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Nonlinear waves are investigated in a two-sublattice antiferrornagnet with noncollinear sublattices. Simple 
magnetization waves, describing the motion of 180-degree domain walls of two types, are considered far from 
the spin-flip region. The specific nature of nonlinear magnetization waves within the spin-flip region is 
investigated. Solutions are obtained that describe two-parameter magnetic solitons, to which corresponds a 
periodic oscillation of the magnetization in a reference system moving with the wave. The properties of N -  
soliton solutions, describing the interaction of nonlinear waves, are discussed. Formulas are obtained that 
describe the velocity of steady-state motion of a domain wall under the action of an external magnetic field. 

PACS numbers: 75.30.Ds, 75.60.Ch 

In  a desc r ip t ion  of t h e  nonlinear d y n a m i c s  of magnet-  

i ca l ly  o r d e r e d  c r y s t a l s ,  t h e r e  a l m o s t  a lways  arises 
the  p r o b l e m  of t h e  p r o p e r t i e s  of i so l a t ed  magnet iza-  
t ion waves .  T h e  i n t e r e s t  i n  t h i s  p r o b l e m  is d u e  to the  
b r o a d  poss ibi l i ty  of d e s c r i b i n g  the  non l inea r  d y n a m i c s  
of a magne t i c  material in t e r m s  of non l inea r  waves .  
In p a r t i c u l a r ,  non l inea r  i so l a t ed  w a v e s  d e s c r i b e  an 
effect  t ha t  is i m p o r t a n t  p rac t i ca l ly :  t h e  mot ion of do- 
main w a l l s  (DW) a n d  of isolated magnetic d o m a i n s  du r -  
i n g  the  magnet iza t ion r e v e r s a l  of magnets. ' 

T h e  theory  of non l inea r  w a v e s  h a s  b e e n  developed i n  
greatest de ta i l  f o r  t h e  case of a magnet wi th  a s ing le  
subla t t ice .  It is known, however ,  t h a t  in m a g n e t s  wi th  

two equivalent  sub la t t i ce s  the  d y n a m i c s  of nonl inear  
waves is d i f f e ren t  in a n u m b e r  of i m p o r t a n t  f e a t u r e s .  
Among t h e  spec i f i c  f e a t u r e s  of t h i s  s y s t e m  m u s t  b e  in- 
c luded the  exchange c h a r a c t e r  of t h e  l imi t ing  veloci ty  
of motion of DW, '?~  which attains tens of k i l o m e t e r s  
p e r  ~ e c o n d , ~ - ~  and  the  p r e s e n c e  of c e r t a i n  types  of non- 
linear w a v e s  that  c o r r e s p o n d  to s ing le  boundary con- 
d i t i o n ~ . ~ ' ~  

A v e r y  i n t e r e s t i n g  class of s u c h  m a g n e t s  is the  weak 
f e r r o m a g n e t s  (WFM) ( in  p a r t i c u l a r ,  t he  rare-evarth or- 
t h o f e r r i t e s  (REO)), in which the  Dzyaloshinski i  i n t e r -  
action l e a d s  to noncol l inear i ty  of t h e  sub la t t i ce s ;  t ha t  is, 
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there is a weak ferromagnetic moment. The presence 
of a magnetic moment makes i t  possible to control the 
motion of SW in RE0 by means of an external magnetic 
field, just a s  is done in ordinary ferromagnets. 4-6 We 
note that control of the motion of DW in compensated 
antiferromagnets is considerably more complicated 
(see Ref. 8). 

The present paper carr ies  out a detailed study of the 
dynamics of nonlinear magnetization waves in WFM. 
Analytic solutions of the type of a simple magnetization 
wave a re  obtained, describing the motion of DW, and 
also more complicated isolated waves (two-parameter 
magnetic solitons); the possibility is indicated of con- 
structing N-soliton solutions, describing interaction of 
several isolated waves. 

The specific nature of nonlinear magnetization waves 
in the spin-reorientation range of RE0 is investigated. 
Formulas a re  obtained that describe the velocity of 
stationary motion of DW under the action of an external 
magnetic field. 

1. EFFECTIVE EQUATIONS OF MAGNETIZATION 
DYNAMICS IN A WEAK FERROMAGNET 

In a study of the nonlinear dynamics of WFM, i t  is 
unusual to start  from the equations for the normalized 
vectors of ferromagnetism m and antiferromagnetism 
1, which are  connected with the sublattice magnetiza- 
tion-vectors - . - - MI . -. and . - M2 by the relations . 

I 
n,=---!-(~~l+~,), I = - ( M ~ - M ~ ) ,  

Dld 2Af" (1) 

where ]M, I = I M ,  I =&,. By virtue of (l), the vectors 
m and 1 satisfy the relations 

ml=!I, m2+l'= 1. (2) 
We shall write the energy of a WFM of rhombic sym- 
metry (for example, REO) in the usual f ~ r m ~ " ~ :  

Here cu and a' are  the constants of nonuniform and 6 
of uniform exchange; and f i 3  are the second-order, 
@;, pi, and p i  the fourth-order anisotropy constants; 
d l  and d3 a re  the ~ z ~ a l o s h i n s k i r  constants. 

The equations of motion for the vectors m and 1 can 
be easily obtained from the Landau- Lifshitz equations 
for the sublattice magnetization vectors Mi and M2 
(see, for example, Refs. 11 and 12):* 

2 om 2 dl 
--=[mXH,]+[IXA.], --=[mXH,I+[IX H,], (4) 
g ~ ,  d t  E M ,  at 

where g is the gyromagnetic ratio, and where 
-- - 

I 6W{m,l] 1 6W{m. 1) 
H m = - w r .  H Md2 61 (5) 

Using the specific form (3) of the energy, we can write 
the equations of motion of the magnetization of a WFM 
in the following form: 

*[mHml = mXH,, etc. 
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+d,(l,[lXe,]+m.[mX$) - ($t1.+$1'12$'/,b,'1.112) [mXe,l- 
- ( ~ ~ ~ ~ + p , ' ~ , ~ + ' / ~ p , ' ~ ~ ~ ~ )  [mxe.] .  (7) 

Here e,, e,, and e, a re  unit vectors along the cor- 
responding coordinate axes. 

In the solution of the system of equations (6)-(7), we 
shall use the fact that the constant 6 is determined by 
exchange interaction, the ~ z ~ a l o s h i n s k i r  constants dl 
and d, by exchange-relativistic interactions, and the 
anisotropy constants 8, and by relativistic interac- 
tions,12 by virtue of which the inequality @ << d << 6 is 
usually satisfied. Furthermore, the difference be- 
tween the constants dl  and d, is due to the anisotropy 
of the crystal and is therefore much smaller than the 
values of dl and d3 themselves: that is, Id1 - d, I -@ 
<< d. By using also the assumptionthat the weak-ferro- 
magnetism vector remains much smaller than 1 in the 
nonlinear wave, as i t  is in static solutions of equations 
(6) and (7) (in statics, I m 1 - (d/6) 11 1 << 11 ( = I) ,  we can 
considerably simplify the system of equations (6)- 
(7). I '  On restricting ourselves in equations (6) and (7) 
to the leading approximation with respect to the small 
parameter (@/ti), we get 

where we have introduced the vector d=d:; d = d l  =dB.  

From (9), i t  is easy to express the vector m in terms 
of the vector 1: 

On substituting this relation in equation (8), we obtain 
an equation containing only the vector 1: 

It is easy to show that among the nonlinear waves sat- 
isfying this equation there a r e  two classes of solutions, 
in one of which I, = 0, and in the other 1, = 0. Using the 
fact that in our approximation the length of the vector 
1 is constant (12= 1 - m2 x I), we transform to the angu- 
l a r  variables 0 and cp: 

I,=cos 0, l,=sin 0 sin q, E,=sin 0 cos q. (12) 

In these variables, the f i rs t  class of solutions corres- 
ponds to cp =0, the second to cp = n/2. In both cases 
the angle 0 is determined by the equation 

a'0 +2 (K,+SK,) sin 0 cos 0-3211, sin3 0 co3 0=0, (13) aA8- ----- 
6 (gMo)' dtz 

where K1 and K2 a re  the effective anisotropy constants 
ordinarily used to describe REO. 9s10 For  the f i rs t  class 
of solutions ( I ,  = 0  o r  cp =O), 

~ 1 ' "  = ' / 2 ( ~ l - ~ 3 ) + ' l , ( ; j 1 1 - ~ 3 ' ) ,  K1(" =1f12($,1-?A1+ p3'), (14) 

for the second class of solutions (I, = 0 o r  cp = n/2), 

Bar'yakhtar et a/. 758 



To these two classes of solutions correspond two differ- 
ent types of nonlinear waves (in particular, DW), sat-  
isfying identical boundary conditions. As we shall 
show, depending on the relations between the effective 
anisotropy constants, one of these waves turns out to 
be absolutely unstable. 

In concluding this section, we note that equations (11) 
can be obtained from the following expression for the 
Lagrangian of a WFM, written in terms of the vector 
1 alone: 

where c = ~ g ~ o ( f f 6 ) 1 / 2  coincides with the minimum spin- 
wave velocity of the linear theory of WFM, and 

fir,=- (K1"'+8Kb2' ) 1 ~ ' + 8 ~ ? ( ~ ' 1 ~ ~ -  ( K i t )  +8K?(")lZ2 

+ 8 ~ ~ " ' 1 ~  t1/,(2$,'-,32') l ,Vzz. 

The corresponding Hamiltonian function determines 
the expression for the energy density of the WFM, 
written in terms of the vector 1. 

2. ISOLATED WAVES IN WEAK FERROMAGNETS 
AND THEIR INTERACTION 

As a rule, the second-order anisotropy constants 0 ,  
a r e  substantially larger  than the fourth-order aniso- 
tropy constants p i .  Since the parameter K2, in con- 
t ras t  to Kt, is determined solely by the value of P i ,  
satisfaction of the inequality K2 <<K, is to be expected. 
But bearing in mind the use of the results for descrip- 
tion of actual magnetic materials, we must allow for 
the possibility that at certain values of the external 
conditions K1 changes sign, s o  that near this point the 
inequality K2 <<K1 is violated. It is known that this oc- 
curs  in a number of WFM (several REO, U-Fe203, etc.) 
and leads to the phenomenon of spin reorientation. 

F a r  from the reorientation region, K2 may be omit- 
ted; then equation (13) permits a considerably more 
complete analysis, which is carried out in this section. 
Near and within the reorientation region (which usually 
occupies 10-20 K), i t  is necessary to take account of 
K, along with K1, and this leads to important singular- 
ities in the structure of isolated waves (see Section 3). 

It is known that when K1 >> K2, the equilibrium values 
of the vectors m and 1 a r e  oriented along crystallo- 
graphic axes. We shall suppose for definiteness that 
in the ground state, 111 e, and m I )  e, (this corresponds 
to K,"*~'<O); that is, the equilibrium value of the angle 
0 is 0 o r  n. We shall furthermore res t r ic t  ourselves 
to the case of plane waves, supposing for definiteness 
that 0 = 0(y, t )  . Since we a r e  interested in isolated 
waves, we must take as boundary conditions 

e=o, n; a0iay=0 (16) 

f a r  f romthe  wave. 

When K2=0, equation (13) takes the form of the well- 
studied sinusoidal Klein-Gordon equation (sine-Gordon 
equation; see, for example, Ref. 13) for value 20: 

which permits complete integration by the method of 
the inverse problem of scattering theory. l4 Here the 
following symbols have been introduced: 

The quantity c, the same for both classes of solu- 
tions (cp = 0 and cp = n/2), is the minimum phase vel- 
ocity of spin waves in WFM, the same for  both spin- 
wave branches. The parameter ~ ~ , ~ ( 0 )  has different 
values for the two classes of solutions. 

We consider solutions of (17) of the simple-wave 
type, in which 0 = O ( [ ) ,  5 = y - Vt ,  V= velocity of the 
wave. On integrating equation (17) with use of (161, we 
get 

tg t l = l / s h [ x , ~ ( 1 7 ) E l .  (19) 

This solution describes a 180-degree DW moving along 
the y axis with velocity V; the quantities x ~ , ~ ( V )  have 
the meaning of inverse thickness of DW of the two types 
and a r e  determined by the relations 

The variation (20) of the thickness of a DW with i t s  
velocity was obtained in Ref. 2 by another method. 

Thus in RE0  under the prescribed boundary condi- 
tions (161, there can exist two types of moving DW. 
DWI corresponds to cp =O; that is, 1 rotates in the ( X Z )  
plane, 

I , = t h l ~ , ( ~ ' ) ~ ] ,  I l=( j .  l z = 1 / c 1 ~ [ x , ( V ) ~ I .  (21) 

and the vector m is determined by the relation 

In DWII (cp = n/2), 1 rotates in the (XY) plane, 

l ,= t l l l x l (V ) ; ] ,  i , = l l c l ~ [ z ~ ( V ) E l ,  I,=@. (23) 

and the vector m i s  directed along the z axis and var- 
i e s  only in magnitude: 

When V =  0, the expressions (21)-(24) reduce to the 
well-known relations that describe stationary DW of 
the two types in REO. The energy of both walls 
varies with velocity in a "relativistic" manner2': 

0, ? ( O )  
a, , ( V )  = . 

(1- L ~ ~ I ~ ~ )  

where a2, 1(0) = 2 f f ~ i n ~ ,  2(0) is the energy of stationary 
DW of the two types15116 per  unit a r e a  of the DW. 

We shall discuss the approximations made in the der- 
ivation of equation (11) and then of (13). First ,  i t  was 
assumed that in the nonlinear wave the weak-ferro- 
magnetism vector m remains small  in magnitude: I m 1 
<< 1. This corresponds (see (22) and (24) and also (20)) 
to the inequality 
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Thus the relations obtained above, describing a 
moving DW, lose their significance in a narrow (-P/6 
<< 1) interval of DW velocities near the limiting vel- 
ocity c .  It must be noted that this limitation is one of 
principle, since the condition that the DW shall be mac- 
roscopic (that the DW thickness l / x ( ~ )  shall be much 
larger than the lattice constant a) also leads to the con- 
dition (26). As was noted in Ref. 2, when the condition 
(26) is violated a description in terms of the macro- 
scopic equations (4) is inapplicable, and when (c - V)/c 
s /3/6 i t  is necessary to s tar t  from a quantum-mech- 
anical description of a discrete lattice of spins of a 
magnetically ordered crystal, on the basis of a specific 
model of the exchange interaction. 

Our second simplification consists in the fact that we 
considered only a limited class of solutions of the equa- 
tions (11) of magnetization dynamics, in which the angle 
cp is constant and equal to 0 o r  n/2 (the vector 1 lies 
in the (XZ) o r  (XY) plane, respectively). It is there- 
fore necessary to investigate the stability of these solu- 
tions with respect to departure of 1 from the corres- 
ponding plane. By starting from the general equation 
(11) and setting = 0, i t  is easy to obtain equations for 
the angles B(y, t) and cp(y, t). To investigate the stab- 
ility of moving DWI and DWII, we linearize these equa- 
tions about the solutions found, writing 

where cp, = 0 and n/2 for DWI and DWII respectively, 
and where eo(() is determined by the expression (19). 
For DWI i t  is easily found that 9 - q2 and that J ,  is de- 
termined by the equation 

whose solution can be written in the form 

Therefore DWI is stable if K:" >K:~' and is unstable in 
the contrary case. Taking into account also that for 
stability of the ground state with 1 ll e, i t  is necessary 
that Kil' <0, we finally write the condition for existence 
of DWI in the form 

K , I ~ ~ < K , ( ~ ~ < O  ( DW I stable ). (29) 

Investigation of the stability of DWII proceeds simil- 
arly and leads to the following condition: 

K,")<K,'2'<0 ( DW I1 stable ). (30) 

The conditions (29) and (30) a re  contradictory; that is, 
in WFM with a given relation between K:" and K:~' 
only one of the DW can be stable. That DW is stable 
to which corresponds the smaller value of x(V); that 
is, the smaller energy. The other DW is not meta- 
stable but absolutely unstable (this is valid, in partic- 
ular, also for a stationary DW; see (28)). Thus in 
each actual specimen, only one of the two types of 

DW can exist. Since the parameters K:" and Ki2' in 
general vary differently with temperature, the differ- 
ence Kit'- K:~' may change sign at some value of the 
temperature; then there should be a hysteresisless3' 
transition DWI ZDWII. This phenomenon has been ob- 
served in dysprosium orthoferrite l7  far  from the spin- 
reorientation region (which is located near 40 K). Be- 
low 150 K, DWII is observed; above, DWI (in our term- 
inology). 

Above, we considered solutions of equation (17) that 
have the form of a stationary-profile wave; they des- 
cribe moving 180-degree DW. But as has been men- 
tioned, the sine-Gordon equation (17) permits complete 
integration by the method of the inverse problem of 
scattering theory,14 and this makes i t  possible to carry 
out a very complete description of the nonlinear dyna- 
mics of WFM. 

In investigation of equation (l7), i t  is convenient to 
use the transformation13 

u=tg(0/2), (31) 

since the equation for u permits separation of the var- 
iables, and i ts  solution can be expressed in terms of 
elliptic functions. An important special case  of these 
solutions is the solution of Perring and skyrme,13 

which describes the interaction of two DW moving 
toward each other with velocity V. Another known sol- 
ution is the two-parameter solution (parameters w and 
V) 

which exists when V<c and w < x(0)c and describes a 
moving localized magnetic soliton, in which the mag- 
netization approaches the same value 6 = 0 for 5 - +- 
and for 5 - -00. A characteristic of this soliton is a 
periodic motion of the vectors 1 and m in a reference 
system moving with the soliton, a t  frequency w ' =  w(l 
- V ~ / C ~ ) ~ ' ~ .  

For  equation (17) one can also obtain N-soliton solu- 
tions, describing the interaction of several nonlinear 
waves in the WFM. A general property of these many- 
soliton solutions is the satisfaction of an asymptotic 
superposition principle. The essence of this principle 
consists in the fact that i f  isolated waves enter into 
interaction, then in the course of time they emerge 
from the region of interaction, reestablishing for t - + w  their original form and velocity. 

3. NONLINEAR WAVES I N  THE SPIN- 
REORIENTATION REGION 

We turn now to investigation of the vicinity of the 
spin-reorientation region, in which one of the para- 
meters K1 (K:" o r  K:~') becomes comparable with the 
corresponding parameter K2. For concreteness we 
shall suppose that Ki2'< K:"; that is, the reorientation 
occurs by rotation of l i n  the (XZ) plane and is des- 
cribed by the parameters K:" and K,"' (we shall here- 
-.fter omit the upper indices). Then the solutions of the 
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f i rs t  class, 9 = 0, in particular DWI, a r e  stable. The 
case of spin reorientation in the (YZ)  plane, described 
by the parameters K:" and K~',' and corresponding to 
stability of the solutions of the second class (q = ~ / 2 ,  
DWII), is treated analogously, and we shall not dis- 
cuss it. 

It is well known that the sign of the parameter K, 
determines the number of homogeneous phases that can 
be realized in the REO. When K2 >O, three ground 
states a r e  possible: @,, (1 l l  e.), existing for K1 <-8K2; 
@,(I IleJ, existing for K1 >8K2; and also @,, in which 
the vector 1 l ies in the ( x Z )  plane and makes an angle 
0, with the x axis, where Oo is determined by the rela- 
tion 

sin' O,,= (K ,+8Kl )  i16K2. (34) 

Spin reorientation from phase a,, to phase @, is ac- 
complished by means of two phase transitions of second 
order: $,, -@,and @,-a,, a t  Kt = -8K2 and K1 = 8Kz 
respectively. 

When K2 <O, only two homogeneous phases, @,, and 
@,, a r e  possible in REO; their existence ranges (Kl 
<-8Kz and K1 >8K2) overlap. Spin reorientation occurs 
at  K1 = O  a s  a phase transition of f i rs t  order.  

To describe nonlinear waves in the spin-reorientation 
region, we shall s tar t  from equation (13). If we re- 
str ict  ourselves to the study solely of stationary-profile 
solutions, then it is convenient to rewrite equation 
(13) in the form 

where we have introduced the parameter 

The form of the nonlinear waves of stationary profile 
is determined by the sign of Kz and the relation between 
Kl and K,. 

We shall f i rs t  consider the case K2 >O. 

a) Let K1 <-8K2. Then the phase a,,, in which 111 e, 
and m ( 1  e,, is stable; that is, the boundary conditions 
have the form (16). The corresponding solution of 
equation (35) has the form 

where 

For this solution 8 = 0  for 5 - + a  and @ = a  for  5 --.o; 

that is, i t  describes a moving 180-degree DW in the 
phase a,,. The energy of such a wall is determined by 
the expression 

On approach to the phase-transition point (Kt - -8K2), 
x,,(V) - 0; that is, the DW "spreads. " At the phase- 
transition point @,, - @, itself (Kt = -8Kz), the solution 
of equation (35) takes the form 

This solution describes a so-called 180-degree "alge- 
braic" DW, in which the vector 1 approaches i t s  equil- 
ibrium value not exponentially, as is usual [see (3711, 
but according to a power law. 4 '  The energy of such a 
DW is finite and is determined by the expression 

b) Let - 8K2 <K1 <8K2 (- 00 < p  <-+). In this case the 
ground state of the R E 0  is the phase a,, in which the 
vector 1 makes with the x axis an angle Oo determined 
by the relation (34). It should be noted that in the 
phase @, there exist not two ground states, as in the 
phase @,,(8 = 0, a), but four, to which correspond angles 
0 = &,, 8 = a  * 8,. Analysis shows that in this phase 
two different forms of DW can be realized that cor- 
respond to q = 0: namely DWA, separating states with 
0 = 0, and with B = -8,, and DWB, separating states 
with 0 = 0, and with 0 = a - 0,. The corresponding two 
solutions of equation (35) can be written in the form 

t g 0 = t g O 0 t h [ x , ( V ) g l ,  (42A) 
t g ~ = t g  o , c ~ ~ I [ x , ( v )  j]. (42B) 

where 

The solution (42A) describes a moving 20,-degree 
DW (DWA), whose energy is determined by the form- 
ula 

The solution (42B) describes a moving (180 - 28,)-deg- 
ree  DW (DWB), whose energy is 

When V=O, the expressions (42) and (44) reduce to 
the corresponding expressions of the paper of Ivanov 
and ~ r a s n o v , ~ ~  in which stationary DW in RE0  were 
considered in the spin-reorientation region. 

On approach to the phase-transition points, the amp- 
litude of one of the DW (DWA when @, - @,, and DWB 
when @< - @,) approaches zero, and the energy of this 
DW also approaches zero. The other DW (DWB when 
0, - @,, and DWA when 9, - @,) has a finite amplitude 
at  the transition. [ 0 ( + ~ )  - O(-a)]= a ;  but at the trans- , - .  

aK?. 
oIl ( V )  -4M: [ (39) 

ition point this DW becomes algebraic (cf. (40)). Its 
p ( l - V 2 / c 2 )  energy coincides with (41). 

Fa r  from the spin-reorientation region, where I K, ( c) Let K1 >8K2, The ground state of the RE0  is the 
>> 8Kz and p << 1, the expression (37) and (39) reduce to phase @,, in which 1 11 e, and m 1 1  e,; that is, Oo = *n/2. 
the relations (19) and (25) obtained in  the preceding sec- The solution of equation (35) for such boundary con- 
tion. ditions describes a 180-degree DW in the phase a,: 
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where p'= -p/(l + 2p) = 8Kz/(Kl - 8Kz), while the quan- 
tity x,( V) and the DW energy a,(V) a re  determined 
by the relations (38) and (39) with the parameter p 
replaced by the parameter p'. 

Thus when K2 >O, isolated stationary-profile waves 
describe moving DW. In the phases O,, and O ,, 180- 
degree DW exist; within the reorientation region, there 
exist DW of two types [DWA and DWB; see  (42)], which 
behave differently on approach to the phase-transition 
points: one of them becomes delocalized (x, - 0) and 
disappears, while the other becomes a 180-degree DW 
existing in the phases O,, and O, (see Fig. 1); a t  the 
phase-transition point, these walls become algebraic. 

We turn now to study of the case K2 <O. Here i t  is 
sufficient to restrict  ourselves to investigation of the 
region of existence of one of the two possible phases, 
for example O,, (that is, the region K1 <-8K, = 8 I K, I ), 
choosing as boundary conditions the relation (16). The 
solution in the phase O, can be obtained from the solu- 
tion in the phase O,, by replacing the parameter p by 
the parameter p' [see (46)l and tan 0 by cot 9. 

When the inequalities K2 < O  and K1 <-8Kz a re  satis- 
fied, the parameter p is negative: -m <p  <O. The 
form of the solution of equation (48) depends substan- 
tially on the value of this parameter: 

The energies of these nonlinear waves a re  determined 
by a single expression: 

aKz 
o ( V )  =4M: [ 

p(1-VZ/c?)  

It is easily seen that when -1 <p  < O  (K1 <0), the solu- 
tion (47) describes a moving 180-degree DW; when 
p =  -1 (K, =O), i t  describes a 90-degree DW; and when 
p<-1 (K, >0), the solution corresponds to a localized 
magnetic soliton, for which the values of the angle 9 a t  
5 - +a and at 5 - -m coincide (9 - 0 when 5 - im). 

This behavior of the solutions of the equations of 
motion becomes intelligible if one takes into account 
that when K1 <O the phase O,, is stable, but when K1 >O 
i t  is metastable (the phase O, is stable). At the point 
K1 = 0 there occurs a phase transition of the f i rs t  kind 
ell =a,; consequently, at this point there is a 90-degree 
DW-aninterphase boundary separating a, and O,, con- 

FIG. 1. Regions of existence and energies of moving DW for 
Kz > O  near the spin-reorientation region: I, DWA; 2, DWB. 
The circles mark the points corresponding to algebraic DW. 

sidered for V= 0 in Ref. 23. The soliton solution that 
exists when K1 >O must be regarded as the dynamic 
analog of a nucleus of the stable phase O, in the met; 
astable phase (the question of the stability of such soli- 
tons remains open). Upon approach to the point of 
instability of @,,(K1 - 8Kz, p - -03)) the amplitude of the 
soliton decreases [9(0) - 1/( I p 1 'I2) and i ts  region of 
localization (I/%,,) - ( 1 p (meanwhile i t s  energy ap- 
proaches zero). As K1 - +0, that is as p - -1-0, two 
90-degree DW can be distinguished in the soliton, sep- 
arating a broad (A[ -In I 1 + p  1 )  region occupied by the 
homogeneous phase O, from the remaining part  of the 
magnet. Meanwhile the energy of the soliton ap- 
proaches the value 

UfO2 ("Rt 1-VZ/c2 ) "= =lo.,z ( V )  , 

which is twice the energy [u,,~(v)] of a moving 90- 
degree DW. 

4. MOTION OF DW IN WFM UNDER THE ACTION 
OF AN EXTERNAL MAGNETIC FIELD 

The solutions obtained in the preceding sections des- 
cribe the motion of DW and other nonlinear waves "in- 
ertially": that is, without allowance for dissipative 
processes and a driving force. A s  a driving force, 
one usually uses an external magnetic field H, applied 
in such a way that because of the Zeeman energy wH 
= -(MI + M,) H = -2Mo(m. H), one of the homogeneous 
phases of the magnetic material that a re  separated by 
the DW [that in which (M . H) >o] becomes energetically 
advantageous as compared with the other (the metast- 
able one, in which (m- H) <O]. Then there acts on the 
DW a force of magnetic pressure pH that is directed 
toward the less a d v a n t ~ e o u s  phase. The moving DW 
is also subject to a retarding force F(V), produced by 
various dissipative processes and dependent on the DW 
velocity. At a certain value of V equilibrium occurs, 
pH = F( V), and the DW motion becomes stationary. It 
is of interest to calculate the relation V= V(H), since 
i t  is this relation that is usually determined experi- 
mentally. 4-61 24 

The relation V(H) for a magnetic with a single sub- 
lattice was obtained by Walker (see Ref. 1, Chap. 11). 
The relation V(H) in WFM was found for the case of 
DWII far  from the spin-reorientation region by 
zvezdinZ5 and by us. 26 We note that this result, like 
the well-known result of Walker (see Ref. 1, Chap. 11), 
was obtained without limitations on the value of the re- 
laxation constant X o r  of the driving field H; but i ts  gen- 
eralization to the case of other types of DW does not 
seem possible without certain approximations. 

We shall treat  the motion of DW in WFM on the sup- 
position that both the relaxation constant X and the driv- 
ing field H a r e  small in comparison with the character- 
istic quantities of the problem5' (in particular, H<<PMo, 
dMo; X <<P, d, . . .). In this case i t  may be supposed that 
the DW structure is the same as for H = X =  0 and is des- 
cribed by the formulas obtained above. Then the mag- 
netic pressure pH is described by the equilibrium values 
of the magnetization to the right and to the left of the 
DW: 
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For  the magnon force of retardation F',(V), we shall 
use the expression obtained by introduction into the 
Landau-Lifshitz equation of a phenomenological relaxa- 
tion term in Gilbert's form. Then one easily obtains 

where a(0) is the energy of a static DW and A is a dim- 
ensionless relaxation constant. The velocity V(H) of 
stationary motion of the DW is found from the condition 
pH = F,(V). On supposing that H ( 1  e, and restricting our- 
selves to the case of phases @,, and @,, we obtain 

V ( H )  
(52) 

where H+ = hbM0/4dcosRo; cosOo = 1 for  @,, and is deter- 
mined by formula (34) for @,. F a r  from the spin-re- 
orientation region, this formula simplifies and for both 
DW lakes the form 

For values of the velocity not too close to c [see (26)], 
that is for (c - V)/C >>/3/6, (53) agrees with the result 
obtained in Refs. 25 and 26. 

The V(H) relation (52) is shown in Fig. 2. We note 
the substantial difference of the form of V(H) for WFM 
from walker's result for a single-sublattice ferro- 
magnet. In the latter, stationary motion is possible 
only a t  values of the field less  than a certain critical 
value H,, where H ,  - h and is small  in proportion to the 
smallness of h. The sublattice structure of WFM 
shows up in the fact that stationary motion of DW is 
possible a t  an arbitrary value of the field H (as com- 
pared with HI - 1); the DW velocity V approaches c when 
H>>H*. 

We shall f i rs t  discuss the range of applicability of 
formulas (52) and (53). Formula (52) was obtained on 
the assumption that H<<PM,, dMo, . . . and that (c - V)/ 
c >>/3 /6 ;  that i s ,  i n  the analysis the assumption H, 
<<pMo, dMo is essential. Furthermore, in the deriva- 
tion of these formulas we disregarded magnetoelastic 
interaction, which may make an important contribution 
to the retarding force a t  a DW velocity comparable with 
the velocity of sound s ;  that is, when V- s one must 

FIG. 2. Variation of the velocity of stationary motion of a 
180-degree DW, with allowance for relaxation processes. The 
V(H) relation at a DW velocity close to  the speed of longitudi- 
nal o r  transverse sound, st o r  s,, was plotted on the basis of 
the resul ts  of Ref. 27. The dotted line shows the nonstationary 
DW motion with above-limit 

add to the magnon force of retardation F,(V), (51), a 
phonon force Fph(V). The effect of Fph(V) was investi- 
gated in detail in Ref. 27; the corresponding section in 
Fig. 2 f o r  V - s has been constructed according to the 
results  of this paper. 

It must also be remembered that the phenomenological 
treatment of relaxation is of approximate, essentially 
semiqualitative, character (Ref. 11, §31), and that 
calculation of the magnon retardation of a nonlinear 
wave requires a microscopic approach. This leads 
to more complicated F,(V) and V(H) relations, whose 
character furthermore is significantly determined by 
the temperature. In addition, in an analysis of ex- 
perimental data in REO, a substantial contribution to 
the dynamic retardation of DW may come from the 
presence of the rare-earth sublattices, whose spins 
a r e  ordered only at  low temperatures (of the order of 
helium temperatures). Detailed discussion of these 
questions, however, falls outside the scope of the pres- 
ent paper. 

In conclusion, we note that our results indicate that 
the velocity of motion of stationary waves of various 
types in WFM does not exceed the minimum phase vel- 
ocity of spin waves c. It can therefore be concluded 
that the above-limit (V>c) DW motion observed by 
Chetkin's cannot be stationary. Possible mech- 
anisms of this nonstationarity have been discussed in 
Refs. 24 and 26. 

 his assumption imposes definite l imits on the velocity of 
motion of the nonlinear wave, a s  will be indicated below 
[see formula (26)l. 

 his law i s  valid for arbi t rary  stationary waves in WFM both 
f a r  from and within the reorientation region; it is a conse- 
quence of the Lorentz invariance of equation (11). The role 
of characterist ic velocity is played by the minimum phase 
velocity c of spin waves. 

3 ' ~ y s t e r e s i s ,  o r  "smearing" of the transition, may develop if, 
in the anisotropy energy, we allow for t e rms  of the type 
a;: 1 : ~ : ;  but discussion of the details of the transition 
DWI = DWII falls outside the scope of this paper. 

4 ) ~ l g e b r a i c  solitons have been investigated intensively in re- 
cent yea r s  and have been obtained for the Korteveg-de Vries 
equation,18 the non linear Schradinger equation,lg and several 
magnetic ~ ~ s t e m s . ~ ~ * ~ '  Algebraic DW have been obtained in 
an  antiferromagnet in a strong magnetic field.' We note that 
algebraic localized solitons may prove unstable'8119; but the 
stability of algebraic DW in WFM is guaranteed by topological 
considerations. 

S ) ~ m a l l n e s s  of h means a small  value of the damping of a WFM 
spin wave in comparison with i t s  frequency; this condition 
may always be considered satisfied a t  temperatures l e s s  than 
the ~ 6 e l  temperature of the WFM. The driving field in the 
e ~ ~ e r i m e n t s ~ * ~ * ~ *  did not exceed l o 3  Oe, whereas the smallest 
charackristicfield in RE0  is the anisotropy field ~ ~ ~ 2 1 0 ~  Oe. 
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Combined phonon resonance in semiconductors 
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The absorption of electromagnetic radiation by band carriers whose motion is quantized by a magnetic field is 
considered. It is shown that the electronic transitions with spin flip that take place on photon absorption and 
LO-phonon emission result in resonance of the absorption coefficient (combined phonon resonance-CPR). 
The line shape of the CPR is investigated and the parameters of the resonance peaks are determined. The 
results are compared with the experimental data. 

PACS numbers: 72.20.Jv, 63.20.Hp, 7 1.36. + c 

1. INTRODUCTION 

Absorption of electromagnet ic  radiation by  band car- 
riers under conditions i n  which the i r  motion is quan- 
t ized by a magnetic field l eads  to var ious  resonance 
effects.  Part of such effects  is connected with the  scat- 
te r ing  of the carriers by optical phonons. A compari- 
son of the  existing experimental  da ta  with the  r e s u l t s  
of theoret ical  r e s e a r c h e s  i n  th i s  region gives essen-  
t ia l ly  good agreement;  however, as is noted in the  re- 
view of Ref. 1, a number of experimental  r e s u l t s  h a s  
not yet  found theoret ical  explanation. In part icular ,  the  
nature of the resonance found experimentally in  n-InSb 
at the frequency w, = w,+ g p p  + w,, f o r  longitudinal 

polarization of the  electromagnet ic  f i e l d  r e m a i n s  un- 
clear. 

A s  follows f r o m  the  frequency condition of t h i s  res- 
onance, it is obviously determined by the electronic  
transitions with spin f l ip  upon absorpt ion of a photon 
and emiss ion  of a longitudinal optical phonon. The  spin 
flip in the  electronic transition can b e  connected in t h i s  
case e i ther  with the  interact ion of the  band e lec t ron  
with the high-frequency electromagnet ic  field or  with 
the  spin-phonon interaction. We sha l l  consider  both 
cases. Resonance i n  the  absorpt ion of electromagnet ic  
radiat ion on account of spin-phonon interact ion w a s  
studied theoretically in Ref. 3, where  it was shown that  
the  resonance in the  case of an isotropic  energy spec- . 
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