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The stability of the boundary between condensed matter and its vapor is investigated in the case when the 
evaporation is produced by a laser beam. It is shown that at sufficiently high radiation intensities--more than 
106 W/cm2 for most metals-the evaporation front is unstable. The maximum instability growth rate is 
possessed by perturbations with wavelengths on the order of the depth of penetration of the light in the 
evaporated matter. The growth time of these perturbations is much shorter than the time of establishment of 
the quasistationary evaporation regime. 
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1, INTRODUCTION of the liquid phase. The formation of metastable states 
of the condensed phase is therefore not very likely in 

The results of numerous experiments on the evapora- experiments on laser evaporation. There is no point in 
tion of condensed substances by laser radiation can be discussing this question. 
satisfactorily explained by using the surface-evapora- 
tion model. According to this model evaporation 
comes from a thin (of the order of the interatomic dis- 
tances) surface layer of condensed phase, to which the 
energy is transferred from the light-absorption region 
by heat conduction. Since the depth of penetration of 
the radiation into the condensed medium is always 
much larger than the thickness of the layer from which 
the evaporation takes place, the temperature near the 
phase boundary increases with increasing distance 
from the boundary, and reaches a maximum at  a cer- 
tain depth. It is easy to show that in this case the 
phase separation boundary is unstable. Indeed, when 
a certain section of the boundary shifts towards the 
more heated condensed phase, the heat flux to this sec- 
tion increases, and this accelerates the boundary and 
increases further the initial perturbation. Under- 
standably, the amplitude of the boundary displacement 
can not exceed the thickness of the surface layer in 
which the heat flux is directed from the condensed 
phase toward the evaporation front. This surface lay- 
e r ,  as will be shown below, can be destroyed by short- 
wave perturbations within a time much shorter than the 
time of establishment of the stationary evaporation 
regime. 

The described evolution of the process presupposes 
absence of the volume evaporation that could develop 
in principle in a liquid layer o r  on the grain boundaries 
in a polycrystalline solid phase. It is important, how- 
ever, that in those cases when the vapor is formed in 
the volume, the result is the same as in the considered 
instability of the surface evaporation, namely destruc- 
tion of the superheated surface layer and dispersion 

The considered instability-producing mechanism is, 
of course, not a feature of the laser-induced (or any 
other) evaporation process. The necessary condition 
for the instability is that when the heat is released in 
the volume (for example, under the influence of a shock 
wave o r  an electron beam), the phase transition with 
energy absorption take place not in the volume but on 
some surface. This situation is typical of melting and 
evaporation of solids, where the nucleation of the new 
phase calls for noticeable additional expenditure of 

An increase in the area  of the surface on 
which the phase transition takes place leads to a de- 
crease of the free energy of the system as a whole. 
For this reason, a plane phase boundary is unstable. 
We note that the boundary perturbations with the short- 
e s t  wavelengths should be damped because of the in- 
crease in the surface energy. 

Thus, the discussed phenomenon is of quite general 
character. Manifestations of the instability in question 
can be expected in a large group of experiments. We 
deal in the present article with experiments on laser 
evaporation of solids, since this topic has been well 
investigated experimentally and theoretically, so  that 
the stability problem can, in particular, be correctly 
formulated. It seems to us, in addition, that the most 
suitable conditions for the observation of the evapora- 
tion instability a re  realized in experiments and tech- 
nological processes in which lasers  a re  used. 

We point out that the mechanism of the onset of the 
thermal instability has been previously considered6 
in connection with the study of phase transitions ac- 

- -- 

companying electric explosion of conductors. The an- 
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alysis in Ref. 6, however, dealt mainly with a model 
of the Stefan type with a given transition temperature. 
This model is not adequate for the description of laser 
e ~ a ~ o r a t i o n , ~  since i t  does not take into account the 
real kinetics of the phase transition. Although the in- 
stability in question is of thermal origin, the pertur- 
bations of the evaporation front a r e  determined in final 
analysis by the dependence of the evaporation rate on 
the temperature of the evaporating surface. This de- 
pendence should therefore be taken explicitly into ac- 
count when the stability problem is formulated. It will 
be shown that within the framework of the Stefan prob- 
lem i t  is impossible to determine the qualitatively cor- 
rect behavior of the instability growth rate in the short- 
wave region. The short-wave perturbations of the 
temperature and of the shape of the front have in the 
Stefan problem an infinitely large growth rate, i. e . ,  
an initial quasistationary solution cannot exist a t  all 
during any finite arbitrary time interval. This situa- 
tion is, of course, unsatisfactory, and a more adequate 
formulation becomes necessary. 

Laser-induced evaporation has a number of other 
characteristic features that have been investigated in 
detail in the study of quasistationary evaporation 

owing to these features, the problem of the 
stability of laser evaporation calls for a special an- 
alysis. This is in fact the topic of the present article. 

The exposition proceeds as follows. In Sec. 2 is 
described the formulation of the problem of laser- 
induced evaporation. In Sec. 3 we obtain a stationary 
solution of this problem and obtain i ts  asymptotic form 
in the case when the temperature on the phase boundary 
is much less than the heat of evaporation. Section 4 
is devoted to the linearized problem for small pertur- 
bations of the temperature field and of the evaporation 
front. It contains also a brief description of the in- 
stability problem in the Stefan formulation. The re-  
sults a re  discussed in Sec. 5. 

2. FUNDAMENTAL EQUATIONS 

It ig//hown8.' that in a rather wide range of laser  in- 
tensities the processes that occur in the gas phase do 
not exert a noticeable influence on the motion of the 
evaporation front. In this case the front velocity and 
the condensed-phase temperature a re  determined by 
solving the heat-conduction problem with appropriate 
boundary conditions. 2 p 3 7 8  Assuming that the vapor does 
not absorb the radiation, we write the heat conduction 
equation in the form 

It is assumed in ( 1 )  that the thermal-conductivity 
coefficient H. and the light-absorption coefficient do 
not depend on the temperature. This assumption is 
well satisfied for metals. In the general case, allow- 
ance for the temperature dependences of % and p does 
not lead as a rule to new qualitative results. We shall 
assume that the laser intensity changes little within 
a time on the order of x/v i, where x = %/cP is the 
thermal diffusivity and vo is the velocity of the evap- 
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oration front in the quasistationary regime. The shape 
of the phase-separation boundary X ( y ,  t )  is not known 
beforehand and should be determined from a solution 
of the problem ( 1 )  with appropriate boundary condi- 
tions. Following Refs. 7-9, we write them in the 
form" 

x I V T I = X ( Y ,  t ) p A w  at z = X ( y ,  t ) ,  
Aw=L- ( c - 0 . 6 7 ~ ~ ~ )  T (X, y,  t) +u,Z/2; 

T - t T ,  as z + m .  

Here &, t )  is the rate of displacement of the phase 
boundary as a result of the evaporation, Aw is the 
jump of the enthalpy on the phase boundary and includes 
the heat of transition L and the kinetic energy v i /2  of 
the expanding vapor. In the calculation of Aw we took 
into account the temperature jump in the Knudsen 
layer as determined in Ref. 8. We assume henceforth 
for simplicity 7'- = 0. 

The evaporation rate &, t )  is connected with the 
surface temperature of the condensed phase by the 
evaporation-kinetics equation, which is usually written 
in the form 

The activation energy in ( 3 )  depends generally speak- 
ing on the local curvature of the surface. The con- 
stants U and c o  can be obtained from the experimental 
data on the saturated-vapor pressure. In estimates 
we can assume c o  to be equal to the speed of sound in 
the condensed phase, and U equal to the heat of evap- 
oration per atom. 

~ e a d ~ '  used in place of conditions ( 2 )  and ( 3 )  the 
Stefan condition with a specified transition temperature 
equal to the boiling temperature a t  normal pressure. 
The parameters calculated in this formulation for the 
quasistationary state in a wide range of conditions do 
not differ greatly from those obtained by solving the 
problem ( 1 ) - ( 3 ) .  However, the character of the dev- 
elopment of the evaporation instability a re  qualitatively 
different in the two cases, especially in the region of 
the short-wave perturbations. 

3. THE STATIONARY PROBLEM 

The thermal-conductivity problem (1 ) - (3 )  formulated 
above has a quasistationary solution in the form of a 
plane evaporation wave propagating with constant vel- 
ocity vo. The time of establishment of the stationary 
regime is of the order ofzs3 x/v;. 

To obtain the solution, we change over in (1) - (3)  to 
a moving coordinate system with constant velocity vo 
directed along the x axis. We introduce the dimen- 
sionless variables defined by the relations 

After the transformation we obtain the equation 
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FIG. 1 .  Velocity of the front (1) and temperature on the phase 
boundary (2) in stationary evaporation. 

with boundary conditions at [ = 6 

The problem (4)-(5) has a stationary solution 
u.(E) =Ae-gfBe-bg,  6 ( q ,  r )  = O ;  

A= (b - I ) - ' ,  B=1.35A(0.26+A(l-b) -b-I). 
(6) 

From (6) and (3) we obtain an equation for z = Xb: 

z=vexp -- , ( 1 ' 3  (7) 

where ~ = ~ c ~ L / ( l -  R)qo and m =0.74cU/L. Solving (71, 
we can obtain the stationary velocity of the evaporation 
front and the temperature of the condensed phase on the 
boundary. The calculated value of vo/co and T o / U  are  
shown in Fig. 1. Given m, the temperature and vel- 
ocity depend on a single dimensionless parameter . 
The curves in Fig. 1 were calculated for the value m 
= 2.22, which corresponds to a heat capacity 3k, per 
atom of the condensed phase (k, is Boltzmann's con- 
stant). 

We note that in all cases of practical interest we have 
m - 1, and v is large compared with unity. This leads 
to a simple approximate solution of (7): 

from which we can obtain the front velocity and the 
temperature at all values of m.  

4. THE STABILITY PROBLEM 

Introducing the temperature perturbation 

u(b ,  11, .)=u.(E)+f(E)ex~(ikq+~~) 

( /A[) I << I us([) I ) and the perturbation of the phase 
boundary 

6 (1)- T) =$ exp(ikq+yr) ,  

we obtain from (4) and (51, in the approximation linear 
in small f and 0, an equation for A[): 

ffr+bf'- (by+k2)  f=-pe-' (8) 

with the boundary condition at 5 = O(uo =us(0)) 

We note that the initial condition (5) is imposed on the 
perturbed boundary [ = 6(q, 7). To change over to con- 
dition (9) a t  [ = 0 we must expand the functions in (5) 
in powers of the small 6. 

The second boundary condition follows from the 
equation for the evaporation rate referred to the sur- 
face [ = 0  and linearized in f. This condition calls for 
some additional discussion. In laser-induced evapora- 
tion experiments the vapor pressure a t  the irradiated 
surface is usually much higher than the pressure of the 
environment, so that an adequate model for this pro- 
cess  is evaporation in vacuum. In this case, even when 
condensation is taken into accounta the mass f l u  and 
the evaporation rate a re  proportional to the saturated 
vapor pressure, from which in fact Eq. (3) follows in 
the case of a plane front. When the phase boundary is 
not plane, the vapor pressure and the evaporation rate 
depend on the curvature of the boundary, with the con- 
vex sections of the surface evaporating more rapidly 
than the concave ones. It is clear that this should stab- 
ilize the perturbations with sufficiently large k. This 
effect can be taken into account4 by introducing in (3) 
the effective value U,,,, which is a function of the local 
curvature radius. For the perturbations considered 
here we obtain, following Ref. 4, 

where u is the surface-tension coefficient, M is the 
mass of the atom, p is the density of the solid, and r 
is the boundary curvature radius. In the approximation 
linear in the amplitude we must put r-' = a2x/ay 2. The 
kinetic boundary condition then takes the form 

where A = pp/U. For a rough estimate of we note 
that both terms of U,, become of the same order when 
r is of the order of the interatomic distances d.  This 
leads to the estimate A - kd << 1. 

Integrating (8) with the boundary conditions (9) and 
(10) we obtain in the usual manner the dispersion equa- 
tion for the unstable modes in parametric form, with 
the parameter ff:  

. . 
(a -b )  [ h  - ( a - b + l ) - '  - a(a-0.26b)1Zu0] 

Y = h + (a-0.266) (s-Abu,) 

where h = 1-buo = u( and s = u i / a ~ .  
It is easily seen that a t  large and small k the growth 

rate y <O,  i. e. ,  the corresponding modes a re  damped. 
As k -0 the growth rate y(k) vanishes. If the intensity 
of the laser radiation is high enough, i .e. ,  if the par- 
ameter v is not too large, then the function y(k) has two 
more zeros, kl corresponding to ff = b- 1 + h-', and 
k2 = az % [bh/~(l-h)] 'I2.  The perturbations with wave 
numbers lying between kl and k2 a re  unstable. Figure 
2 shows plots of the function y(k) for the parameter 
values v = X = 20, A = (curve 1) and v = X = 100, A 
= (curve 2). 

Inside the instability interval, the function y(k) has 
a maximum. This maximum growth rate y, and the 
corresponding wave number k, a re  shown in Fig. 3 for 
A = lom5 as functions of the dimensionless laser inten- 
sity q,/q * (u  = h )  . 

When the laser intensity is low enough, y(k) turns out 
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FIG. 2. Instability incre- 
ment as a function of the 
wave number : 1-v= A 
= 20, A= 10-5; 2-v= A 
= 100, A= 10". 

FIG. 4 .  Stability boundary. The shaded region corresponds to 
stable evaporation regimes. 

to be negative for all k  # O .  This corresponds to stable 
propagation of the plane evaporation front. The critical 
intensity corresponding to the appearance of the un- 
stable mode depends on the parameter A. The stability 
limit is shown in Fig. 4 ( u  = X) . 

At very small A the maximum value of the increment 
can be calculated in simple manner if i t  is noted that 
the maximum is reached a t  values k  = k ,  >> 1, and the 
temperature perturbations f a re  a t  large k  of the order 
of b / k .  In other words, a t  large k  the perturbations of 
the phase boundary evolve against a background of an 
unperturbed temperature field. Putting f(0) = 0 in (10) 
and performing simple calculations, we get 

Changing to dimensional variables and leaving out the 
second term in the square brackets, which is several 
times smaller than the first, we obtain an approximate 
estimate of the maximum growth rate: 

From the last expression we can see  directly the con- 
nection between the unstable phase boundary and the 
direction of the temperature gradient in its vicinity: 
namely, instability takes place when the temperature 
gradient and the gradient and the velocity of the bound- 
ary have the same direction. Formula (12) can be in- 
terpreted also somewhat differently if i t  is noted that 
i t  can be written formally, with the aid of (3), in the 
form 

The growth rate is positive if the forward displace- 
ment of the front causes an increase in i t s  velocity. In 
this case the temperature field is regarded as unper- 
turbed, a correct assumption in the short-wave limit. 

From the derivation of (1 2) i t  i s  understandable that 
the estimate for the instability growth rate remains val- 
id for weakly nonstationary evaporation if vo  and To are  
regarded a s  slowly varying functions of the time. 

We now dwell briefly on the model of the phase trans- 
ition with given temperature. This model corresponds 
to Stefan's classical problem and was considered, in 
connection with the problem of the interaction of laser 
radiation with matter in Ref. 1. The stability of the 
phase boundary in the Stefan problem was investigated 
by another method in Ref. 6. A calculation of the 
growth increment, in analogy with that described above, 
leads to the dispersion equation 

from which i t  follows that at large wave numbers the 
growth rate increases with increasing k  linearly. In 
t e r y s  of _dimensional quantities, the asymptotic form- 
ula y =  vok is valid. In view of the unlimited increase 
of the growth rate, i t  i s  strictly speaking incorrect to 
pose the stability problem for a model of the Stefan 
type. It is easily seen that this circumstance is con- 
nected with a fundamental shortcoming of the Stefan 
model, namely with the absence of an upper bound on 
the phase-boundary velocity. For this reason, the 
model becomes incorrect a t  sufficiently high temper- 
ature gradients. 

FIG. 3 .  Maximum insta- 
bility growth rate (2) and 
corresponding value of the 
wave number (1) as a func- 
tion of the radiation inten- 
sity. 

5. DISCUSSION OF RESULTS 

We have shown that under certain conditions a plane 
evaporation front is unstable. The maximum instability 
growth rate is of the order of 

It i s  clear that the growth time of the corresponding 
perturbations i s  much shorter than the time of estab- 
lishment X / v 2  of the stationary evaporation regime. 
The wavelength of the fastest growing perturbations is 

805 Sov. Phys. JETP 51(4), April 1980 Anisirnov et a/. 805 



close to the characteristic spatial scale of the temper- 
ature distribution. 

The foregoing analysis of the instabilities contains a 
number of simplifying assumptions, introduced mainly 
to prevent extraneous details from complicating the 
exposition. We have assumed, first, that the optical 
and thermophysical characteristics of the condensed 
phase a re  independent of temperature. A more de- 
tailed investigation shows that allowance for this de- 
pendence does not alter the qualitative results of the 
investigation and can be significant only in the case of 
weakly absorbing dielectrics whose absorption coef- 
ficient varies radically with temperature. 

Second, we have confined ourselves in our analysis to 
the case of normal incidence of the light. In this case 
the reflectivity of the flat surface changes when a per- 
turbation 6(7,7) is superimposed on a quantity of the 
order of ti2. In the linear stability problem this change 
need not be taken into account. 

Third, we did not consider nonlinear effects, partic- 
ularly those leading to stabilization of the perturbations 
that grow in the linear approximation. 

All the foregoing questions call for additional study. 

Experiments on laser evaporation of solids have es- 
tablished a number of rules that can be connected with 
a manifestation of the instability in question. Many 
workers have noted, for example in Ref. 7, that the 
start  of intense evaporation of a metal change is ac- 
companied by a drastic change in i ts  reflectivity and in 
the angular distribution of the reflected light. It is 
known furthermore that an appreciable fraction of the 
products of metal disintegration under the influence of 
laser radiation is made up of liquid drops, and the 
average specific energy of the distintegration is always 
lower than the specific heat of the evaporation. Sev- 
era l  likely mechanisms have been proposed for the ap- 
pearance of liquid drops in the disintegration products. 
There a re  no grounds fo r  excluding the considered in- 
stability and of the associated dispersal of the surface 
layer of the evaporated body from the l ist  of most likely 
mechanisms. We note that the observed dimensions of 
the drops does not contradict the assumption that they 
were produced a s  a result of development of the instab- 
ility in question. 

Materials of interest as objects for the experimental 

study of the instability of evaporation induced by laser  
radiation a re  apparently metals and certain nonmetallic 
strongly absorbing substances with high vapor pressure 
a t  the melting temperature. A layer of molten material 
of this type has small thickness and the evaporation 
proceeds essentially from the solid phase. The dev- 
elopment of the instability can be influenced by the pres- 
ence of a polycrystalline structure in the material, 
since the boundaries of the single crystals can serve 
as centers of "volume" evaporation. In metals with 
single-crystal sizes on the order of a micron and with 
an absorption coefficient of the order of lo5  cm" the 
presence of a polycrystalline structure should not 
affect a t  all the development of the instability. For 
substances with a smaller absorption coefficient such 
a structure might play the role of the initial perturba- 
tion that determines, at any rate during the initial 
stages, the spatial scale of the instability. 

The authors consider i t  their pleasant duty to thank 
Ya. B. Zel'dovich and L. P. ~ i t a e v s k i r f o r  helpful dis- 
cussions. 

"A number of workers have proposed also other variants of 
boundary conditions for the solution of problems of thermal 
conduction with phase transitions. For the one-dimensional 
problem considered in Sec. 3 and for the linear stability 
problem in Sec. 4, all these variants are  equivalent to the 
conditions (2) . 
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