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The line shape of the scattering due to singular longitudinal and biaxial fluctuations of the order parameter in 
nematic liquid crystals is calculated. Qualitative effects by which the character of the fluctuations can be 
determined from the line shape are indicated. 
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I. INTRODUCTION 

Scattering of light in liquid crystals, particularly near 
the phase-transition point, has been recently investi- 
gated intensively both theoretically' and experimental- 
I Y . ~  As a rule, when it comes to the nematic phase, 
only light scattering due to fluctuations of the director 
is considered (with the exception of Ref. 3, which will 
be discussed later). This is generally speaking justi- 
fied, since the main cause of the anomalously strong 
scattering in liquid crystals is the fluctuation of the 
orientation of the director. The reason is that nematic 
liquid crystals a r e  degenerate systems (or systems 
with broken continuous symmetry) and therefore uni- 
form transverse fluctuations (i. e., uniform rotations 
of the director in all of space) need not overcome a bar- 
r ier  to become excited (i. e., they a r e  Goldstone fluctu- 
ations). 

It is known, however,'-3 that the transverse fluctua- 
tions do not lead to light scattering if the polarization 
satisfies certain conditions. For  example, there is no 
scattering if the vectors of the initial and final polariza- 
tions a r e  in the equatorial plane, i. e., in the plane 
perpendicular to the director. More accurately speak- 
ing, the transverse scattering is weak in a small angle 
interval such that the polarization is close to the equa- 
torial plane. The second simplest case in which the 
transverse fluctuations do not lead to light scattering 
occurs when the wave vectors of the incident and scat- 
tered light a r e  in the equatorial plane, and the polari- 
zations a r e  parallel to the director. In this region the 
light scattering is determined by fluctuations of another 
type, namely longitudinal and biaxial fluctuations. 

We define as longitudinal the fluctuations of the mod- 
ulus of the order parameter. Biaxial fluctuations des- 
cribe the deviations of the order parameter from the 
uniaxial tensor defined by the director. Pokrovskii and 
one of us  ( K a t ~ ) ~  calculated the integrated (with respect 
to  frequency) intensity of the light scattering connected 
with the longitudinal and biaxial fluctuations. It is ex- 
perimentally more convenient, however, to measure 
not the integrated but the spectral intensity, i. e., the 
line shape. This is due both to the higher accuracy of 
such a procedure and to the fact that in the spectral in- 
tensity i t  i s  easier to separate effects that stem from 
impurities and other defects. To calculate the spectral 
intensity it is necessary to investigate the dynamics of 

the fluctuations of the order  parameter. The present 
paper is devoted to this investigation. 

StratonovichS has obtained certain results pertaining 
to the same question. We call attention out to the dif- 
ference between our study and his. As  to the longitud- 
inal fluctuations, Stratonovich3 considered only the so- 
called classical fluctuations of the modulus s of the or- 
der  parameter Qij, i. e., he determined the fluctuations 
(Bs2) directly from the expansion of the Landau free en- 
ergy. At T < T, (T, is the temperature of the transition 
into an isotropic liquid) these fluctuations a r e  not sing- 
ular when the fluctuation wave vector q - 0. These fluc- 
tuations a r e  present, generally speaking, in any system 
that undergoes a phase transition, and one can say that 
they manifest no liquid-crystal properties whatever. 
We, on the other hand, consider singular longitudinal 
scattering, which is typical only of such a degenerate 
system a s  a nematic liquid crystal. Such singular lon- 
gitudinal fluctuations a r e  connected with the presence of 
Goldstone transverse fluctuations (in this case, the 
fluctuations of the director). As shown in Ref. 4, the 
singular longitudinal fluctuations predominate a t  wave- 
lengths X r 5000 A.  In Ref. 3 there was considered also 
the dynamics of biaxial fluctuations. The intensity of 
light scattering is determined by the fluctuations of the 
anisotropic part of the dielectric constant cij ,  which is 
connected with the fluctuations of the order-parameter 
tensor Qi,. Stratonovich,' however, does not take into 
account the interaction of the fluctuations Q i j  and of the 
velocity v of the liquid crystal. It is known, however:.2 
that the time dependence of the fluctuations of Qi, (and 
consequently also the spectral intensity of the light 
scattering) can be strongly influenced by the hydrody- 
namic motion. This is the cause, for example, of the 
birefringence in the stream. In the present paper the 
cross  sections for the singular longitudinal and biaxial 
scattering a r e  calculated with account taken of the hy- 
drodynamic interaction. 

II. LONGITUDINAL SCATTERING OF LIGHT 

The order parameter of the nematic liquid crystal 
Qij  can be written in the following most general form: 

where the transverse fluctuation 6Qtj satisfies the or- 
thogonality conditions 

nin,SQ,ji=O, 6Q,,1=0. (2) 
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The conditions (2) can be satisfied in general form by 
introducing the new variables4 

where the director n and the unit vectors el and e, make 
up a right-hand triad of unit vectors. The parameters 
6, and 5, describe the fluctuation of the director, while 
t3 and t4 describe the biaxial fluctuation. 

As already indicated in the Introduction, strong trans- 
verse fluctuations lead in degenerate systems to weaker 
but likewise singular longitudinal fluctuations. The cor- 
responding connection is expressed by the so-called 
modulus-conservation principle: 

2s6s=- (6Qa1)'. (4) 

This local equality takes place in coordinate space, 
while in momentum space it is necessary to calculate 
the integral of the transverse correlators; this can be 
symbolically represented in the form of a loop diagram 
(see the figure). The lines of the diagram corres- 
pond to the correlators of the fluctuations of the direc- 
t0l.l' t ~ , ,  

I.(q, o)= I d r I  d texp( iqr- to t )  (E,(r,t)f ,(O,O) ), (5) 

where a = 1,2. The transverse correlator is calculated 
from the linearized equations of hydrodynamics and is 
well known1: 

where 

and A,, C,, Pa, and B, a re  equal to: 

Here a, a re  the standard symbols for the Leslie coef- 
ficients, while ql, q,, and am denote certain combina- 
tions of a ,: 

q+='12 (aa+ar+aa), VZ"/~ ( a i + a s - a t ) ,  

aa=2(ai+aJ +as+ ae+a3-a, 

The coefficients y, and y,  describe the rotation friction: 

Unfortunately, the longitudinal fluctuations can be 
determined from (6)-(8) only numerically. At a suffic- 
ient degree of accuracy for the establishment of quali- 
tative relations, however, one can use the following 
approximation. In practically all  nematic liquid cry- 
stals the parameters a, and a, a r e  small, while the 
remaining a,-a, a re  larger by at least one order of 

FIG. 1. 

magnitude. Thus, for example, in the MBBA crystal 
at  T,- T=10 K we have ( ~ ~ = 6 . 5 , ( ~ ~ = - 1 . 2 , ( ~ ~ = - 7 7 . 5 ,  
a, = 83.2, a, =46.3, a, = -34.4. The signs of the "large'? 
Leslie viscosity coefficients a re  also fixed. In this ap- 
proximation (whose accuracy is -1%) CJ3, << ylP,. We 
therefore have from (7) 

With the same accuracy (-I%), however, we can neg- 
lect the anisotropic elastic moduli. Thus, ultimately, 

K 2 T 2T r = - q ,  I ( q ) = - y ,  I ( q , o ) = -  
1 

T I  Kq 7 1  mz + (Kz /y t2 )  q' 
. (10) 

It is more convenient to carry out the calculations in 
coordinate space: 

The integral with respect to frequency can be easily 
obtained: 

We next calculate the integral over the angles: 

T 1 1 " d q  K  
l ( r , t ) = - - - j  7 ,  2nZ r - ~ i n ( ~ r ) e x ~ ( - - ~ ~ t ) .  

0 4  Y l  

The integral in (11) is well known (see, e.g., Ref. 5): 

where 

The longitudinal fluctuation is 

From the modulus conservation principle (4) we have 

G (r ,  t )  = (6s ( r ,  t )  6s (0 ,  0 )  )= l2 ( r ,  t ) / 4 s z ,  (14) 

from which we get 

G ( r ,  t )  = ------- - 
64n'KsZ i 

Equation (15) solves in principle the problem of the 
intensity of light scattering by longitudinal fluctuations. 
However, a direct Fourier transformation of (15) i s  
quite difficult to obtain. 

It is more convenient to use first a partial Fourier 
transform only with respect to the coordinate. We again 
have from (4) 

In turn we obtain from (10) an expression for I ( p ,  t): 
T 1 K 

~ ( ~ , t ) =  - 7 e x p [ - - p z t )  . 
K P Y l  

(17) 

Substituting (17) in (16) and calculating the integral 
with respect to the angles, we obtain 
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where A =p2 + q2/4. 

It is seen from (18) that the main contribution to the 
integral comes from the region q << p .  Expanding the 
integrand in this region, we obtain accurate to (q/pY 

Formula (19) can be easily Fourier-transformed with 
respect to time 

The principal consequence of (20) is that the line 
shape is not Lorentzian. At w >> q we have G(q, w) 
- I / W ~ / ~  and at q>> w we have G(q, w)-1/q3. 

The light-scattering cross  section can be easily con- 
nected with the quantity G(q, w ) .  The differential cross  
section in the frequency interval dw and in the solid 
angle interval dS1 is 

where 6w,, is the fluctuation of the dielectric tensor, p 
and pt a r e  the polarization vectors of the incident and 
scattered light (we use a system of units in which the 
speed of light c = 1). By virtue of the symmetry, 6cij 
is connected with the fluctuation of the order parameter 
6Qyjby the linear relation 

6~,,=.&!6Q~,". (22) 

From (22), (21), and (13) we have 

Ill. BlAXlAL SCATTERING OF LIGHT 

To calculate the spectral intensity connected with the 
biaxial fluctuations it is necessary to know the dynam- 
ics of the fluctuations. The system of the basic equa- 
tions of motion is conveniently written in the form of the 
Langrange variational equations obtained from the 
least-action p r i n ~ i p l e . ~  To this end it suffices to spec- 
ify the density of the Lagrangian. In the case of in- 
terest  to us, of a medium in thermodynamic equilibri- 
um, the role of the Lagrangian is assumed by the dif- 
ference between the kinetic energy E and the free en- 
ergy F: 

, 9 = E - F .  

By using the f ree  energy F, we aim by the same 
token to confine ourselves beforehand to processes a t  
constant volume and temperature. To take into account 
the relaxation processes it is necessary also to specify 
the density of the dissipation function R. As the inde- 
pendent variables that characterize the state of the li- 
quid crystal a t  the point r and a t  the instant of time t 
we choose the displacement v e ~ t o r  u(r, t) [the velocity 
of the liquid crystal is v(r,  t) =u(r,  t)] and the order 
parameter Q, j(r, t). As usual, we assume that the li- 
quid crystal is not compressible. 

The kinetic-energy density takes the form 
ti-P&/?, (25) 

where p =const is the density of the medium. 

The expression for the free energy in terms of the 
variables t i  was obtained in Ref. 4: 

' 
F=K,~?C I E , 1 2  + ' / ,K,q2[  ( 5 ,  cos 0+E3sin0)Z 

I =  1 
(26) 

+E2'+E,Z sinZ 0-E2E. sin 201 + '/%A (E32+b,2),  

where Kl and K, a r e  certain combinations of the Frank 
moduli. (kl = k and k, = O  in the case K,, =K,, =K3, =K); 
0 is the angle between the vectors n and q ,  and A char- 
acterizes the energy needed to excite the biaxial fluctu- 
ation. In the Landau theory 

where B and C a r e  the coefficients of Q:, and Q:j, re- 
spectively. 

For  our purposes, the linearized hydrodynamics 
equations a r e  sufficient. It is therefore enough to take 
into account in the density of the dissipation function 
the quadratic dependence on the velocity gradients av ,/ 
ax, and on the rate of "rotation,, of the order parameter 
relative to the liquid crystal: 

It is convenient to introduce the corresponding symme- 
trical  tensors 

where u=(1/2) curl v and e,, is a fully antisymmetri- 
cal tensor. 

The function R is constructed from Qi , and from ex- 
pressions quadratic in A i j  and Nil. At the required ac- 
curacy, with allowance for symmetry considerations 
and orthogonality (2), we can write 

Some of the viscosity coefficients p i  can be expressed 
in terms of the Leslie coefficients, while three coeffi- 
cients represent new "biaxial" viscosities. 

The general form of the variational equations of mo- 
tion with a certain set of variables m ,(r, t) is given by 
the known expression 

- + -  6R a 6R d 6 9  6 9  8  8.9 - +- 

Z( ar, ) am. sx ,  a (am. /ax . )  am. dz ,  a ( a m . / a x ~ )  . (29) 

The employed independent variables mi a r e  the three 
components of the displacement vector u and the four 
parameters 5, that characterize the fluctuation of Q,, . 

The spectrum of the natural oscillations (and conse- 
quently the scattering line shape) is next determined 
from formulas (25)-(29). The problem reduces to a 
system of algebraic equations o r  to the calculation of a 
7 x 7 determinant of rather general form. For example, 

N,;=Q,;+ig,[ ( e ,q )  ( n v )  - ( e , v )  (nq )  ] f i g 2 [  (e,q) (nv )  

- (e ,v)  (11s) ] + 2 [  (nv )  'q2+ (ocl)'vZ-2(nv) ( q v )  (nq )  1 ,  
N , , A , , = ~ Q , , ( ~ , ~ , + ~ , ~ ; , I  - [  ( n q ) 2 v 2 - ( ~ ~ v ) 2 q 1 ]  

etc., i. e., most elements of the determinant a r e  dif- 
ferent from zero. Of course, such a calculation cannot 
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be carried out in analytic form. 

However, in our case of light scattering in the optical 
band there is one simplifying circumstance. The point 
is that a t  typical values of the parameters the quantity 
a in (26) is very large compared with KqZ: 

Therefore we can put q = 0  in a l l  the equations of motion 
for the parameters 6, and &. This cannot be done in 
the equations for E, and E,, which do not contain the 
large parameter a. We thus obtain the following system 
of equations. 

(- ,) :,tiC,~..,+K:q'coS 0 sit1 0: ,'=(), 

( -  iu>i~-t  lJ,)~.,-tt~R,:,=O, (30) 
-~ lulv~,*.-b.\::.=l~ 

( 1 1  is a certain combination of the coefficients p,). 

We obtain similarly the system of equations for the 
parameters v,, 5,, and b*. 

We note here that the mode corresponding to biaxial 
fluctuations i s  not hydrodynamic in the literal sense, 
i. e., i ts  frequency ( ~ 1  does not vanish a s  q - 0. How- 
ever, although the wavelengths corresponding to the 
parameter A a r e  small, they a r e  still much larger than 
the intermolecular distances (-300 A). The correspond- 
ing fluctuations can therefore be treated macroscopical- 
ly. 

To determine the spectrum of the scattered light, i t  is 
convenient to take in (30) the Laplace transform with 
respect to time 

: , ( I ) =  dt c\p(-lt)b,(t) 

etc. We then obtain 

(y,l+.l,)~,(l)i~C,r~(l)+'/~K~q~ sin 20j; (1) =y,E,  (O), 
(p l t f , )  r,(O -tlB,$, ( I )  -p~.,(0)-IB,~,(O), 

.l$l'+lt,,'=.~..(0), 
(31) 

where [,(O) and z*,(O) a r e  the initial values of the cor- 
responding parameters. From (31) we easily obtain 

$,'(I) =v:,'(O), (v l f l ) .  t,, ( I )  = {[y,lp+y ,P,-C,B,]t,, (0) -ipC,u.(O) 
t 1 i , K 2 q ' s i n  20 tJ^(l)) (l'pyr-rl (p.-l,+ylPl-CIB,) +A,P,) - ' .  (32) 

Similar formulas hold also for e(1) and ( , (1) .  To 
calculate the scattering cross  section, we write down 
from symmetry considerations 

If we confine ourselves to the case of scattering in the 
equatorial plane, we obtain from (32), (33), and (21) 

In a more general geometry, the cross  section for bi- 
axial scattering is determined also by the correlator 
(6;) and by the mixed correlators ([,{,*) and (t2t4*) [the 
corresponding integral formulas a r e  given in Ref. 4, 
and their generalization to inelastic scattering can be 
obtained from (32) in analogy with (34)]. 

IV. CONCLUSION 

The principal results of the paper a r e  the following. 
There exist geometrical conditions under which trans- 

verse fluctuations do not lead to scattering of light. 
Under these conditions the spectral intensity is deter- 
mined by the dynamics of the longitudinal and biaxial 
fluctuations. If the wave vectors of the incident and 
scattered light lie in an equatorial plane, i. e., in a 
plane perpendicular to the director), while the polari- 
zation vectors of the incident and scattered rays a r e  
parallel to the director, the entire effect is determined 
only by the longitudinal scattering. 

On the other hand, if the polarization vectors of the 
incident and scattered light lie in the equatorial plane, 
longitudinal and biaxial scattering takes place. How- 
ever, if  in addition the polarization vectors of the in- 
cident and scattered light a r e  mutually orthogonal, then 
the intensity of the longitudinal scattering vanishes. ' 

To observe effects connected with longitudinal and bi- 
axial scattering, i t  is necessary to satisfy these geo- 
metrical conditions with accuracy 5-10" and to use 
samples with transverse dimensions not larger than 1 
cm and not thicker than 0.1 mm. Otherwise the longi- 
tudinal and biaxial scattering will be masked by the 
effects of transverse single and multiple scattering. 

We have calculated in this paper the line shapes of 
the longitudinal and biaxial scattering [formulas (23) 
and (34)]. The principal qualitative effects by which 
the character of the fluctuations can be determined from 
the line shape a r e  the following: 

1) In the longitudinal scattering, the line does not 
have a Lorentz shape. 

2) In biaxial scattering, the line width does not de- 
pend on the wave vector transferred in the scattering. 

These two conclusions differ substantially from the 
results obtained for scattering connected with the fluc- 
tuations of the director. This scattering has a Lorentz 
line shape, and a line width -q2. 
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"1n this notation we neglect the contribution made to the long- 
itudinal modes by the pure relaxation of s, which is not hy- 
drodynamic a t  all in this region. 
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