
density, polarization, and so forth)  differ  fundamentally 
f r o m  the results obtained by ~ a r ~ s h e v s k i r  et ~ 1 . ' ~  T h i s  
is due to the  e r roneous  nature of t h e i r  workz0 (a  detailed 
c r i t i ca l  ana lys i s  of Ref. 20 is given i n  Refs. 2 1  and 22). 

A substantial effect on the  radiation of channeled par-  
ticles is exerted by secondary p r o c e s s e s  which occur  
in the c rys ta l  (for example, multiple scat ter ing,  etc.). 
H e r e  dechanneling of the  particles and some broaden- 
ing of the spec t rum occur. Therefore  a s e p a r a t e  ar- 
ticle will b e  devoted to the  discussion of t h i s  question. 

In conclusion t h e  au thors  e x p r e s s  t h e i r  grat i tude to 
Yu. V. Kononets f o r  a helpful discussion and f o r  a num- 
b e r  of r e m a r k s  which made  possible  improvement  of 
th i s  article. 

 h he first indications of the existence of this effect for elec- 
trons were obtained by Agan'yants et ~ 1 . ' ~  In the current 
Soviet-American experiment at the Stanford Linear Accelera- 
tor Center (SLAC) spontaneous Y radiation was observed for 
positrons with energy 1-14 GeV in planar channeling of posi- 
trons through a diamond crystal?3 For electrons and posi- 
trons of low energies (E= 28-56 MeV) the effect was mea- 
sured by Datz et a ~ . ~ '  

 he real potential differs from harmonic. For more accu- 
rate calculation of the radiation it  is necessary to take into 
account the anharmonic part of the potential. Such a calcula- 
tion was carried out for the first time in Refs. 4 and 6 (see 
for example Fig. 1 in Ref. 6). In Refs. 4 and 6 at the same 
time the authors carried out an averaging over the amplitudes 
of oscillation of the particles in evaluation of the intensity of 
radiation [see for example Eqs. (5.4)-(5.6) in Ref. 61. 
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Stochastic self-oscillations in parametric excitation of spin 
waves 
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We consider a situation wherein an extesnal monochromatic pump excites parametrically a pair of primary 
spin waves, each of which ~reaks up in turn into two secondary wavq. The dynamics of the system is 
simulated numerically and it is shown that instability of the phase trajectories is & w e d  in it when the initial 
conditions are perturbed. The values of the Kolmogorov entrQpy are calculated for different values of the 
excesg over the parametric resonance threshold. 

PACS numbers: 75.30.Ds, 05.20. - y 

The i r revers ib i l i ty  of t h e  behavior of complicated dy- investigations1 by Smale, Anosov, Sin&, and o thers  

namic sys tems ,  consisting of a l a r g e  number of par t i -  have shown that dynamics randomization due to such an 
cles, is due to the  instability of t h e  phase t ra jec tor ies  instability is possible  also in s y s t e m s  having a s m a l l  

of such  sys tems  relat ive to s o m e  a r b i t r a r i l y  weak per -  number of d e g r e e s  of freedom. The  s tochast ic  behav- 

turbation of the  ini t ia l  conditions. Recent mathematical  ior i n  a real physical  model, descr ibed by only th ree  

82 1 Sov. Phys. JETP 51(4), April 1980 0038-5646/80/04082 1 -06$02.40 O 1981 American Institute of Physics 82 1 



variables, was observed in 1963 by E. Lorenz2 in a 
study of convective flow in  the atmosphere (see also the 
review by Rabinovich3). 

The distinguishing feature of small  randomizing sys- 
tems (SRS) is that, while they require a probabilistic 
description they do not admit of relaxation to an equi- 
librium thermal distribution, in constrast to  the multi- 
particle systems investigated in kinetic theory; nor can 
they be analyzed with the aid of methods of nonequilib- 
rium statistical mechanics, which presuppose the pre- 
sence of a large number of degrees of freedom. The de- 
velopment of a probabilistic theory of SRS is only be- 
ginning (see, e.g., Ref. 5). 

Small randomizing systems a r e  not r a re  exceptions: 
it turns out that a stochastic behavior is typical1 of mod- 
e l s  described by systems of ordinary differential equa- 
tions when the number of variables in the system is 
larger than o r  equal to three. Since, however, there 
a re  no exact analytic methods of detecting such 
systems, the conclusion concerning the stochasticity of 
each concrete dynamic system should be based on re-  
sults of i ts  numerical simulation and the number of sys- 
tems for which such calculations a re  made remains re- 
latively small. 

In the present paper we consider a system of s ix  in- 
teracting modes in parametric microwave pumping in  
an antiferromagnetic crystal. It is shown by numerical 
simulation that exponential instability of the phase tra- 
jectories takes place in  this system. 

1. FORMULATION OF THE MODEL 

We consider a situation wherein an external mono- 
chromatic microwave pump excites parametrically in  an 
antiferromagnet a pair of primary spin waves (SW), 
each of which decays in  turn into secondary waves; in  
addition, nonlinear dynamic interaction takes place be- 
tween the primary waves and corresponds to the "phase" 
mechanism of the post-threshold limitation (see Ref. 6). 
The Hamiltonian of the system is given by 

+'/z(a)~~ba;k,a;kt+ C.C. ) f 0k~la*k~l~+ak~1~*k~1~. (1 ) 

It describes the following: a) parametric excitation of a 
pair of primary SW with wave vectors *ko by a homogen- 
eous external pump with amplitude h and frequency 
w,(V is the coefficient of coupling of the external pump 
and the SW); b) nonlinear dynamic interaction between 
the primary SW (the interaction amplitudes a r e  T 
and S ) ;  c) decay of each of the primary waves into a 
pair of secondary waves with wave vectors *k,, *k, (a 
is the interaction amplitude). The following resonance 
condition is assumed satisfied1) 

When account is taken of the damping, the equations 
of motion for the canonical complex amplitudes of the 
waves a re  

Since six modes a re  present, the total dynamics of the 
system is described by 12 real  variables. To simplify 
the analysis, we assume that the damping of all the 
waves is the same: Y ~ ~ = Y ~ ~ , ~ = Y .  Then, if the ampli- 
tudes l ~ ~ ~ l  and I A - ~ ~ ~  , as well as la,,, 1 and la,2 1 coin- 
cide a t  the initial of instant of time, then their equality 
is preserved in all  succeeding instants of time. We re- 
gard this assumption a s  s a t i ~ f i e d . ~ )  Under these con- 
ditions the Hamiltonian contains only two combinations 
of the wave phases, \k and X, which a re  defined by the 
relations 

~ = @ ~ + @ ~ - 8 ,  Y =Y,+$, Yo=-n/2+arg V, 
1 ak,,.l exp (L@I,2-iokt,,t), (4) 

A,k.= I Akk.l exp (i(Yl2*8--'lzo,t)}. 

We use the following dimensionless variables and ad- 
ditional symbols: 

The coefficients S and T a r e  assumed negative, a s  is 
the case in real  antiferromagnets. The time is mea- 
sured in units of the reciprocal damping Y - l .  

Starting from Eqs. (3) and taking the fczegoing as- 
sumptions into account, we can obtain a system of four 
ordinary differential equations for the wave amplitudes 
and for  the introduced combinations of their phases: 

2- (H sin Y -l)x+ (x/x,) '"z sin (Y/2-x), 
Y=- (I+F)x+Fxo+H cos Y +z(zz,) -" cos (YI2-x), 

i=-[ I+(x/xi)'sin ('4'12-X) lz, 
(6) 

i= (x/x,) 'lr C 0 8  ( Y / ~ - X ) .  

We investigate below the phase portrait and the sequence 
of bifurcations of the system (61, show that its phase 
trajectories a r e  unstable to small changes of the initial 
conditions, and calculate the Kolmogorov entropy of this 
system for different values of the parameter x,. 

2. SINGULAR POINTS, LIMIT CYCLES, AND THEIR 
BI FURCATIONS 

The phase trajectories of the system (6) do not go off 
to infinity. The evolution of the system is accompanied 
by compression of the phase volume, since the following 
condition is valid 

When constructing the phase portrait it is convenient to 
use the "polar coordinates" 

u-x cos Y, v=x sin Y ,  s==a ws X ,  q-z sin X.  

Then the condition z = 0 specifies a plane in the indicated 
phase space. 

We l is t  now the stationary points of the system (6): 

1. An unstable stationary point is the origin O h  = z  
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FIG. 1. Pictureof the 
phase trajectories in the 
plane z= 0. 

= 0). On the z = 0 plane the point 0 is surrounded by an 
unstable limit cycle (see Fig. 1). The region of attrac- 
tion of the point 0 is small, and all the trajectories of 
interest to us pass outside this region. 

2. Two more stationary points lie on the z = 0 plane, 
namely the point P,: 

z=z,, Y -arc sin ( U H )  , (8a) 

and the point P,: 

It follows from the third equation of the system (6) that 
none of the trajectories that s tar t  out from points on the 
plane z = 0 leave this plane. In the plane z = 0, the point 
P, is a stable focus, and the point P, is a saddle. The 
picture of the phase trajectories on the plane z = O  is 
shown in  Fig. 1. 

In planes orthogonal to the plane z = 0, the stationary 
point P, is stable a t  x,<x, (complex node) and unstable 
at x,>x, (complex saddle), while the stationary point 
P, is stable at x,<x,@ +l ) / (F  - 1) (complex node) and 
unstable at x, <x,@ + I)/@ - 1) (complex saddle). 

3. At x, <x,<x,@ + 1)/(F - 1) we have an additional 
stationary point, the point P,: 

It is stable at small values of the excess of x, over x, 
(node-focus) and becomes stable a t  larger values of x, 
(see below). 

When the parameter x,= (Hz- I)''', that characterizes 
the excess above the resonance threshold (H= 1) f o r  
primary waves, is varied, the following sequence of bi- 
furcations is observed. 

At O<x,<x, the stationary point P, is stable and all  
the trajectories that s tar t  out outside the region of at- 
traction of the point 0 contract to the point P,. This 
regime corresponds to excitation of primary SW and to 
the absence of secondary waves, with respect to which 
the primary waves serve as a pump source. The oscil- 
lations near P, (see Fig. 1) constitute (damped) collec- 
tive oscillations about a stable stationary state of the 
system (see Ref. 6). The value x,=x, determines the 
threshold of production of secondary waves. At x,=x, 
the point P, loses stability and a new stationary stable 
point P,, which no longer l ies in the z = 0 plane, be- 
comes separated from P,. In this regime, the ampli- 
tude of the primary waves is frozen on the second 
threshold (x=xl), and the amplitudes z of the secondary 
waves remain stationary on account of the energy flux 

from the primary waves. With increasing x,, the point 
P, moves away from P,, and at a certain value x, i t  
loses i t s  stability.,' The loss of stability takes place in 
that plane in which P, is a focus, and a s  a result there 
a small limit cycle containing the point P, (which has 
become unstable) is produced. The onset of instability 
is physically due to the fact that the primary waves 
through which energy is transferred from the external 
pump to the secondary waves a re  incapable of carrying 
a very large energy flux and at the same time their 
amplitude remains frozen at the threshold x =x,. The 
limit cycle increases next and at a certain value x, 
"sticks" to the separatrix of the saddle point P,. The 
result is a vanishing of this limit cycle and a topologi- 
cal change in the character of the phase trajectory: i t  
now encompasses a cylinder (x, 9). 

3. NUMERICAL SIMULATION OF THE DYNAMICS 

To obtain the phase portrait  of the system at different 
values of x,, we have integrated Eqs. (6) numerically. 
The obtained trajectories were fed to a plotting unit 
with the aid of which the projections of the phase trajec- 
tories were cons t r~c ted .~ '  The initial coordinates were 
chosen near the point P,. The parameters F and x, had 
values F =x, = 2. The results of the calculations a re  
given in Figs. 2-5. 

The character of a trajectory after the destruction of 
the initial limit cycle is the following. If the trajectory 
is "let out" from a certain point near the saddle-focus 
P,, then i t  begins to twist along a spiral towards the 
point P, in the plane z = 0, and simultaneously moves 
away from i t  in the direction, orthogonal to this plane, 
of the one-dimensional separatrix of the saddle-focus 
P, (Fig. 2). With further motion, an abrupt "spill" oc- 
curs near theunstable point P,, and the trajectory re- 
turns to the plane z =0, after which the cycle of twisting 
and stretching returns. As seen from Fig. 2b, the 
phase 9 increases by 2r  after each such cycle. 

With increasing intensity of the external pump, i.e., 
with increasing value of x,, the phase portrait of the 

FIG. 2a. Projection of the phase trajectory on the plane ( x , z )  
at xo= 1 . 5 5 ~ ~  with xi= F= 2. The arrows show the direction of 
motion. 
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FIG. 2b. Projection of the phase trajectory on the b, *) plane 
for the same values of the parameters. The values of * mea- 
sured in units of ?r are marked on the ordinate axis. The 
squares on the curves are separated by equal time intervals. 

system becomes more and more complicated (Fig. 3), 
and i t  is natural to verify whether the behavior of the 
system at these values of x ,  is stochastic. 

4. PHASE-TRAJECTORY INSTABILITY AND 
KOLMOGOROV ENTROPY 

FIG. 4. Dependence of the quantity k on the time: a) no= 1,4x1, 
xi= F= 2; b) xo=4xi, xi= F=2. Curves 1-3 correspond to dif- 
ferent choices of the initial points of the two trajectories. 

If in  the course of time the trajectories a r e  attracted 
to a certain stable limit cycle, the quantity k(t) should 
tend to zero a t  large t. On the other hand i f  the motion 
is stochastic, then the distance between the trajectories 
increases exponentially with time and there should exist 

To check on the assumption that the obtained self-0s- a nonzero positive limit5' 
cillations a re  stochastic, we have numerically calcu- 

K- lim k (t) . 
lated the divergences of the phase trajectories. We cal- ,-roo 

(11) 

culated the quantity 

where 

 he quantity K is customarily called in the physical lit- 
erature the Kolmogorov entropy7 [strictly speaking, K 

(10) is the maximum characteristic Lyapunov number; it 
gives the upper bound of the true Kolmogorov entropy 
(see Ref. 8)l. We note that K is a dimensional quantity; 

~ ( t )  = { ( r c o - x ( ~ ) )  Z+(Y(~)-Y(L))Z+ ( Z ( I 1 - Z ( ~ ) ) ~ + ( X ( l ) - X ( l ) )  2 1 %  it characterizes the average rate of separation of the 
phase trajectories. 

is the distance, at the instant of time t, between two 
phase trajectories 1 and 2 that are  separated a t  the ini- 
tial instant of time t = O  by a small distance D(0). 

FIG. 3. Three-dimensional projection of phase trajectory on 
the space (x cos*, x sin*, z )  at parameter values x,= 4 3 ,  x1 
= F = 2 .  

Figure 4b shows a plot of k(t) for the value x,= 4xl at 
various choices of the initial points of the two phase 
trajectories. It is seen that in the course of time k(t)  
tends to a certain positive limit that does not depend on 
the initial conditions. As follows from the definition (10) 
of k(t), this means that the distance D(t)  between two 
initially closed phase trajectories increases on the av- 
erage exponentially in the course of time. Thus, in the 
investigated system we observe indeed instability of the 
phase trajectories relative to  a small perturbation of 
the initial conditions. For comparison, Fig. 4a shows a 
plot of k(t) for  x,= I.&,, a value for which a stable 
limit cycle is reached when the phase portrait is numer- 
ically constructed. 

We have calculated the functions k(t) and their limit 
values K for a number of values of the parameter x,. 
The obtained values of the Kolmogorov entropy K are  
shown in  Fig. 5. The value of K reaches a maximum in 
the vicinity of the point x,  = hl. At x,> 6x,, alternation 
of stable limit cycles and of regions of stochastic behav- 
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FIG. 5. Dependence of the Kolmogorov entropy K on the value 
of the parameter %,,/xi. 

i o r  a r e  observed, i n  analogy with what was observed in 
Ref. 9 f o r  the Lorenz model. In the vicinity of 1.4<x0 
< 3 the behavior of the system is apparently stochastic 
( K > O ) ,  but the accuracy of the calculations does not 
make this  conclusion unequivocal. 

5. CONCLUSION 

The onset of self-oscillations in  the presence of an 
energy flux over the spectrum can be illustrated with 
the following simple example. 

We consider a situation wherein an external energy 
source feeds only one normal mode of the excitation of 
the medium, while the remaining normal modes 
"draw" energy from this f i r s t  mode. The f i r s t  mode 
becomes unstable a t  a certain cri t ical  value of the pow- 
e r  p of the external source, and the next instability- 
instability of one of the modes not directly coupled to  
the pump-sets i n  when the intensity N, of the f i r s t  mode 
exceeds a certain cri t ical  value No. If i n  the entire r e -  
gion of interest  t o  u s  the intensities of the two modes 
N, and N, remain smal l  enough, then by analogy with 
the mechanism of the onset of Landau turbulence we can 
use the model 

Elementary analysis shows that a t  smal l  values of the 
excess above the threshold of the f i r s t  instability, a 
stable stationary state is established in the model (121, 
wherein the second mode is not excited (N, =O), and the 
intensity of the f i r s t  mode is limited because of the ef- 
fect of the positive nonlinear damping and is equal t o  
3, = ( a / ~ ) ( p  -P,). 

The new stationary state is established when, with in- 
creasing power p of the external source, the intensity 
m, of the f i r s t  mode exceeds the cri t ical  value N,,. In 
this new stationary state, the intensity of the f i r s t  mode 
is quenched a t  the threshold value N,, and the intensity 
of the second mode differs  from zero  and increases  
with increasing power p fed into the medium: 

An investigation of the stability of the stationary state 
(13) relative t o  smal l  deviations of the intensity Nl and 
N, shows that it is stable only a t  sma l l  excesses above 
the threshold of generation of the second mode P, = p ,  
+ @/a)Nm, when the power p of the external source 
sat isf ies the condition p,<p <p, + @/a)Nc,. At higher 
values of p, the system (12) does not have even one 
stationary stable state,  and since the phase trajectories 
in  this  system do not go off t o  infinity, the system has 
a t  p >PC,+ 2 (B/a)N,,  a stable l imit  cycle-periodic self- 
oscillations of the intensities of the two modes." 

Compared with the simple model (121, the situation in 
parametr ic  excitation of SW turns  out t o  be more com- 
plicated in  that  the limitation of the growth of the f i r s t  
unstable state-a pa i r  of pr imary  parametrically ex- 
cited SW-is insured not by the positive nonlinear 
damping, but by a phase mechanisme of dynamic origin 
and connected with the part ial  forcing out of the external 
pump from the sample. It i s  important, in  addition, 
that  the f i r s t  unstable mode has in th is  case two degrees 
of freedom and is characterized by two slow variables- 
amplitude x and t ime phase *. 

Nonetheless, the sequence of the instabilities remains 
qualitatively the s ame  a s  in the simple example (12). 
At relatively small  excess  above the threshold of para- 
met r ic  resonance, no secondary waves a r e  excited and 
a stable stationary state of the phase theory 
x = (Hz- I)''', sin Ik= 1 / ~  is realized. If the amplitude of 
the pr imary  waves x in th is  stationary state exceeds 
the cri t ical  value x,, i t  becomes unstable and a new 
stationary state appears, in which the amplitude x is 
"frozen" a t  the threshold value x =xl. Being stable 
when produced, the new stationary state loses, how- 
ever,  i t s  stability a t  a certain higher external-pump 
power. Jus t  a s  i n  the case considered above, the loss  
of stability i s  connected with the fact that, in analogy 
with the mechanism of the positive nonlinear damping 
in the model (121, the phase mechanism of the post- 
threshold limitation is incapable of maintaining the sys-  
tem stable under conditions when an  eve r  more  intense 
energy flux to the secondary modes must flow through 
the pr imary  mode with a "frozen" amplitude. 

The resultant self-oscillations of the amplitudes x and 
z and of the phases * and x a r e  a t  f i r s t  regular. The 
randomization of the self-oscillation takes place when 
the swing of the oscillations of the temporal phase * 
reaches a value 2n. The phase portrai t  of the system 
then acquires the form of an "uncoiling" sp i ra l  and 
turns out t o  be close in character  to the "spiral chaos" 
previously observed1' for  a number of models with 
chemical reactions. We note also that the results  ob- 
tained in  the present  paper confirm the conclusion sta-  
ted i n  the review3 that the decay processes  play an im- 
portant role i n  the onset of turbulence. 

Different self-oscillations a r e  quite frequently obser- 
ved i n  parametr ic  excitation of spin waves. The obser- 
ved effect of stochastic self-oscillations can take place 
in  ferromagnets and antiferromagnets when the conser- 
vation laws allow the decay of parametrically excited 
spin waves into two spin waves, into a pair  of spin 
waves and a phonon, o r  into two phonons. It must be 
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emphasized that the resul t s  obtained i n  this  paper are 
applicable directly only to experiments with very small  
samples, i n  which only one pa i r  of parametrically ex- 
cited spin waves appears above the threshold. If we use 

-- 

the est imates given in Ref. 11 fo r  the nonlinear self- 
action amplitudes S and @ f o r  ferromagnets in  the case  
of decay into two spin waves (S - p o M o / ~ ,  @ - poMJ 
xu 2 , where JV is the number of unit cel ls  in  the crys-  

tal, and M, is the magnetic moment p e r  unit volume), 
then we can obtain f o r  the threshold of the onset of the 
self-oscillations (xo-x,) the estimate ~ h / h , -  Ky/poMo, 
and consequently the self-oscillations should occur im-  
mediately after the threshold of the parametr ic  reso- 
nance is exceeded. Actually, however, in experiments 
on parametric excitation of the spin waves above thres-  
hold, there is always excited a rather wide packet of 
waves.12 If the individual waves in the packet are 
strongly enough correlated with one another, one can 
expect the qualitative picture of the phenomenon to  re- 
main the same (but the threshold of the stochastic self- 
oscillations increases  compared with the estimate given 
above, by a factor  equal t o  the number of individual 
waves i n  the packet). On the whole we hope the resul t s  
of the present  paper to at tract  s tronger attention to the 
study of self-oscillations in parametric excitation of 
spin waves in  magnetically ordered crystals. 
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"We assume that the dimensions of the crystal are small 
enough and that modes with other (discrete) wave vedors do 
not enter in the resonance region. 

2 ' ~ s  a check, we simulated numerically the dynamics of the 
system without assuming equality of the amplitudes and of the 
damping of the secondary waves; this simulation revealed no 

ERRATA 

qualitative deviations from the results presented below. 
3 ' ~ h e  - .  value of x' is  given by a root of a transcendental q u a -  

tion; at F= 2 and xi = 2 i t  lies in the interval. 
4 ' ~ h i s  part of the work was performed at the Computation Cen- 

ter of the Institute of Physics Problems of the USSR Academy 
of Sciences. 'Ihe authors thank the staff of the Computation 
Center for help with the calculations. 

5'~sually, in the determination of K, one must not use too 
large values of t ,  for if the phase trajectories do not go off to 
infinity, the distance between them cannot increase without 
limit. Since in the definition of k ( t )  we do not regard the 
phases * or  x that differ by an integer multiple of 2a as iden- 
tical, no such difficulties arise here. 

6 ' ~ h e  system (12) cannot have a stochastic behavior, since it 
contains only two variables. 
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