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Structure of chiral smectics in an electric field 
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We consider the distortion and the untwisting of the spiral structure of chiral smectic liquid crystals (SLQ*) in 
a uniform electric field perpendicular to the spiral axis. Account is taken of the joint action of two molecule- 
orientation mechanisms in the field: dielectric, due to the presence of anisotropy of the dielectric constant E,, 

and ferroelectric, due to the presence of spontaneous polarization P in the SLQ*. The equations that 
determine the dependence of the pitch of the spiral on the field at arbitrary E, and P are determined. The 
dependence of the spiral-untwisting helical field on the SLQ* parameters is found. It is shown that domains 
with two different molecule orientations can exist in a field-untwisted SLQ*. The energy of the wall that 
separates such domaips and the distribution of the molecule orientation in the wall are calculated. 

PACS numbers: 6 1.30.Gd 

I t  was recent ly  observed that  spontaneous polar iza-  
tion c a n  e x i s t  i n  c h i r a l  s m e c t i c  liquid c r y s t a l s  (SLC*), 
and it was  shown that  when an electric f ie ld  is applied 
to such  fe r roe lec t r i c  SLC* the s p i r a l  s t r u c t u r e  of the 
SLC* is d i s to r ted  and can d i sappear  completely. 
The  cause  of this  dis tor t ion and of the untwisting of 
the s p i r a l  s t r u c t u r e  is that  the p resence  of the spon- 
taneous polarization c a u s e s  the dipole moments  of the 
molecules to tend to become oriented along the field. 
In addition, the usua l  molecule-orientation i n  a field, 
the s a m e  as i n  nematic  and cho les te r ic  c rys ta l s ,  is 
presen t  i n  the SLC*. T h i s  mechanism is quadrat ic  in 
the field, and i n  fac t  de te rmines  the molecule  or ienta-  
tion in sufficiently s t rong  fields. 

We consider  below the change of the SLC* s t r u c t u r e  
i n  an external  electric f ie ld  i n  the  p r e s e n c e  of both 
orientation mechanisms.  A case of pa r t i cu la r  i n t e r e s t  
is that  of positive anisotropy of the dielectric prop-  

erties. In this  case the  c i t ed  molecule-orientation 
mechanism compete with e a c h  o t h e r  and tend to ro ta te  
the  molecules  i n  opposite direct ions;  this  l eads  to cer- 
ta in  s ignular i t ies  i n  the  s t r u c t u r e  of the SLC* i n  the 

field, and i n  par t i cu la r  to the possibility of exis tence 
of domains with different  molecule  or ientat ions i n  the 
SLC*. 

1. FUNDAMENTAL EQUATIONS 

We de te rmine  the change of the SLC* s t r u c t u r e  under 
the influence of a field i n  the manner  used  f o r  cholest- 
eric crystals'-4 and f o r  helicoidal magnets .  We con- 
s i d e r  a n  SLC* placed i n  a uniform electric field E 
perpendicular  to the s p i r a l  axis .  The  expression f o r  
the f r e e  energy  of the SLC* i n  an electric field is 
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where B3 is the elastic modulus, cp is the azimuthal 
angle of molecule orientation qo = 2n/po (po is the pitch 
of the spiral in the absence of a field), P is the spon- 
'taneous polarization, E,= ( ~ ~ 1  - c,) sin2b (0 is the angle of 
the molecules in the field relative to the z axis, ell and c, 
a re  the longitudinal and transverse components of the 
dielectric constant). In the derivation of (1) it was taken 
into account that the direction of P in an SLC* is deter- 
mined uniquely by symmetry considerations1-4 and is 
perpendicular to the z axis and to the local direction of 
the director. The field E is perpendicular to the spiral 
axis z and is parallel to y. In the derivation of (1) it 
was assumed, just as in Ref. 6, where the effect of a 
magnetic field on an SLC* was considered, that the 
angle cp varies only along the z axis, the smectic lay- 
e r s  a re  not bent, and the angle 0 and the distance be- 
tween the layers remain unchanged (the conditions un- 
der which i t  is possible to neglect the influence of the 
changes of 0 in the field on the cp(z) dependence were 
recently investigated in detail in Ref. 6). 

The dependence of the director orientation cp(z) 
on the coordinate is obtained in the usual manner from 
the condition that the free energy of the SLC* be a 

and can be expressed in terms of elliptic 
functions (Refs. 8,9). I '  It is more convenient, how- 
ever, to use the inverse function z(q) which is deter- 
mined by the following expression (see the Appendix): 

where Eo = 4nP/c,, R = ~ ~ p i ( n c p ~ ) .  The physical 
meaning of the field Eo is that when E is of the order 
of Eo the spontaneous and induced polarizations turn 
out to be of the same order.  The dimensionless para- 
meter R determines the spiral-untwisting regime: 
the ferroelectric regime is realized a t  (R I >> 1 , the 
dielectric a t  I R  ( << 1, and the intermediate one a t  
I R I - 1. The quantity C in (2) is determined from the 
condition that the free energy of the SLC* be a min- 
imum. This leads to the following equation for C (see 
the Appendix) : 

In the general case this equation can be solved only 
numerically. 

Since the integrand of (3) is monotonic with respect 
to C, Eq. (3) has, depending on the external field E, 
either a single solution for C, which when substituted 
in (2) determines uniquely the structure of the dis- 
torted SLC*, o r  has no solutions a t  all a t  energies 
higher than a certain critical E,. The latter means 
that at the corresponding fields E > E, the SLC* helix 
is completely untwisted. 

At E = 0 we obtain from (3) C + R = 1. After substi- 
tution in (2) this yields cp =qoz, as should be the case 
in the absence of a field. 

Expressions (2) and (31, which determine the struc- 
ture of the distorted SLC*, make it possible to obtain 
various structural characteristics of the SLC* . In 
particular, the pitch p, of the spiral in the field 

FIG. 1. Dependence of the pitch of the helix pE on the field E 
for different values of the critical field Ec: a) E, < 0 (curves 
1-Ec=0.2Eo, 2-Ec=E,, 3-E =10E o ) ; b ) E a > O , R ~ l ( c u r v e s  
1-Ec=Eo, 2-Ec=0.9Eo, 3-E c = O  . 7E 0 3  4-E c = 0  . 1E ,); c)c~'O,  
R c 1 (curves 1-E,= l . lEO, 2-E,= E,, 3-Ec= 2E0, 4-E, 
= 5Eo). 

corresponds to a change of the azimuthal angle by 2r, 
and we obtain from (2) 

We note that the integrals in (2)-(4) can be expressed 
in terms of elliptic integrals (see the Appendix), 
but these expressions a re  quite cumbersome. It can 
be shown that in the limiting cases (R I >> 1 and (R I 
<< 1 Eqs. (2) and (4) go over into the known expres- 
sions for the ferroelectric3 and d i e l e ~ t r i c ' ' ~  regimes of 
untwisting of the spiral, respectively. 

The spiral pitch calculated from (4) with account tak- 
en of the condition (3) a re  shown as functions of the 
field in Fig. 1. It follows from this that in fields not 
too close to the critical field E, the most noticeable 
change of the spiral pitch takes place in the intermed- 
iate case R - 1. The case R = 1 admits of a simple an- 
alytic solution, which will be considered in the next 
section. 

2. ANALYTIC SOLUTION 

We consider now the effect of an external SLC* at R 
= 1 (intermediate case). It is easy to verify by direct 
substitution that in this case Eq. (3) is satisfied (at E 
< E) if C = 0, and can thus be solved exactly. 

For  the dependence of the pitch on the f ield we obtain 
from (4) 

p,=pol[l- (EIEo)'1'". (5) 

FIG. 2. Change of azimuthal angle of the director aloqg the 
spiral axis in field-distorted SLC*, R= 1 (curves 1-E= 0, 2- 
E= 0.5Eo, 3-E=0.9Eo, 4-E= 0.98E0). 
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It is seen therefore that p, increases quite rapidly with 
increasing E and the pitch p, -- as E - E,, i .e. ,  
the spiral is untwisted (see Fig. lb). Consequently in 
this case it is Eo which is the critical field E,, and as E 
tends to E,  the pitch diverges logarithmically. 

We determine now the dependence of the director or- 
ientation (of the azimuthal angle cp) and z. From (2) we 
get 

P dq' 
z ( q ) = L j  

2n i + (EIE,) cos q' 

whence 

cos ( 2 n d ~ ~ )  - E/E,  
c o s q ( z ) =  

I - (EIE,) cos (2nz/p,) ' (7) 

The function ~ ( z )  obtained from (7) is shown for differ- 
ent values of the field in Fig. 2. It is seen that as E - Eo the majority of the molecules a re  so  oriented per- 
pendicular to the field that q = n. 

3. THE CRITICAL FIELD IN  THE GENERAL CASE 

To determine the dependence of the spiral pitch in the 
field i t  is necessary, generally speaking, to solve Eq. 
(3) o r  (A.7). This is not necessary, however, for the 
determination of the critical field. It is clear that the 
untwisting of the spiral takes place a t  the field value 
E =  E, at which the mean free energy of the SLC* in the 
field F =  - Ci) - c , ~ ~ / 1 6 n  [see (A.811 becomes 
comparable with the energy of the field-untwisted samp- 
le; this energy is given by 

where q 0  is the molecule orientation angle in the un- 
twisted sample and is independent of z .  This angle is 
determined from the condition that (8) be a minimum: 

If c, <O, then the minimum corresponds to cpO = n, 
and the molecules a re  oriented perpendicular to the 
field. If c, >O, then in fields E Eo = 4nP/ca the mol- 
ecules a re  oriented perpendicular to the field; in fields 
E >Eo two orientations on the same footing are  possible, 
pot = arccos(-E,/E) and 400, = -'PO,. 

From the untwisting condition F = (F,),,, we obtain 
for the critical field E, 

-ECP+~.E2/8n,  if e,<O 
-- = - - E , P + E . E ~ / ~ ~ ,  if E,>O and E,<E,. 

2 
C1B3 I (10) 

-2nPZI~ . ,  if E ~ > O  and E.>E, 

It is easy to verify directly from (4) that under the 
condition (10) the pitch p, - m. Substituting C1 from (10) 
in (3) o r  in (A.7) we obtain after integration the follow- 
ing relations, which determine in parametric form the 
dependence of the critical field on the SLC* parameters; 
a t  E, <O 

E.=E, sh2 rp, R=-nz/ ( 2 4 f s h  2 4 )  '; (11) 

FIG. 3.  Dependence *of the critical field of the unwinding of the 
spiral E, on the SLC parameters: EO= 4 n ~ /  I E, 1, R= @pa2/ 
rB3ca (curves 1-C, < 0, 2-c, > 0). The shaded region is where 
the existence of a proper N wall is energywise favored. 

and at c, >O and E, 3 Eo(O <R a 1) 

It follows from (11)-(13) that in all three cases the de- 
pendence of E, on the SLC* parameters is of the form 
E, = E d R ) .  This dependence is shown in Fig. 3. 

In cases (11) and (12) the molecules in the SLC* a re  
oriented immediately after the untwisting perpendicular 
to the field, while in case (13) they make an angle qOl 
and qOz  with the field. It is easy to ascertain from 
(11)-(13) the variation of E, with the changes of the 
parameters of the SLC*. In particular, E, increases 
with increasing B, and decreases with increasing Po. 
At E, <O the field E, decreases with increasing P and 
I c, I .  At E, >O the dependence of E, on P and c, is more 
interesting. Thus, a t  E, <Eo the field E, decreases with 
increasing P, while at E, >Eo, conversely, i t  increases; 
a t  E, <El(E, is defined by the relations El = E0/sin$, 
and $, =cot$,) increases with increasing c,, and de- 
creases a t  E, >El. 

It is also of interest to note that at c, >O the deriva- 
tives of E, with respect to all the parameters ( p , ,  p,,,P, 
and c,) become infinite at E,= Eo, so that small changes 
of the parameters lead to considerable changes of E,. 

4. DOMAIN WALLS 

As already noted, i t  follows from the expression for 
the free energy of a field-untwisted SLC* i t  follows 
that a t  c, >O and E >Eo two orientations of the molecules 
in the field a re  possible, at angles qol = arc  cod-Eo/E) 
and Poz= -'Pot. 

We consider now a situation in which the molecule 
orientation corresponds to qoi in one part of an un- 
bounded SLC*, and to qoz in another, and determine the 
change of the molecule orientation in the intermediate 
region. This change can occur either jumpwise, in 
which case i t  corresponds to a defect in the SLC*, o r  
continuously. We consider below the second case, i. e . ,  
a problem similar to that of domain walls in magnets. 
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In particular, we determine the energy of such a do- 
main wall in an SLC* and the molecule-orientation dis- 
tribution in it. 

The expressions for the SLC* energy density and the 
Euler equation take in this situation the same forms (1) 
and (A.l) as above (under the assumption that cp de- 
pends only on z ,  i. e., that the wall is perpendicular to 
z). Now, however, we seek nonperiodic solutions, 
in which the molecule orientation angle changes from 
pol  to cp02, and accordingly, in expression (A.3) we 
have cp -cp *m as z -im, where cp, and cp-, coincide 
either with cpot o r  with qoz. 

The free energy of the wall, which is equal by defi- 
nition to the energy difference between the SLC* with 
the considered molecule orientation and the single- 
domain SLC* (with all the molecules in the volume iden- 
tically oriented), is given by the equation 

Expression (14) describes four types of domain wall 
with different distribution of the molecule orientation 
in them. In fact, four possibilities a re  realized, in 
accord with the different values of the limits of cp, and 
cp-, and the two possible signs in (14) and in (A.3). We 
shall call a wall proper i f  the direction of rotation of 
the molecule axes with changing coordinate z coincides 
with the direction 0 molecule rotation in the undistorted 
sample, and improper in the opposite case. Walls in 
which the molecules a re  rotated through an angle less  
than a will be called N walls, and those with rotation 
through an angle larger than a W walls. The constants 
C1 in the expressions (14) for the free energy of the 
walls a re  determined from the condition that the cor- 
responding energy be a minimum with respect to C1. 
From the form of the integrand in (14) i t  follows that 
A F  is a monotonically increasing function of Ct. 
Therefore AF reaches a minimum at  the lower limit of 
the permissible values of C1, which is determined by 
the condition that A F  be real, namely Ct = ~ T P ~ / Z , B ~ .  

That the obtained Cl is correct  is confirmed by the 
fact that when cp tends to cpol o r  cpoz we have z -P. 
Taking into account the obtained value of C1, we get 
from (14) for the free energies of the various types of 
wall: 

a) for an N wall 

b) for a W wall 

The upper and lower signs in (15) and (16) pertain to 
proper and improper walls, respectively. 

It follows from (15) and (16) that the W-wall energy 
A P w  is always larger than zero and i t  is larger than 
the N-wall energy ( 0 ;  '- A F ~ ) .  The energy of the im- 
proper N wall A F ~  is also larger than zero, and the 

energy of the proper N wall is 0; < A > '  and i t s  sign 
depends on the value of the field. In some field interval 
the improper N wall turns out to be energywise fav- 
ored over the one-domain sample. The corresponding 
interval of the field E at which A F ~  <O is determined 
by a relation derived from (15): 

where E,= Eo/coscp2, and cp, obtained from the equa- 
tion (a + l ) ~ ,  = tancp,; the range of values of E cor- 
responding to the inequality (17) is shown shaded in 
Fig. 3. 

It i s  physically quite understandable why the proper N 
wall is energywise favored in fields somewhat higher 
than critical (at E, >Eo). In fact, at E somewhat 
smaller than E, but larger than Eo the twisted sample 
can be represented as a sequence of domains separated 
by alternating proper N and W walls. Untwisting takes 
place in a field E, such that this sequence of domains 
becomes unprofitable, i. e . ,  a t  A F ~  + AF; = 0. Since i t  
is physically obvious that h ~ i  < AFw,  i t  follows hence 
that S at  E = E, and in a certain region E >Eo (shown 
shaded in Fig. 3). 

We determine now the variation of the angle cp with 
the coordinate z in the wall. From (A.3) we obtain 
after integration: 

a) for  the N wall ('Pot <'P  POI) 

b) for the W wall (- cp, < < cp,,) 

where the upper and lower signs pertain to proper and 
improper walls. 

It is interesting to note that the character of the var- 
iation of the angle cp in the wall, and particularly the 
characteristic wall dimension Az, a r e  described by an 
expression that does not contain the spiral  pitch Po in 
the absence of a field: 

We see therefore that the wall dimensions depend on the 
field E. Two cases can be realized here. If E, <Eo, 
then with increasing applied field E the following state 
become energywise most favored: a spiral  structure 
in the interval 0 < E  <E,, an untwisted single domain 
structure a t  E, < E  <Eo, a structure with proper N wall, 
in the interval Eo < E  IE,, and an untwisted single- 
domain sample a t  E > E,. At E = Eo the wall dimension 
is infinite and decreases further with increasing E, 
reaching a value 

In the case E, >Eo and with increasing E, a state with 
proper N wall becomes energywise more favored im- 
mediately past the spiral  structure all the way to the 
field E,.  In this case the wall dimension in the interval 
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E, <E, < E, remains finite and decreases with increas- 
ing E. The maximum wall dimension a t  E = E, is 

and the minimum wall is the same a s  in the preceding 
case. Thus, when the parameters of the SLC* and of 
the external field change, the wall dimension Az can 
vary in a very wide range. 

To conclude this section we note that in a slightly 
inhomogeneous (along the z axis) field the walls can 
move through the sample (along 2). If the field is such 
that a(aF)/aE <0, then it is "profitable" for the wall to 
move into the strong-field region, and into the weaker- 
field region at a ( O ) / a E  >O. From (15) and (16) we ob- 
tain the possible signs of the derivatives: 

(we have taken in account here the fact that acpOl/aE <0). 
It follows from (21) that a(hF,)/a E = ~ ( A P ; ) / ~ E  >O, 
whereas ~ (AF; ) /~E  and a(hF;)/aE can be positive as 
well as negative. This behavior of the domain walls 
makes i t  possible, in principle, to move them along the 
sample by varying the field and i t s  inhomogeneity. 

CONCLUSION 

It follows from the foregoing analysis thatthe behavior 
of the SLC* in an electric field i s  on the whole similar to 
but much more diverse than the behavior of cholesteric 
crystals. The reason i s  that two molecule-orientation 
mechanisms, due to spontaneous and to induced dipoles, 
play a role in the SLC*. This behavior can be in fact 
even more complicated, since we have disregarded 
above the possibility of bending and inclination of the 
smectic layers relative to the field direction, the 
change of the angle of inclination of the molecules in 
the layer, and a number of other deformations. But 
even without this the obtained picture is quite compli- 
cated and cannot always be interpreted finally. Of 
particular interest in this connection is the presence 
of an analytically solvable case at a definite relation 
between the SLC* parameters. 

It is useful to bear in mind that the various relations 
between the ferroelectric and dielectric mechanisms 
of the action of the external field on the SLC* can be 
obtained not only by selecting SLC* with different par- 
ameters, but also by turning on an additional magnetic 
o r  alternating electric field of sufficiently high fre- 
quency w,  which can lead to effective enhancement of 
the dielectric mechanism of the untwisting of the SLC* 
spiral. In this way i t  is also possible to vary the crit- 
ical field E, so  as to obtain optimal experimental con- 
ditions. 

Another peculiarity of the SLC* is the presence of 
two possible molecule orientations in the field-un- 
twisted SLC*. We note that the state of the SLC* with 
a domain wall in an external field may be of interest 
because the width of the domain wall and i t s  position 
can be controlled with the aid of the external field. 

The expressions obtained in this paper for the varia- 
tion of the SLC* structure in a field in the general case 
can be of use also for the description of the electro- 
optical properties of the SLC*, in particular the dif- 
fraction of light by a field-distorted structure (an an- 
alogous problem for the purely ferroelectric regimes 
was investigated in Ref. 10). 

We note also that the foregoing analysis canbe direct- 
ly applied in some cases  to a description of the be- 
havior, in a magnetic field, of helicoidal magnets in 
which two competing helicoid-distortion mechanisms 
can appear.5 

APPENDIX 

We determine the distortion of a helical SLC* struc- 
ture under the influence of the field. From the condi- 
tion that (1) be a minimum we obtain the Euler equation 

which has a f irst  integral 

From (A.2) we get 

Integrating (A.2), we obtain the following implicit ex- 
pression for cp as  a function of z :  

The plus and minus signs correspond here to the 
same and opposite directions of rotation, respectively, 
of the molecule axes with changing z ,  a s  in the undis- 
torted sample. Since it i s  obvious that the former case 
is energywise favored, we retain the plus sign every- 
where, except in Sec. 4. Taking this into account we 
obtain from (A.3), after introducing a new constant 
c = c,/~: - H, expression (2). The constants C o r  C1 
in (2), (A.2), and (A.3) are  determined from the con- 
dition that the average free energy of the sample F 
be a minimum: 

Using expression (A.2) for c i ~ / d z ,  we get 

Differentiating F with respect to C ,  we obtain the con- 
dition for the minimum of F: 

2.7 , c.E3 2EP d F  B s 6 p z { J ( ~ , ~ - r o s ~ F + - c o s c p ) ' h d q - ~ q J = ~ .  -=-A- 
ac, pLZ x, n ~ X B ~  B, 

It i s  seen from (4) that ap,/aC, + 0  and consequently 
satisfaction of (A.6) calls for 

(A.7) 
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After transforming the constant we obtain (3) from 
(A.7). From (A.5) and (A.7) we obtain fo r  F 

The integrals in (2)-(4), (A.3), and (A.7) a r e  expressed 
in terms of elliptic integrals (see Ref. 8). These 
expressions a r e  different in the cases c ,  <O and c, > 0. 

1 +(EQ/E) [ I  + (-C/B)g [2 cn2(2~K(k)/p~)- 11 
cos cp (2) = 

(E,IE) [1+ (-C/R)'"]-1+2 cn2(2zK(k)/pE) ' 

where C is determined from an equation obtained from 
(A.7) o r  (3) 

cn(u) in (A.9) is the elliptic cosine, and K(k), E(k), and 
n(n, kj) in (A.9) and (A.10) a re  complete elliptic inte- 
grals, with k and n defined by the expressions 

(Eo/E) [ 1 + (-CIR)'"] [2 cn2(2zK (k)lpE) - 1 ] -1 
cos cp (2) = 

(Eo/E) [ 1 + (-C/R) '"I +l-2cnZ(2zK(k)/p,) ' 

pE=2poK(k)/{n[R-((-C)'"-ER'"/Eo)Z]'!2), 
(A.12) 

k2=4EoE (-RC)'"/[EoZR- (Eo (-C)'"-ER")2], 

n=2El[E,+E0 (-C/R)'"-El, 
- 

and C is determined from the equation 

[E(k) - (l+kzln)K(k)+ (2+n+kzln) II(n, k) ] [R (A.13) 
- ( (-C) "-ERU'/E,)" 

C. At c,>O and R < 1  
- -  -- - 

2K(k) PO 
ps=- 

n (AB)'" ' 
(A.14) 

kZ=[ (E/E,)'R- (A-B)'/4]/(AB), 

A=[C+R(1+E/Eo)2]'", B=[C+R(l-EIEo)Z]". 

The constant C in (A.14) is determined from the equa- 
tion 

In the limiting cases I R I >> 1 and I R  I << 1 we obtain 
from (A.9)-(A.15) the known expressions for the ferro- 
electric'-4 and cases of spiral  untwisting, 
respectively. 

 he corresponding expressions a re  given in the Appendix. 
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