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A new method is proposed for calculating the rate of multiphonon relaxation of vibrational excitation of an 
impurity molecule, with account taken of the exact anharmonic dynamics of a multidimensional system. The 
method consists of searching for the optimal classical tunnel trajectory of the system that determines the 
probability of the quantum process. It is shown that the probabilities of the vibrational relaxation (VR) differ 
from the results obtained on the basis of harmonic dynamics by many orders of magnitude; the difference 
increases sharply with increasing vibrational quantum. The accuracy of the pair-collision approximation, 
which is effective for the VR, is analyzed. 

PACS numbers: 63 .20 .P~ 

1. INTRODUCTION realization, wherein the dynamics of several nearest 
neighbors was trajectorywise calculated with account 

The vibration relaxation (VR) of impurity molecules taken of the damping and of the fluctuation forces intro- 
in solids and liquids, as shown in many experimental duced by the remaining (harmonic) lattice. 
and theoretical studies (for a detailed bibliography see 
the and later papers4-?), is a rather slow 
process because of the need for exchanging the energy 
of the intramolecular quantum Ew for a large number 
N = w/51 of the phonons of the solid. The description of 
the VR, i.e., of the population relaxation as contrasted 
to the phase re la~at ion ' .~  is based on the theory of mul- 
tiphonon processes8-" initially developed for electronic 
 transition^.'^.'^ However, whereas in the excited elec- 
tronic state the causes of the electronic transitions a r e  
the shifts of the equilibrium positions (and of the fre- 
quencies) of the phonon oscillators, in vibrational exci- 
tation of an impurity molecule (nil) these shifts a r e  too 
small, and the multiphonon transition is caused by an- 
harmonic interaction with the nearest  neighbor^:^." 
The method of calculating the probability in Refs. 10 and 
11 takes into account the anharmonicity of the interac- 
tion that causes the transition, but the lattice dynamics 
remains harmonic in each of the states participating in 
the transition. A contrary approach14 is based, just a s  
in a gas phase, on the concept of individual collisions of - .  

the molecule with the atoms of the solid, but does not 
account in any way for the influence of the properties of 
the solid on the probability of the required high-energy 
pair collision. It is necessary therefore to develop an 
approach that reflects both the anharmonicity of the mo- 
tion of the nearest neighbors and the specifics of their 
interaction with the res t  of the lattice. For  the VR of 
a classical oscillator in a classical medium, substantial 
progress was made possible by the method of general- 
ized Langevin equations (GLE)15*" and its numerical 

In the present paper we formulate an approach to the 
solution of the classical and quantum multiphonon VR 
problems with account taken of the exact anharmonic 
dynamics of the nearest atoms of the lattice, which ex- 
er ts ,  as will be made clear,  a substantial influence on 
the VR probability. (This corresponds to a large role 
of the anharmonicity in the electronic nonradiative 
 transition^.'^-'^) At N >> 1 the probability of the VR is 
determined by the complex (tunnel) classical trajectory 
that corresponds to one optimal realization of the fluc- 
tuation force R(t), whereas in Ref. 7 R(t) is a random 
process, calling for a laborious averaging over i t s  
realizations. Moreover, whereas a t  N >> 1 the expon- 
entially increasing VR time leads in the GLE to the need 
for increasing correspondingly the time and accuracy 
of the trajectory transitions, in our method, which 
yields also the quantum probability, the time of integra- 
tion of the multidimensional tunnel trajectory does not 
depend on N and is of the order of the characteristic 
period of the lattice vibrations. 

2. FORMULATION OF THE QUANTUM AND 
CLASSICAL PROBLEMS 

We describe the system of an impurity diatomic mol- 
ecule (AB)  in a solid by the paired potential of the in- 
teraction between all  the atoms and retain the complete 
anharmonic potential only for the interaction UA i(xi - xA ) 
and UBi(xi - x,) of the atoms A and B with several near- 
est  atoms of the lattice. Here x,(x = 1, . . . ),x, and x, 
a r e  the displacements of the atoms, and x, is the dis- 
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placement of the center of gravity of the molecule from 
the equilibrium position. For  convenience we consider, 
for example, a very simple model wherein each of the 
atoms A and B interacts with a single nearest neighbor 
located in line with the molecule and expand the anhar- 
monic potentials U,(xA - x,) = U,(xo - x, - v,y ) and U,(xB 
- x,) = U2(x2 - x0 - v,y) in powers of the intramolecular 
vibrational coordinate y =x, - x,. Then the Hamiltonian 
of the system takes the form 

H=H,+H.+V, ~ , = ~ ( y ' + o " ' ) / 2 ,  
(1) 

H*= (IM~)/Z+U,,(XJ, v = - Y F ( X ) ,  

where 

Here U,,, is the total potential energy of the system, 
vl(,) =mA(B)/mAB, P-, = m 2  + m: , x is the vector of the co- , 

ordinates xi, M is the mass  matrix, and the vectors 
A,(,) a r e  equal to 

( A , )  r=6,i-6ro, ( d l )  i=6io-6iz, (3) 

where 6 i, is the Kronecker symbol. The expansion in 
powers of y is valid because of the smallness of the 
parameter aoff << 1, where a, is the amplitude of the 
zero-point vibrations along y, and l/a is the character- 
istic dimension of the potential. 

In first  order in V, the probability of the transition 
between the vibrational levels of the impurity molecule 
is8-11 - 

W,,.-, = uW=v(Zf ipo) -I  I ,  I = J G ( t ) e i U L d t ,  
- - 

G ( t )  = ( F ( x ,  O ) F ( x ,  - t )  >,, 
=Z-'Sp (exp  ( - i H J )  F ( x )  exp ( iH,  ( t + i $ )  ) F(x)  1, 

where Z is the partition function of the system. It can 
be shown13 that the adiabatic approximation that takes 
into account the fact that the high-frequency vibrations 
follow adiabatically the slow lattice vibrations, yields 
for the probability, in first  order in the non-adiabaticity 
operator, an expression that coincides with (4) accurate 
to small frequency effects, provided that H ,  is taken to 
be the adiabatic Hamiltonian for  the vibrational state v 
to the molecule. 

We use the Morse anharmonic interatomic potential 

It will be shown below that the VR is determined by 
"paired collisions ,$, i.e., the contributions of highest 
order in W come from the terms of type v:(U,!(xA,,O) 
UI(fi i ,  -t)) (i = 1,2), with participation of interactions 
with only a single neighboring atom (not with different 
ones). Moreover, the decisive role in (4) is played by 
the derivative of the repulsion part of the anharmonic 
potential (6) with the largest argument a, = 2 a  of the 
exponential (in full accord with the ideas concerning the 
role of the short-range collisions in VR in the gas 
phasez0). We therefore consider directly a method for 
calculating the integral (4) for 

In the calculation i t  is convenient to use a symmetri- 

cal form of G(t): 

G ( t )  = ( F ( x ,  t / 2 )  F ( x ,  - t / 2 )  ),,. (8) 

We then have for a classical lattice 

(9) 
Where Z,, is the classical partition function, p = (kT)-I 
is the reciprocal temperature, x(t) =x( %, p,,, t )  is the 
trajectory of the system with initial conditions % and po 
at t= 0, over which averaging is carried out 
(dx=nidxi, .  . .). 

Analogously, the quantum expression in the quasi- 
classical approximation is of the form 

t+i$ t+ip 
- i s , .  (x,, if, - -- , y) - a, ( A X ' )  - a.  AX'^) + iwt 

S ( x i ,  x", t , ,  t,) = f i - I  [ x ( t )  1 ; ( t ) /2 -  UpoXx(f))] dt.  (10) 
I ,  

Here S is the classical action along the multidimension- 
al trajectory with boundary conditions x1 and xrf a t  the 
instants t, and t,. 

3. SADDLE-POINT METHOD IN THE CALCULATION 
OF THE PROBABILITY, AND ITS VERIFICATION I N  
THE HARMONIC MODEL 

The standard of calculating (9) o r  (10) for 
harmonic H, consists in this case  of obtaining explicit 
expressions for G(t), which a re  obtainable in this case, 
followed by an estimate of the integral with respect to t 
by the saddle-point method, which is valid at large w. 
Another way, which can be generalized to include the 
anharmonic case, is  to search directly for one optimal 
complex trajectory that makes the main contribution 
to the integrals (9) and (10). 

For the classical problem, the equations for the time 
t* and for the initial conditions x* and p* for such a 
trajectory, x(t)=x(t,x*,p*), a r e  of the form (the sad- 
dle-point conditions with respect to t, x*, and p*) 

~ H . ( x . ,  P') 
-a,2.-[~x(f) + A X ( - : ) ]  =B , 

d x .  

- a , & [ A X  (f) + A X ( -  f ) ]  =piN-'p'. 
a p  

It is easily seen that the solution of (11) is a symmetri- 
cal trajectory X(T) =x(-7) for which X(O)=O, i.e., T = O  
is the turning point of the sought multidimensional tra- 
jectory, and the equations for x* = ~ ( 0 )  and t* =airo 
take the form 

(12) 
In the quantum case, from among all  the classical 

trajectories x,(t) =x,(t, XI, xu)  and r,,(t) =x,,(t, XI,  XI!) of 
a system with energies E,  and E,,, corresponding to the 
actions S, and S,, in (lo), the optimal trajectories, i.e., 
those making the main contribution to the integral (lo), 
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satisfy the following saddle-point conditions with re- 
spect x t ,  x u ,  and t: 

In conjunction with the definition of x' and xl1 a s  the 
boundary coordinates of the trajectory: 

Eqs. (11) lead directly to symmetry of each trajectory 
with respect to t =0: x,,,(-t) =x,(,,,(t). This means that 
the point t=O is a turning point of the trajectories, and 
the equations for the determination of the time t* =2irI  
and the boundary coordinates x t  and xrr  of the optimal 
trajectories a r e  of the form 

Moreover, after making the substitution t -ir and ;, 
--ijLIr, the tunnel trajectories turn out to be real. 

Thus, the VR probability is 

where + is the summary classical o r  quantum action 
determined by the optimal trajectory, while the method 
of calculating the pre-exponential factor is described in 
Appendix I. 

We now trace the derivation of the known result for 
the harmonic potential U,,,(x) = (XM~'"M'~X)/~. In 
this case the solution of the classical equations of mo- 
tion is of the form 

and from (14) we obtain x,,,,(O) and the equations for the 
determination of rI = -it*/2: 

Calculation of all  the quantities in (10) yields for the 
argument of the exponential and for the pre-exponential 
factor of the transition probability (15) the expressions 

where r I  is the root of (17). The result agrees with'that 
previously obtained1' and yields, when the lattice spec- 
trum is approximated by a single frequency a,, 

Similarly, for a classical harmonic lattice we obtain 
from (12) 

@,I=-2wzo+ha,2AM-'".  2 e h 2 ( Q r o )  ( P Q )  -'M-'"A, (20) 

where r0 =it*/2 is the root of the equation 

a," A - AM-'"a-' sh(2Qr0)M-'"A=w.  (21) 
B 

As they should, Eqs. (20) and (21) a r e  the limits of (18) 
and (17) a t  high temperatures EP52/2 >> 1. The derivation 
of the known results for the harmonic Hamiltonian by 
the saddle-point method has that advantage that we know 
the amplitude of the tunnel trajectory that determines 
the process, and we can verify whether the condition 
a! I~x(7,)  I << 1 for  the applicability of the harmonic ap- 
proximation (15) is satisfied for a reai system with an- 
h a r m h c  coupling and with the parameter a of the 
Morse potential. But the same quantity e lax] ,  when 
estimated from (16), tu rns  out to be much larger than 
unity: 

Thus, the relaxation of a large vibrational quantum 
(N >> 1) can never be described by the harmonic dy- 
namics of the lattice. 

For a harmonic lattice we can similarly calculate the 
contribution made to W, with participation of the deriv- 
atives, from the attracting parts of the potentials, a s  
well as the contribution from the unpaired collision, 
i.e., from mean values of the type (U;, Ul), and verify 
that a t  N >> 1 their order of magnitude is less  than the 
t e rms  omitted by us. 

4. RELAXATION ON ONE-DIMENSIONAL MORSE 
OSCILLATOR 

To estimate the possible lattice anharmonicity effects, 
we consider the conversion of intramolecular-vibration 
energy into "translational~~ energy of a colliding pair 
with an interaction potential (6), a reduced mass m, 
=(mi;+ rnm1)-' and F(x) = 2 D a ~ e ' ~ ~ ~  in (5). The probabil- 
ity if this process a s  a function of the collision energy 
was investigated in Ref. 21. We a re  interested in ob- 
taining the temperature dependence by our method of 
N = w/a0 >> 1. We note that this is precisely the prob- 
lem that ar ises  in the calculation of the rate of vibra- 
tional predissociation of van der Waals molecules 
(complexes such as HCLAr and others), which a re  pres- 
ently being extensively investigated. 

We use the known solution for the trajectory in a 
Morse potential: 

e l p [ a + ( t )  ] = [ l - E  C O S ( ~ ( E ) ~ )  ] / ( I - - E ) ,  (23) 
Q ( E )  =QO(l -E) '" ,  ~ ( 1 ;  Q(E)=iPo(E- l ) ' ,  E > ! ,  

where E = E /D is the dimensionless energy, and 52, 
= (2~a!~ / rn , ) ' /~ .  

In the classical case the solution of Eqs. (12) for the 
determination of the imaginary time t* =2ir, and of the 
initial coordinate x, [or of the optimal energy & = & *  

= u(x,)/D of the collision] yields-accurate to terms 1/N 
2 (1 -E) - '"  arcch (8-'") ,  E < i  

2 ~ . r . ( r )  + o ( ~ / N )  = p ( 8 )  = { ~ ( E - I ) - " ~  arccos(e-"),  E>I  ' (24) 

The probability W,, is in this case 
m vZ [-lth 8n e x p  {41n--- N N + c l ( b ) }  . (26) 

W , I ( N ,  b)= QO-$-b ,,, ,, 
o cp ( E )  2 

qcl ( b )  = V ( E ) + ~ E ,  X = * ~ W / D  (27) 

and ~ ( b )  is the root of Eq. (25), S O  that $,, depends only 
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on a single dimensionless parameter b. 

Using the asymptotic forms of cp(c) (-ln(4/&), , E - 0 
and -a/fi, E - -J), we can easily trace the transition 
(26) from the Landau-Teller relation2' 

a t  high temperatures kT >> D/N to the characteristic 
low-temperature relation 

At the same temperature dependence =TN, the result 
(20) never goes over into the corresponding probability 
for a classical harmonic oscillator of frequency Q,, 
[the limit of (19) a t  pfiQo<< I f ,  and differs from it by the 
factor (N/2)4(N/2e)2N. 

In the course of determining the quantum VR rate,  the 
determination of the times t ,=2irI  and T,, = ~ , + @ / 2  from 
(14) yields 

The condition T,(E,) =~,,(c,,)-&~/2 for the determination 
of the dimensionless energies E =zII  and E, = c +  u then 
takes the form 

where 

and (P(E) is given by (24). As  a result we have 

N (33) 
xexp 4 ln- - N$(b, x ) }  , 

1 2  

Figure 1 shows the functions $ , , (b) and $(b ,  u )  of the 
dimensionless parameters (38) that determine the 
probability. 

We present also an expression for the quantum limit 
of the relaxation rate a s  T - 0: 

FIG. 1 .  Plots of the functions J,  in, b )  and 6 ,(b) = Ilr (0, b ) ,  
which determine the rates (33) and (27)  of the quantum and 
classical relaxation for a one-dimensional Morse potential, 
against the reciprocal temperature b. The dashed curves show 
the low-temperature - (1 +4 lnb) and high-temperature 
- $ ( 2 ~ ~ b ) ' ' ~  asymptotic forms of $, , (b) .  The numbers on the 
curves are the values of u ,  and is the quantum low-tem- 
perature limit of $ ( b ,  u)  as  b  - m.  

The accuracy of the saddle-point method can be esti- 
mated from a comparison of the probability W(E) of the 
VR a t  a definite energy obtained by the same method a s  
W(T), with the result of the c a l ~ u l a t i o n ~ ~  of W(E) by 
perturbation theory with exact quantum functions for the 
exponential potential U(x) = U0e-7X: i t  turns out that in 
the quasiclassical conditions, ( 2 r n ~ ) ' / ~ / t i y  > 1, the re- 
sults differ only by a factor e4/16n= 1.0862. 

5. MULTIDIMENSIONAL DYNAMICS WITH TWO 
ANHARMONIC COUPLINGS 

The formulation of the quantum problem in the lan- 
guage of classical trajectories makes it possible to em- 
ploy numerical trajectory methods. The necessary step, 
however, is the reduction of the problem with an infinite 
number of degrees of freedom to a model-dependent 
problem with a finite number of these degrees, with the 
most adequate representation of the spectral phonon 
properties of the solid, and with preservation of the 
exact anharmonic dynamics of the nearest neighbors. 
A method of such a reduction for a purely classical 
lattice was developed in Refs. 15 and 7. We apply i t  
to our case. 

We carry out the standard15 subdivision of the lattice 
Hx into a primary one ( P ) ,  whose atoms participate in 
the anharmonic interactions, and a remaining secondary 
Q-lattice, whose atoms interact harmonically with one 
another and with the P-atoms (in our case, the P-lattice 
includes the coordinate x, of the mass center of the 
molecule, and the coordinates x, and x2 of the nearest 
neighbors that lie on the same line a s  AB) .  Then the 
total potential energy U,,, in (2) can be represented in 
the following matrix form 

Up, = U p ( x p )  +'/= ( x ~ " ' Q W z M " ' ~  

+&lll' ~ Q ~ , ~ M ' ~ X , + X ~ M ' ~ Q ~ ~ ~ ~ ~ ' ~ X ~ ) .  

For our model 

Here x,=Px and xQ =Qx (P and Q a r e  of the projection 
operators of the carresponding latticesi5) and the an- 
harmonic operators ''sib, in Up. The classical trajec- 
tories of this system with the Hamiltonian (35), (36) 
satisfy the equations (for brevity we put hereafter nQ0 
-aQ) 

aup x , ( t )  + iCI,-' - + M,"-Ppq'MQ"xq ( t )  = 0, 
a x p  

(37) 

~ ~ ( 1 )  + M,- ' Q ~ ~ M ~  x ~ = - M ~ - ' ~ ~ P ~ ~ ~ M ~ ' ~ x ~ .  (38) 

The quantum probability of the VR is determined, ac- 
cording to (15), but the tunnel trajectories x,(T), x,,(T), 
and T = -it, which satisfy Eqs. (37) and (38) with bound- 
ary  conditions (14), where A =Al (for the contribution 
from the 0-1 coupling to the VR probability). Expres- 
sing with the aid of (39) x, in terms of x, and substitu- 
ting in (37), we obtain for each of the trajectories 
x'(")(T) the following equations with the Q-lattice coor- 
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dinates excluded: 

The boundary condition (14) for the coordinates of the 
Q-lattice yield equations from which we can express 
kb(0) and #(O) in terms of x ~ ( T )  and xk1(7) on the inter- 
vals ( 0 , ~ ~ )  and (0, T,,), where T,, =r,+AP/2. Conse- 
quently, the fluctuation forces R21D(r) will also be de- 
termined uniquely by a trajectory in x, space: 

1 - 1 1  

R,' ( r )  = - J L,,. ( T ,  rt+hP/2) S,.'(T') dr' + J Lpp. ( T ,  t ' )  xp-ll ( t f ) d t ' ,  
0 0 

(42) 
' 1  I 

Lpp. ( T ,  r ' ) ~ ~ ~ ~ ( t ' ) d t '  + J Lpp- (t, 7'-fip/2)xp." ( r f ) d r ' ,  
0 

where 

We thus obtain a system with a finite number (3 in our 
model) of integro-differential equations, which in con- 
junction with the boundary conditions (14) for X ~ ( ~ ~ ) ( T , ,  ,,) 
and with the energies E""' determine uniquely the 
sought tunnel trajectory of the system. The energies 
En"' and the actions S""' which enter in @ can also be 
completely expressed (albeit in cumbersome form) in 
terms of x;I1)(r). 

Equations (39) coincide with the generalized Langevin 
equations (GLE)'.15 for the imaginary time t = ir , with 
one essential difference. In the classical GLE the fluc- 
tuation force R,(t) is a Gaussian random process whose 
correlation properties a r e  determined uniquely by the 
delay kernel OPP (7) in (39) o r  by the function 

iippf ( t )  = Mp-"'Qpy2Qp-2 ch (Q9r) (44) 

Therefore the trajectory calculations of the GLE7 inclu- 
ded a laborious averaging over the realizations of this 
random process. In our problem, on the other hand, a 
single realization (42) of the force R:"'(+) ensures the 
optimal tunnel trajectory. Jus t  as in the classical GLE, 
by specifying the function A,,.(r) we determine the 
problem completely. In fact, the kernels o,,.(T), Lpp, 
(rl, r2), as well as those contained in the expression 
for the energies and the actions a r e  directly connected 
with A,, . . For example, 

As to the function A,,, itself, i t s  properties a r e  deter- 
mined completely by the spectral density of the phonons 
of the solid7,15 (see Appendix Di). For our 3-particle 
P-lattice model we assume, also following Ref. 7, the 
following form of A,, , (t): 

A,,, ( t )  = 6 p p . ( 6 ~ , t + 8 ~ , ? ) A ( t )  = D P P . A ~ ( ~ ) .  (46) 

In classics this is equivalent to the absence of correla- 
tions between the fluctuation forces ~ , ( t )  and R,(t), 

which a r e  exerted by the Q lattice on the outermost 
atoms 1 and 2 of the P-lattice. 

However, the solution of the entire system of inte- 
gral-differential equations (39) and (42), a s  well a s  of 
the GLE, can be realistically obtained only with the aid 
of a convenient approximation of A(t), for example in 
the form of a sum of a finite number of  harmonic^'^.^^: 

i i ( t )  = C A, cos Q,t. 
i-1 

This approximation makes the problem (40) and (43) 
strictly equivalent to the problem of the dynamics of 
2n+p particles. Choosing the parameters SZ, and A, 
of the new oscillators from the condition of the best 
description of the response function, we can hope to 
attain a better imitation of the process in a solid than 
in a model that includes in the dynamic calculation 
merely 2n+p atoms of the immediate surrounding. 

In fact, in the approximation (47) a l l  the kernels 
ePP,(r ) ,  L,,,(T~, r2), etc. a r e  expressed with the aid of 
relations of the type (46), and the system of integro- 
differential equations reduces exactly to a system of 
2n+p differential equations in terms of the variables 
xp(P=0,1,2),vi~P=1,2,i=1 ,... n), where 

, , . l ( " ' = ~  .P PP , A , ' ~ ~ " - , I ~  J sh Q,  (r-r')x:('" ( r ' )  d t ' f  ch ~ ~ r v : ? '  (0) (48) 
0 

for  each of the two kernel trajectories. Here SZ, and A, 
a r e  the frequencies and weights of the approximation 
(47). It is easy to verify that Eqs. (39) and (42), the 
energies E""', and the actions S1"", which were ex- 
pressed in sufficiently complicated fashion in terms of 
x;ID(7), assume in terms of the new variables x ,  and 
v,, the form of ordinary classical equations of motion, 
energies, and classical actions for a system with 2n+P 
coordinates and with potential energy 

and with masses M p  and m, for the variables x, and 
v,, (the result does not depend on the choice of m,,). 
Namely, 

- ~ " ( f '  ('l'-&7) dT, E=T+O, is1("' - 
0 

where the signs of T and S a r e  connected with the im- 
aginary character of t = i r .  Moreover, a t  the definitions 
chosen in (48) for the variables, the boundary conditions 
(14) for the old variables X, and x, automatically lead 
to analogous boundary conditions for the new variables. 

Thus, the approximation (48) reduces the problem 
(40), (43) to a calculation of the dynamics of 2 n + p  par- 
ticles with a potential (52). The question of the choice 
of the parameters i s  discussed in Appendix 11. 
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6. RESULTS OF NUMERICAL INVESTIGATION OF 
THE ANHARMONIC RELAXATION 

The calculation was carried out for the single-particle 
approximation A(t), i.e ., for the 5-particle model that 
imitates the molecule C1, (with different frequencies w 
of the intramolecular vibration) in an Ar matrix: 

and with a potential energy 

The Morse anharmonic-potential parameters Ul(u) 
= U,(u) were chosen equal to 2a =4A",D = m 4 / 8 a 2 ,  u, 
= 1.244 - lo1= sec-'. The exponent 2a of the repelling 
part of the potential were chosen close to 2(2m~) ' /~/ i i  
=3.78 A-' , where I =IA,  = I,,, is the ionization potential, 
while the energy D was chosen to satisfy the condition 
that the constants of the elasticities of the bonds Ar- 
Ar and Ar-C1, be equal: Kc12Ar=KA,-A,=m~2,/4, where 
wD i s  the Debye frequency (w, = 66.01 cm-l). For the 
frequencies Qk, &-Ail, we chose the values (A .12) which 
a re  derived in Appendix JI. 

The search for the vectors z=[x,(O),x,,(O)] of the ini- 
tial conditions of the saddle-point trajectories at the 
turning points T = 0 was effected by an iteration proce- 
dure 

where the equations 

a re  the saddle-point conditions (14). Simultaneously 
with x,(T),;~(T), and the action S we integrated the equa- 
tions (A.6) for the functions 

whose values at the final points made possible the cal- 
culation of the matrix G and the search for the incre- 
ments of the initial values in (54). The time of calcula- 
tion of such a trajectory (a system of 61 first-order 
equations)-was 20-50 sec. The procedure (53) operated 
with very fast convergence (on the average two trajec- 
tories were sufficient) at  a starting initial-value vector 
so) close to the sought one, but did not operate far from 
it. Therefore the functions W(T) were obtained by scan- 
ning over the energy (or over the temperature) after 
first smoothly deforming the potential surface from 
harmonic to the needed anharmonic surface, inasmuch 
a s  the sought initial-value vector e for the harmonic 
surface is known [see (16)]. Simultaneous trajectory 
calculations of the probability for harmonic surfaces 
and calculations by formulas (17) and (18) made it pos- 
sible to check additionally all the formulas and pro- 
grams. 

Figure 2 shows the result of a calculation for the de- 
pendence of the relaxation rate W(T) on the reciprocal 
temperature for tie= 325, 650 and 975 cm-' (=~EwD, 
lofiw,, and 15RwD), for the Morse potentials in (52) and 
for the velocity W,(T) for the harmonic potentials Ul(u) 
= U,(u) = Da2u2 with identical perturbation Vl, = 2l k ~ a 2  

FIG. 2. Rates of vibration relaxation as a function of the re- 
ciprocal temperature, with allowance for the anharmonic dy- 
namics (solid curve), for harmonic dynamics (dash), and dou- 
ble the relaxation rate in pair collision with the neighbor 
(dash-dot). The figures 1, 2,  and 3 pertain respectively to 
the values of the relaxing quantum f iw=325 ,650 ,975  cm". 

exp[-2a(xl - x,)] causing the transition. It i s  seen that 
when the anharmonic lattice dynamics a re  taken into 
account, W(T) changes by many orders of magnitude, 
especially at large N: 

We have also carried out calculations with the para- 
meters of the two-frequency approximation (A.13) with- 
out allowance for the low-frequency oscillation @, and 
the coupling g,. They have shown that the result i s  not 
very sensitive to a change of the approximation A(t) at  
practically unchanged values of and A(0). 

The same figure shows the plots of W,(T)-double the 
probability of the relaxation in the paired collision of 
the molecule with each of the neighbors, calculated 
from formulas (34) for a Morse potential with the same 
parameters a s  Ul in (52), and mo = (mtl,,+ rn&)-l. With 
increasing w ,  the ratio W/Wl does not increase so dra- 
matically as W/W,. The "pairedl character of the ef- 
fective quenching  collision^^ can be traced also in the 
obtained multidimensional trajectories: the change x, 
- x, of the coordinate within the time ~ ~ ( 7 , ~ )  turns out 
to be larger by approximately one order than the chan- 
ges of the remaining model coordinates orthogonal to 
X1 -Xo. 

For a comparison with the results of the classical 
GLE7 solution for the relaxation we have carried out 
the calculation for the potentials 

with parameters corresponding to the calculation in 
Ref. 7: 

In contrast to the harmonic approximation in Ref. 7, we 
used the approximation (A .14) with a phonon spectrum 
not bounded by the frequency w,. Notwithstanding this 
fact and the difference between the quantum and classi- 
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cal formulations of the problem, the results for the 
relaxation time T ,  = [W(l- e-*w)]-l turned out to be close 
(Fig. 3). The connection presented above between the 
damping time T of the energy E (t) - E,  exp(-t/r,) of a 
classical intramolecular oscillator, on the one hand, 
and W, on the other, can be easily obtained under con- 
ditions when the classical approach is valid. 

Thus, the presented method makes it possible, using 
the tunnel part of the optimal classical trajectories, to 
calculate the VR in multidimensional anharmonic sys- 
tems. We note also that the conclusion deduced on the 
basis of Morse potentials, that it is necessary to take 
into account the anharmonic dynamics for the calcula- 
tion of the relaxation, is quite general, since the re- 
pulsion part of the interatomic potential (and it is this 
part which is important in relaxation) can be approxi- 
mated in a wide energy range by an exponential function. 
It reflects the strong exchange repulsion of the atoms 
when their electron shells overlap. This repulsion pre- 
vents them from approaching each other very closely, 
and is not described in the harmonic approximation. 

Among the experimental observations of VR, when 
electronic transitions do not participate in the reson- 
ance and accelerate it, the greater part pertains to 
systems with a vibrational-rotational (V-R) relaxation 
mechanism with participation of the rotational degrees 
of freedom of the impurity molecule (see, e.g., Ref. 4). 
It is therefore of interest to extend this mechanism to a 
calculation of the V-R relaxation in both a solid and in 
a gas, where the important role of the V-R mechanism 
of the VR is well known.20 The methods turn out to be 
useful also for the construction of multidimensional an- 
harmonic models of multiphoton transitions in mole- 
cules. 

A recent paperz6 deals with the VR mechanism on a 
local lattice harmonic mode broadened because of the 
coupling with the phonons in accord with the Lorentz 
law. An incorrect power-law dependence of W on N 
= (d/S2 was obtained in place of an exponential relation. 
The reason was that the Lorentz contour contained fre- 
quencies Ch- w that do not exist in the lattice spectrum. 
The e r ro r  is due to the incorrect averaging of (8c) in 
Ref. 26. A correct asymptotic expansion9 calls for a 
separate averaging of the low- and high-frequency com- 
ponents and leads to a coupling between them only in 
N-th order. In another proof of their result, in exactly 

FIG. 3. Quantum-relaxation time T,= W - ' ( l -  e - ~ ~ ) - 1  a s  a 
function of the reciprocal temperature (solid curve) for a 
system with potentials (55) and parameters (56) .  which i s  
close to that calculated in Ref. 7. Points-result of calcu- 
lation of rl. (Ref. 7) by the method of solving the classical 
generalized Langevin equations. 

the same manner, the authors of Ref. 26 arbitrarily re- 
placed a function having a frequency-limited Fourier 
spectrum by e ~ ( ~ t )  with an unlimited Lorentz Fourier 
spectrum. As  a result, their conclusions that the har- 
monic approximation is applicable to concrete systems 
a r e  also incorrect. 

We note also a new experimental where the 
multiphonon mechanism of the VR of the O,, NO, and 
C, molecules in definite electronic states is proved in 
Ar ,  Kr, and Xe matrices, and a strong temperature 
dependence of the VR is obtained. In connection with a 
discussionz7 of the most probable method of determining 
the energy Aw on symmetrical or  antisymmetrical local 
modes, we note that our calculation of the optimal tra- 
jectory demonstrates the distribution of the total poten- 
tial energy U(xo) over the bonds; this distribution cor- 
responds to a strong initial localization of the energy 
on one of the bonds. This leads us  to expect the same 
isotopic effect of the rate of the VR a s  for paired colli- 
sions. 

The authors a:e deeply grateful to A. A. Ovchinnikov, 
S. Ya. Umanskii, and V. P. Sakun for helpful discus- 
sions of the results and 0. Ya. Zel'dovich for help with 
the organization of the computations. 

APPENDIX 1 
CALCULATION OF THE PRE-EXPONENTIAL FACTOR 

In the calculation by the (x ,xf ,  t )  saddle-point method 
of the integral ( lo),  in which A, for a system with n 
degrees of freedom is given by 

- ( 
tn 11 aZsr(x,x't) 11 ,ll a2S1=(~,x', t+ihb) 

A - (2n) ax, ax,, iix, ax,' 

we obtain for the pre-exponential factor in (15) 

where @(xxlt) is the argument of the exponential in (101, 
and C, is given for a sum of two equal contributions 
from each of the AB neighbors. We express all the 
derivatives in (A .l) and (A.2) in terms of the derivatives 
of the limiting coordinates x f  =x?(&,pi, 7,) =x" (d ' ,d l ,  
T ~ , )  and x=xl (d ,p i ,  -~,)=x"(4' ,  p:', -T,,) with respect 
to the values I$"' of these coordinates and with respect 
to variations of the momenta p:'" at  the turning point 
T = 0. We then have 

d?Sr 3's' -.. - ; (:â -' - db-') <,. 
rix, dx,' ax,' dz,' a 

The derivative S" with respect to x and x f  a re  analo- 
gously expressed in terms of the matrices A ,  B , C and 
D, where 

and A ,  B , C, and D a r e  analogous matrices for the 
trajectories 11. Next 
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As a result we have 

where 

We note that the numerical determination of the traj- 
ectory includes in our case a simultaneous integration 
of the functions (54). Consequently the matrices a ,  c ,  
A, and C, which a r e  equal to the values of these func- 
tions a t  the points r I  and r,,, a r e  known to us,  and it is 
required to calculate only one additional "trajectory?> 
with different initial conditions for ti ,  and qij to deter- 
mine the matrices b, d, B ,  and D and to calculate the 
pre-exponential factor A,. We present the equations 
for the functions (55) which were integrated: 

and ~ i r (0 )=6 i j ,q , j (0 )=0  o r  ~ , j (0 )=0 ,q , j (0 )=6 i j  for the 
determination of a ,  c, A ,  C o r  b, d, o r  B ,D. 

In the one-dimensional case, (A.4) reduces to the ex- 
pression 

APPENDIX I I  
CHOICE OF SZoo AND OF THE PARAMETERS OF THE 
FUNCTION FOR A DEBYE PHONON SPECTRUM 

Two problems a r e  encountered when it  comes to ex- 
pressing the parameters 522, in (52) and A ,  and 52, in 
(47) in terms of the characteristics of the density p(w) 
of the phonon spectrum of a solid. First ,  it is neces- 
sary to  connect p(w) with G, and with the retardation 
function A,,(t) in the classical equations of motion 
for the coordinate x of the atom Po from a homogeneous 
volume when the remaining coordinates of the harmonic 
solid a r e  excluded? 

I 

?po(t) + [ Q & ~ - ~ I P ~ ~ ~ ( o )  1xPo(t) - [ 1 i ~ ~ h ( t - = ) . i . P . ( ~ )  ~ T = R ~ ~ ( T ) .  
0 

This was performed in Refs. 15 and 16, using the fluc- 
tuation-dissipation theorem and the well-known expres- 
sion for the correlation function of the velocities 

*D 
m 

f ( t ) = - ( . i . p o ( t ) i , ( 0 ) ) e ~  = j  ~ ( W ) C O S  w t d w  = y,cos w,t. (A.7) 
kT 0 E , = I  

Second, the connection of Amp0(t) and @,, is neces- 
sary for the atom Po from a homogeneous volume with 
Ci& and A(t) in Eqs. (40), when one of the neighboring 
atoms is described dynamically with an explicit paired 
potential. 

For an (n+ 1)-frequency approximation of the function 

following Ref. 23, a Gaussian quadrature (GQ) of order 
n +  1 for the integral with respect to w in (A.7). We 
then have for y, and w, in (A.7) in the case of the Debye 
phonon spectrum, p(w) = 3 w2/w3,: 

where w, and A, a r e  the weights and arguments of the 
GQ. The function Ampo(t) is obtained directly from the 
model that helps to effect the transition 52,po,Apopo - no0,A. We consider a harmonic system with a poten- 
tial energy 

u = ( ~ ; ~ " x  + x - x  + 2 ~ x p z k + x - h )  7 (A .9) 
2  

I = I  11-1 

where the subscript Po pertains to the x coordinate 
of the atom Po from the homogeneous volume, and the 
indices i = -n, . . . , -1 and i = 1, . . . , n number the effec- 
tive oscillators that simulate the solid on the left and 
on the right of the plane perpendicular to  x. The prin- 
cipal assumption, without which, however, we cannot 
count on obtaining simple relations between A(t) and 
Apopo(t), is that there is no interaction between xi and 
x-,. A basis for this can be the validity of this assump- 
tion for a linear chain, and the maximum interaction 
of the x-displacements of the atom Po with only the x- 
displacements of the two neighbors in the directions x 
and -x. For the model (A.9) we have 

where b' and w, a r e  normalized eigenvectors and eigen- 
frequencies of (n+ 1) symmetrical oscillations of the 
system (A.9), and all  the parameters of the model (A.9) 
can be chosen unambiguously from the condition that 
(A.lO) coincide with (A.7). This means that we know 
the sought frequencies = 52hpO/2 and the functions 

Apop0 ( t )  = 2  cos Qht Qh-' Q02=2,1 ( t )  . (A.11) 
h=1 

Thus, from the model (A .9), in contrast to Ref. 7, it 
follows that for atoms that border on the impurity, a s  
well a s  for surface  atom^,'^ the values of A(t) and go 
a r e  half the values of A,, and for an atom in 
the volume. 

We present the values of all  the parameters in units 
of [w;] for the two- and three-particle approximation 
of f(t), equivalent to the single-frequency approxima- 
tion of A(t): 

and the two-frequency approximation of A(t): 

For comparison, we present the approximation of h(t) 
used in Ref. 7 and the values of parameters (likewise 
in units of 2,): 

9 , , 2 = ~ ~ , ~ = 0 . 7 5 ,  A(t) =0.5 exp(-yt12) cos w,t ,  (A .14) 

(A.7) [or an n-frequency approximation of A(t)] we use, ( y / 2 ) 2 = ~ 1 2 = 0 . 2 5 .  
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Structure of chiral smectics in an electric field 
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We consider the distortion and the untwisting of the spiral structure of chiral smectic liquid crystals (SLQ*) in 
a uniform electric field perpendicular to the spiral axis. Account is taken of the joint action of two molecule- 
orientation mechanisms in the field: dielectric, due to the presence of anisotropy of the dielectric constant E,, 

and ferroelectric, due to the presence of spontaneous polarization P in the SLQ*. The equations that 
determine the dependence of the pitch of the spiral on the field at arbitrary E, and P are determined. The 
dependence of the spiral-untwisting helical field on the SLQ* parameters is found. It is shown that domains 
with two different molecule orientations can exist in a field-untwisted SLQ*. The energy of the wall that 
separates such domaips and the distribution of the molecule orientation in the wall are calculated. 

PACS numbers: 6 1.30.Gd 

I t  was recent ly  observed that  spontaneous polar iza-  
tion c a n  e x i s t  i n  c h i r a l  s m e c t i c  liquid c r y s t a l s  (SLC*), 
and it was  shown that  when an electric f ie ld  is applied 
to such  fe r roe lec t r i c  SLC* the s p i r a l  s t r u c t u r e  of the 
SLC* is d i s to r ted  and can d i sappear  completely. 
The  cause  of this  dis tor t ion and of the untwisting of 
the s p i r a l  s t r u c t u r e  is that  the p resence  of the spon- 
taneous polarization c a u s e s  the dipole moments  of the 
molecules to tend to become oriented along the field. 
In addition, the usua l  molecule-orientation i n  a field, 
the s a m e  as i n  nematic  and cho les te r ic  c rys ta l s ,  is 
presen t  i n  the SLC*. T h i s  mechanism is quadrat ic  in 
the field, and i n  fac t  de te rmines  the molecule  or ienta-  
tion in sufficiently s t rong  fields. 

We consider  below the change of the SLC* s t r u c t u r e  
i n  an external  electric f ie ld  i n  the  p r e s e n c e  of both 
orientation mechanisms.  A case of pa r t i cu la r  i n t e r e s t  
is that  of positive anisotropy of the dielectric prop-  

erties. In this  case the  c i t ed  molecule-orientation 
mechanism compete with e a c h  o t h e r  and tend to ro ta te  
the  molecules  i n  opposite direct ions;  this  l eads  to cer- 
ta in  s ignular i t ies  i n  the  s t r u c t u r e  of the SLC* i n  the 

field, and i n  par t i cu la r  to the possibility of exis tence 
of domains with different  molecule  or ientat ions i n  the 
SLC*. 

1. FUNDAMENTAL EQUATIONS 

We de te rmine  the change of the SLC* s t r u c t u r e  under 
the influence of a field i n  the manner  used  f o r  cholest- 
eric crystals'-4 and f o r  helicoidal magnets .  We con- 
s i d e r  a n  SLC* placed i n  a uniform electric field E 
perpendicular  to the s p i r a l  axis .  The  expression f o r  
the f r e e  energy  of the SLC* i n  an electric field is 
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