim- 
i lar  manner one can show that the limiting value 9,,, 
i s  zero  (s ince4 << 1) and no subpulse whose amplitude 
would increase without limit i s  formed. This i s  closely 
evident from the computer-calculated curves in Figs. 
1 and 2. 

Let us  discuss the more general case in which the 
initial stage of the conversion ends before the pulse 
becomes approximately "proportional. " Using Eq. (10) 
written in t e rms  of the coordinates 5 and 5 ,  we obtain 

x, = az, + cot(Bd2)= cot(8,/2), and z = z, i s  the coordin- 
ate of the point beyond which the pulse may be assumed 
to be "proportional. " The upper sign in Eqs. (14) and 
(15) i s  for the case r < 8, < 2n, and the lower sign, for 
the case 0 < 8, < r. 

TABLE I. Behavior of 9 at large distances (as z,x -*). 
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where 

If we let 6 tend to infinity, we can see  without difficulty 
that for arbitrary pump and trigger fields and with no 
input field of frequency w, (A,,= 0) there can be only 
two limiting values, namely 0 and 28, for the total area 
9 of the pulse. Writing 0(5)=0 in (18), we can show 
rigorously that a "proportional" subpulse of area 2r (or 
0) develops in the second pulse at large enough distances 
against the background of the trigger pulse. 

We note that in the case of two-photon absorption of 
pulses that do not satisfy the proportionality condition 
one can show in just the same way that "proportional" 
subpulses of area 2n ar ise ,  a s  well a s  a subpulse of 
that one of the fields Aj ( j  = 3,4) for which the quantity 
njwi1A;, i s  the larger; moreover 

Using these results together with the law of energy con- 
servation and the first integral written down in (181, we 
can concludethat the limiting area  8,,, of a pulse that 
does not satisfy the proportionality condition a s  it enters 
the medium does not exceed the value 

which i s  the area  of the "proportional" part of the input 
pulse and i s  certainly smaller than the total area  

of the pulse at the entrance to the medium in the case of 
two-photon absorption. It follows a t  once from what 
has been said that, for example, a 2a pulse that does not 
satisfy the proportionality condition at the entrance to 
the medium will damp out to zero at large distances. 

FIG. 1. Space and t ime evolution of the trigger-field (A3) and 
generated-field (A4) pulses a s  calculated for  the following pa- 
rameter  values: a / a  =2,  O o  = 1.9*, A30 = 5 cgs esu,  h3=2364 
nm, h4=330 nrn, and N =  lo i6  ~ m - ~ .  Y = x / a  - v t ,  and z i s  the 
distance traversed by the pulse. The trigger-field pulses a r e  
shown by the dashed curves, and the generated-field pulses, 
by the full curves. 

4. CONVERSION COEFFICIENT AND THRESHOLD 
CONDITION FOR SYSTEMS HAVING WAVE 
SYNCHRONISM (6 k = 0) 

Let us  find the limiting values (as z -m) of thecoef- 
ficients P,,,  for conversion of pump energy to energy of 
the fields A, and A,. Making use of the fact that a "pro- 
portional" subpulse develops against the background of 
the trigger pulse, we can easily express the limiting 
energies U:,',m of the fields A,,, in terms of the pulse 
area 8,,,: 

From this it follows that 

(U,, and U,, a r e  the input energies of the pump fields 
A, and A,). The fact that the refractive indices do not 
differ by more than 1% is  taken into account in (20). 
The complete limiting conversion coefficient is  

p =pIii+p'" - a @ti,, 
lim ' ' (21) 

a 00 

It i s  evident from Eqs. (2) and (4)-(6) that the energies 
U, and U, of the fields A, and A, a r e  periodic functions 
of 0, with the period 277 (this i s  shown in Ref. 16 under 
the assumption that the fields A, and A, a r e  weak). 
Hence 8,,, is  also a periodic function of O,, and ac- 
cording to (20) and (21) the use of a pump pulse with 
area 0,> 2n will reduce the conversion coefficient. 

It was shown in the preceding section that 8,,,  can 
assume either of the two values 0 and 2a. In the first  
case PI,,= 0, and in the second case Pii, differs from 

FIG. 2 .  Space and time evolution of the trigger-field (A3) and 
generated-field (A4) pulses a s  calculated for  the following 
parameter values: cu/a = 1 / 2 ,  Bo = 1.9*, A3,=  5 cgs esu, h3 
=2364 nm, A4=330 nm, and N=1016 ~ m - ~ .  ~ = x / a - v t ,  and z 
i s  the distance traversed by the pulse. The trigger-field 
pulses a r e  shown by the dashed curves,  and the generated- 
field pulses, by the full curves. 
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zero and is given by 
$,i,=2na/80a. 

It i s  of interest to find the conditions that the trigger 
field must satisfy in order for the value 9,,,= 277 to be 
reached. To do this we must determine the point x, 
at which the solution for 9 in the first  stage of the con- 
version (12) fits the value of 9 from (16) smoothly, 
i. e. , where the functions 9(x) themselves and their 
first derivations with respect to x coincide. Expres- 
sing Dl, B ,  and D in terms of the value found for x,, we 
obtain the threshold condition 

The condition that the pulse satisfies the proportionality 
condition at the point x, turns out to be even simpler: 

Ths pulse can be regarded a s  small when 

If we do not determine x, from the condition that 9 and 
its first derivative match a t  this point, but rather from 
the requirement that the pulse satisfy the proportionality 
condition to a certain degree of approximation, then the 
threshold condition (23) will remain virtually unchanged, 
while the region within which the analysis i s  applic- 
able, which is determined by (25), will become con- 
siderably broader. If condition (23) i s  satisfied, then, 
a s  i s  evident from (221, the conversion coefficient for 
a given pump pulse (go= const) will not depend on the 
strength of the trigger field. When 0, i s  not much smal- 
ler  than 2n but 9,,,= 2n (the threshold being exceeded) 
then p = a / a  < 1 for systems in which a > a. The largest 
value of /3 will be reached when a i s  only slightly larg- 
e r  than a ,  but in this case a large trigger field must be 
fed in [see (23)]. It i s  possible that by increasing the 
strength of the trigger field one might be able to assure 
passage to a 277 pulse at a lower pump-pulse area  0, 
and thereby increase the limiting energy-conversion 
coefficient in systems in which a i s  considerably larger 
than a. 

If both of the fields A,, and A,, a re  fed into the medium 
the conversion coefficients will not be obtained from 
Eqs. (20) and (21) directly, but by the equations ob- 
tained by substituting 9,,, -9, for 9,,, in them, where 

(for definiteness we assume that (n3/w3)1/2~,o 
> (n4/w4)1/2~,o). The threshold conditions for the am- 
plification of pulses of the fields A,, and A,, that satis- 
fy the proportionality conditions a t  the entrance to the 
medium will already be determined not by (231, but by 
the relations between 9,, B, and D in accordance with 
Table I. A pulse of the arbitrary fields A,, and A,, 
will be amplified if the threshold conditions according 
to Table I a r e  satisfied for the "proportional" part of the 
input pulse of area  9, [see Eq. (26)]. Then the limiting 
conversion coefficient will not depend on whether o r  not 

the second pulse i s  "proportional" on entering the med- 
ium. 

When a > Q, the result 9,,,= 277 would violate energy 
conservation [it would imply that P,,,> 1, see Eq. (2111 
for arbitrary values of 0, and A,, (with A,,= 0). Hence 
the only possible limiting value for the pulse area in 
systems having a > Q is 9,,,= 0, i. e. , in this case it i s  
impossible to obtain a 2n pulse in the limit. However, 
this does not mean that no frequency conversion i s  pos- 
sible at all  when a >  a. Let u s  consider the case a =  2a  
a s  an example. We determine the maximum pulse 
area  9,,, from (161, while the position xm of the maxi- 
mum i s  a root of the equation 

On substituting x, = -1 here and assuming that 

we find that xm = 0.1, and that 9,,,= 2n - 4 arcot(xm) 
= 0.13a, which corresponds to a conversion coefficient 
of p=O. 13. It should be noted that it i s  not the entire 
energy of the pump pulse (of area  0,) that i s  converted, 
but only the part of it that i s  stored in the medium on 
the interval (0, z,), where zm=a-'[xm - cot(0,,/2)]. The 
entire energy of the pump pulse can be completely 
stored only over an infinitely long distance, so  com- 
plete conversion of the pump-pulse energy i s  possible 
only a t  large distances. 

It is  of interest to estimate the limiting values Pi,, 
of the conversion coefficients and the threshold inten- 
sities I,, of the trigger field necessary to realize them. 
Figure 3 shows the relation between P,,, and I t h r  in sod- 
ium vapor (the variable parameter i s  a /a) .  The cal- 
culations were carried through for the 3S, /, and 4D,/, 
levels a s  the working levels and the followingvalues of 
the fixed parameters: N= 1016cm-3; nl,= 2 
cgs esu; pump frequencies v,,,= 17 275 ern-'; trigger- 
and generated-field frequencies varying near v, 
= 4260 cm-I and v, = 30 290 cm-', respectively; and 
pump pulse area  go= 1 . 9 ~ .  As i s  evident from the 
figure, a trigger-pulse field intensity of It,,= 100 k ~ /  
cm2 is required to achieve a conversion coefficient of 
Pi,, = 75%, while Pi,, reaches 90% at 4,,= 500 kw/cm2. 

FIG. 3. Relation between the complete limiting conversion cc- 
efficient Pli, for sodium vapor and the trigger-field threshold 
intensity I;h, necessary to reach it (the variable parameter is 
the ratio cr/a). The characteristics of sodium vapor used in 
the calculations were taken from Ref. 21. 
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5. SYSTEMS HAVING LARGE WAVE MISMATCH 

Let us  write Eqs. (4)-(6) in the form 

and the initial conditions, in the form 
q =cos 0(z) ,  w e  =sin 0(z) exp [-i(z6k+cp,+rp2) 1. (28) 

Here w i s  defined by the relation wlm= -(1/2)iw 
.exp[-i(k, + k,)z]. We express the fields E, and E,  
and the density-matrix elements a,,,, and g in the form 

with 1 &,,, I<< I&,, 1. Let us  average Eqs. (27) and the 
initial conditions (28) over an interval that i s  short a s  
compared with the characteristic length in which the 
fields 8, and 6, vary appreciably but much longer than 
2r I6k I-' (here C,,,, 11, and & a r e  slowly varying func- 
tions of z (as compared with eiz"), while 

ij = q'" exp (-ivz6k). B =x w''' exp (-ivz6k) 

a r e  rapidly varying functions). The averaged equations 
agree with (27) under the substitutions 

~ ~ , . + & r . .  11'4. ~'2. 

The initial values of the slowly varying componentsare 

E,-0, nm=cosO(z) 

On calculating the rapidly varying components of the 
fields it i s  not difficult to co~vince  oneself that they a r e  
much smaller than the slowly varying components when 
the 1612 1 a r e  large enough. 

Turning to the equations for the real amplitudes and 
phases 6 j = x j e - i Y j )  we find that they a r e  just the equa- 
tions for two-photon interaction of the fields 6, and 6, 
with a medium in which the initial population difference 
is distributed according to the law g,, = cos@(z) and ulm 
= 0. The slowly varying real amplitudes satisfy the 
equations 

a x , ,  1 d~ X A ' X ~ ~ O S . ~  +-ri=-- A,, cos 0 (z)sin [+i AX, a 1. 
a2 u r ~ t  n, 

The boundary conditions for the amplitudes a r e  ~ , ,=A, ,  
and A,,=A,, provided both the fields A,, and A,, a r e  
present a t  the input. If A,,=O, Eqs. (27) must be used, 
beginning a t  the point z, at which the discontinuous 
phase change takes place (see Sec. 2); in this case the 
boundary values xjc a r e  determined with the aid of the 
condition 

eP,(zc) =8;;,(zC)+8J(zc), 

and a r e  given approximately by the formulas 
nNx,,o,lsin t3,I 

AsCaAsot AAomAso 
Ibklcn, ' 

(30) 

We can clarify the characteristic features of the be- 

havior of the fields of frequencies w, and o, by examin- 
ing the propagation of a square pulse of length 7,. As 
long a s  

we can replace the sine in (29) by i ts  argument and then 
solve the equation; the solution, expressed in terms of 
the variables M,=qnfwil,  has the form 

where 

If both A,, and A,, a r e  different from zero,  we must 
write 

It follows from (31) and (30) that a s  I6k I -  m , M,, 
and A,, tend to zero and the field A, does not arise.  It 
i s  also evident from (31) that if M, * 0 but 2r > @ > 3r/ 
2, M, decreases with increasing distance and subse- 
quently, when 3r/2 > 0 ,  r/2,  M, increases, after which 
the radiationof frequency w, finally dies out. The 
greatest r ise  occurs when 0, = 3n/2 and @ = r/2 (this . 
corresponds to z - z,= %/a). As M, increases, the ra- 
tio M,/M, approaches unity, and if 

the pulse becomes "proportional" (within the limita- 
tions of the present approximation). After that (and 
sometimes earlier)  the condition 5, << 1 may be violated. 

The subsequent behavior of the pulse after it has be- 
come approximately "proportional" can be traced with 
the aid of the formula 

which expresses the area  theorem for our system (b 
i s  the limit of 5, a s  t - .o, z, i s  the coordinate of the 
point beyond which the pulse can be regarded a s  "pro- 
portional", @,= @(zp)l and s,= B(z,)]. It follows from 
(32) that when 2kr < a,< 2(k + l)r,,9 - 2kr a s  z - a. When 
A,,= 0 the area  b, i s  less than 2r,  so  the pulse of the 
field A, must obviously damp out to zero (8- 0) at large 
distances. At finite distances, however, a considerable 
fraction of the energy stored in the medium may turn 
up in the "proportional" pulse. For example, for 0, 
= 3r/2, 8 = r/2, and z = 2/a, the energy -conversion 
coefficient 

becomes 

and reaches the value p = 0.6 if So= n and a =a. 
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6. CONCLUSION 

Thus, the interaction of bichromatic USLP propagat- 
ing successively in a medium under conditions of two- 
photon resonance with one of the transitions between 
energy levels of the medium retains a number of fea- 
tures of quasistationary RFPI: the generated wave (not 
present at the input) becomes phase locked inthe first  
stage; the region in which phase locking takes place 
narrows spatially with increasing wave mismatch; 
and an increase in the wave mismatch leads to a de- 
crease in the energy of the generated wave, this energy 
falling to zero in the limit l6k I - 00. On considering the 
interaction of USLP that do not coincide in space and 
time, however, we find considerable changes in the 
nature of the process. These changes lead, f irst  of all, 
to amplificationof a bichromatic pulse at a finite dis- 
tance, even in the case of arbitrarily large wave mis- 
match. At the same time, the pulse may damp out to 
zero at large enough distances even in systems with 
exact wave synchronism (in quasistationary RFPI a t  
6k = 0 a steady -state intensity i s  established at large 
distances a s  a result of parametric transparency (see 
Ref. 20 and the literature cited there)]. The amplifica- 
tion at large distances i s  a threshold effect: the 
strength of the trigger field must exceed a certain 
threshold value. The present case differs from that 
of quasistationary RFPI in that the limiting conversion 
coefficient i s  independent of the strength of the trigger 
field (provided the threshold i s  exceeded) andthe final 
energy of the generated field i s  established, not a s  a 
result of parametric transparency of the medium, but 
as a result of parametric transparency of the medium, 
but a s  a result of the development against thebackground 
of the trigger-field pulse of a subpulse of area  2n that 
satisfies the proportionality condition. 

')This result  can evidently be attributed to the parametric 
transparency that a r i se s  when a l l  the fields interact simul- 
taneously and limits the frequency conversion efficiency (see 
Ref. 18 for quasistationary RFPI  of the type under considera- 
tion and Refs. 11 and 12 for the generation of the third har- 
monlc of the ultrashort pump pulse under two-photon reson- 
ance). 
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