
Energy loss of charged particles in crystals 
A. F. Burenkov, F. F. Komarov, and M. A. Kumakhov 

Research Institute of Physics Problems at the Byelorussian State University 
(Submitted 3 August 1979) 
Zh. Eksp. Teor. Fiz. 78, 14741489 (April 1980) 

A quantum dielectric formalism is applied to analysis of the energy loss of charged particles moving in a 
crystal in the channeling regime and in a random direction. An analytical model of the dielectric matrix of the 
crystal is constructed. On the basis of this model, general formulas in the Born approximation describing the 
slowing down of a fast charged particle in a crystal with allowance for the nonuniformity of the electron 
density and the band structure of the crystal are obtained for the fmt time. A relation is found between the 
energy loss of channeled particles and the electron density in the channels of the crystal. The difference 
between the energy loss rates of hyperchanneled particles in axial and planar channels is rigorously 
demonstrated for the first time. Some features of the behavior of the energy loss of channeled particles in the 
low-velocity region are explained. The theory is applicable for calculation of the energy loss from low 
velocities (of the order of the velocity of the Fermi electrons) up to ultrarelativistic velocities of the incident 
particles. The theory is compared with the principal known experiments. Satisfactory agreement between 
theory and experiment is obtained and at the same time a number of experimental results are explained on the 
basis of the proposed theory. 

PACS numbers: 6 1.80.Mk, 29.70.Gn, 77.20. + y 

1. INTRODUCTION 

The theory of the energy loss of charged particles in 
crystals has attracted considerable attention from in- 
vestigators in recent years. For a number of applica- 
tions, in particular for  the interpretation of experiments 
on backscattering of protons and LY particles and in 
studies of electron densities on the basis of the energy 
spectra of channeled particles, i t  is necessary to know 
the energy loss both in an unoriented crystal and in the 
channeling regime. 

At the energies 0.5-4 MeV usually used for backscat- 
tering of protons and (Y particles, energy loss to val- 
ence electrons is  dominant. In the channeling regime 
the contribution of the inner electrons, for example in 
silicon, begins to be felt only at energies above 3-5 
~ e ~ / a m u .  Therefore the subject of the present work 
will be mainly the calculation of the contribution of val- 
ence electrons to the slowing down of fast  charged par- 
ticles in crystals. 

The slowing down of charged particles by a f ree  elec- 
tron gas was investigated by Lindhard and ~ i n t h e r . '  
The assumption of spatial uniformity of the electron gas 
limits the possibility of application of the results of 
their work only to the case of amorphous material. Ka- 
gan and ~onone t s '  used the density matrix formalism to 
study the evolution of the energy distribution of channel- 
ed particles as  they penetrate into the interior of a crys- 
tal. 

The energy loss of the particles has been discussed 
with inclusion of the spatial inhomogeneity of the elec- 
tron distribution in crystals in several articles,3s but 
a s  a result of the complexity of the models and the ex- 
pressions, i t  has been possible to make calculations on- 
ly by computer and for individual energy values. A sim- 
pler method of taking into account the nonuniformity of 
the electron density has been suggested in Ref. 6. 

Recently Golovchenko and ~ s b e n s e n '  have discussed 
the slowing down of fast  channeled ions in terms of the 
first  Born approximation with use of a harmonic oscilla- 

tor model in calculations of the generalized oscillator 
strengths of atoms. This model unfortunately is limited 
to the case of f ree  atoms in lattice si tes and does not 
permit separation of the contribution of single-particle 
and collective excitations of electrons (such a separation 
is necessary in study of the multiple scattering of chan- 
neled particles), and also requires most frequently of 
all the introduction of an empirical value of the mean 
ionization potential and correction for the effect of den- 
sity of the medium at  relativistic velocities. Certain 
aspects of this theory will be discussed in Section 3. 

Experimental results on the energy loss of channeled 
particles8-'4 exist for a wide range of energies. Con- 
struction of a theory of energy loss which is rather sim- 
ple and is convenient for calculations is therefore one of 
the purposes of the present work. In addition, we intend 
to study the relation between the energy loss and the 
local electron density which is probed by the channeled 
particle. Establishment of such a relation is  important 
in determination of the electron density in a lattice by 
means of the channeling method. 

In the second section of the article a simple model of 
the band structure of a semiconductor and the sum rules 
for the elements of the dielectric matrix a re  used to ob- 
tain expressions for  the diagonal and nondiagonal ele- 
ments of the dielectric matrix. In the third section we 
derive a formula for calculation of the Fourier compon- 
ents of the energy loss of charged particles in an in- 
homogeneous electron gas. For  incident-particle vel- 
ocities significantly above the velocity of a Fermi elec- 
tron gas we obtain a simple formula for the slowing 
down in a spatially inhomogeneous electron gas. In con- 
clusion of Section 3 the formula for the energy loss is 
generalized to the case of relativistic particles. The 
relativistic formula obtained in this work takes into ac- 
count the polarization of the medium, and there is no 
need for special introduction of a correction for  the 
density effect. 

Section 4 presents the results of calculations of the en- 
ergy loss of light ions using the proposed model of the 
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dielectric matrix and compares them with the results of 
other authors. 

2. THEORY, MODEL OF THE DIELECTRIC MATRIX 
OF A SEMICONDUCTOR 

Channeled particles probe only certain regions in a 
crystal, since the flow of positively charged particles is 
concentrated mainly near the center of the channel. In 
this case i t  is necessary to take into account the effects 
of the local field- the change of the microscopic elec- 
tric field and of the local electron density within a unit 
cell. In this way we can establish a relation between the 
energy loss of ions in channeling and the local electron 
density, which is important in study of the electron den- 
sity of crystals by the method of light-ion channeling. 

The elements of the dielectric response matrix Ea,a, 
a re  complex numbers and can be written in the form 

EG, o .=e~ ,  ,+ ieo, o r .  2. 
(5) 

Since in what follows we shall use only KG,o and &O,a,l, 
&0,a,2, we shall omit the index 0. 

The imaginary part of the inverse dielectric function is 

To calculate the energy loss i t  is necessary to know the 
dielectric function ca(q, W) over a wide range of variation 
of q and w and also for several vectors G, and therefore 
the numerical integration over the wave vector k be- 
comes laborious and i t  is necessary to resor t  to simpli- 
fied models of the band structure of the crystal. In this 
work we shall propose a model for the crystal band 

The energy loss of a charged particle with charge Z1 structure which is most appropriate for semiconductor 
and velocity v in a nonuniform electron gas of valence and metallic crystals. The energy bands a re  assumed to 
electrons of a crystal with inclusion of the effects of the be identical for all valence electrons; the multiplicity of 
local field is expressed in the Born approximation by the degeneracy is equal to the number of valence electrons 
following formulai5: 

per atom in the crystal. The conduction band is sepa- 
dE ZlzeZ d3q 

s(~)=-- - . (~)=-  IF Id" u ~ I ~ ( K G ~ ( ~ ,  u))etor6(u-qv). rated from the valence band by some average energy gap 
dx nZu 

G E, which does not depend on the direction of the wave 

where K G , ~ ( ~ ,  w) i s  the inverse dielectric matrix,16 which 
depends on the frequency w and the wave vector q; G is 
the reciprocal-lattice vector. For a solid with a period- 
ic structure the operators K and & are  usually taken in 
the representation in which K and & are  matrices withcol- 
umns and rows labeled by the reciprocal-lattice vectors 
G and G' in such a way that the relation between them is 
as follows: 

where &a,G, is the dielectric response matrix introduced 
by Adler and wiser." The component ~ ~ , ~ ( q ,  w) of the 
dielectric matrix corresponds to the ordinary dielectric 
function &(q, w). The components of the inverse dielec- 
tric matrix entering into the stopping formula, in the 
case of weak binding when the nondiagonal elements of 
the matrix a re  significantly smaller than unity, 
are  easily expressed in terms of the elements of the ma- 
trix : 

where Ik, I) and ~ , ( k )  a re  the eigenstates and eigenval- 
ues of the unperturbed Hamiltonian of the crystal, f o  is 
the Fermi-Dirac distribution function, Q is the crystal 
volume considered, and CY is a small positive quantity. 

vector k. The dispersion of an electron in the bands is 
assumed to obey the following lawi8: 

E,(k) =hzk2/2m for ktk, ,  

E, (k) =hZkL/2m+E, for k>k,, 

where kF is the Fermi wave vector. Equation (7) differs 
from the result for a free electron gas by inclusion of 
the energy gap in the semiconductor band structure. The 
behavior of E,(k) a s  k -- kF is not taken into account, 
since inclusion of i t  affects the final result only to a 
small extent, a s  a result of the fact that the energy loss 
is determined by the set  of excitations over the entire 
spectrum of frequencies and wavelengths. 

With the aid of the semiconductor model described we 
shall find the real  part ~ ( q ,  w) and the imaginary part 
&,(q, w) of the dielectric function for the case G=O. As 
for a free electron gas,' the sum in Eq. (4) can be re- 
placed by integration over a sphere of radius kF; we 
must take into account, however, that the matrix ele- 
ment now may differ from unity. On the assumption that 
the structure of the dielectric function is determined 
mainly by the density of electron states in the energy 
interval considered and not by the dependence of the ma- 
t r ix  element (k + q, 1' I elw / k, I) on the variation of the 
wave vector k within the sphere of integration, we take 
the square of the matrix element outside the integral 
sign. Analytical integration leads to the following result 
for the imaginary part of the dielectric function: 

3 w z  e ,=- - -nPW(z)  (w-w,.), 
2 Z= ( 8 4  

The first  term in the expression (3) is the inverse di- if z(z - 1) +w,<w<z(z + 1) +we and w > w,; 
electric function of a uniform electron gas, and the sec- e,=O, 
ond term is nonzero for G#O and expresses in this way ( 8 4  

i fw - 'w ,orwce(e - l )+w, ,  o r w b z ( z  + l )+wg.  the effects of nonuniformity of the local field in the crys- 
tal lattice. We have introduced the reduced quantities w =EW/~E, 
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and e =q/2kp, where Ep is the Fermi energy, w, and wp 
a re  the energy gap and the energy corresponding to the 
plasma frequency of the electron gas in reduced units, 
and M2(z) is the square of the matrix element of inter- 
band transitions, averaged over the region of integra- 
tion. 

To find the value of the matrix elements M2(z) we use 
the well known sum rule for the imaginary part of the 
dielectric functiont9: 

f 8. (q, o,o d"=-l/*no.a, (9) 
0 

where w, is the plasma frequency determined from the 
relation w i  = 4ne2n/m and n is the electron density; e 
and m a r e  respectively the charge and mass of the elec- 
tron. Substituting the expression for the imaginary part 
of the dielectric function into Eq. (9), we obtain the 
square of the matrix element as a function of the re- 
duced wave vector z: 

The cited expressions for the mean square of the ma- 
trix element together with Eq. (8) accurately satisfy the 
rule (9) for all values of z. For w, = 0, i.e., in the ab- 
sence of a gap in the valence-electron energy spectrum, 
the matrix element becomes equal to unity, and the ex- 
pression for ~ ~ ( 2 ,  w )  goes over to the formula for the 
imaginary part of the dielectric function of a free elec- 
tron gas obtained by ~indhard. '  

The real part of the dielectric function we shall obtain 
by a Kramers-Kronig transformation19: 

2 - o' do' 
el(q, @)=I  +- j ~ ~ ( q ,  

0 

From Eq. (10) i t  follows that 

3 w,ZM=(z) 
EI(Z,  w)=I  [4f,(z, w)+f,(z, w) I ,  

8 z3 (12) 

where 

wz - ws2 
fl=O(I-z) wgln- { wz-w: 

w f w ,  w-w. 
+ 2  i f -  w l n  - ( :){ [I w-w," I1 7 x - I 1  -2(w,-w,) . I 

The designations a r e  the same as in Eq. (8); wm=z(z  
+I)+w,; w , = z ( l - z ) + w , f o r z < l ,  and f o r e 3 1  we 
have w, =z(z - 1) +we; 

B(x)=O for x<o, 0 (x )=1  for x>o. 

For z 2 1 the dielectric function is determined only by 
the function f2(z,w); the function f i ( z ,w)  = O  for z >- 1. 
For we = O  we obtain the dielectric function of a free 
electron gas: 

The nondiagonal elements of the dielectric matrix E G , ~  
and &a,z a r e  found by using the sum rule for  them given 
by ~ o h n s o n . ~ ~  As in the case of c1 and cz we shall as- 
sume that the product of the matrix elements can be 
averaged over the region of integration and taken out- 
side the integral sign in carrying out the summation in 
Eq. (4): 

((k+q, 1'Ie'qrlk, l>(k, IIe-i(q+G''Ik+q, lr))k=M,M2(q, G ) .  (14) 

The curly brackets with the subscript k indicate aver- 
aging over k within the region of integration over k. For  
centrally symmetric crystals (and semiconductors with 
a lattice of the diamond type belong to this class) MIMz 
(q, G) is a real number, and therefore with allowance 
for Eq. (14) we can write the following simple relations 
between c1, E 2  and 

The sum rule in Ref. 20 f o r  the imaginary part of the 
nondiagonal element of the dielectric matrix appears as  
follows: 

where f(G) is the Fourier component of the valence- 
electron density in the crystal, normalized s o  that f(0) 
= I ;  d ( .  . .) designates a unit vector in the direction of 
the argument. 

Substituting the expression (15b) into Eq. (16), we ob- 
tain 

lq+Gl 
MIMs (q, G) = - M 2 ( q ) f ( G ) ~ ( q ~ ~ ( ¶ + G ) .  

4 (1 7) 

It should be noted that the relation (17) does not depend 
on the model used for the dielectric function but i s  valid 
both for weakly bound and strongly bound electrons. 

3. STOPPING FORMULAS IN AN INHOMOGENEOUS 
ELECTRONGAS 

The formula for the energy loss of a charged particle 
in a crystal is conveniently written in the form of a 
Fourier series in the reciprocal-lattice vectors: 

Taking into account Eqs. (6), (15), and (17) and intro- 
ducing a spherical coordinate system in wave-vector 
space in such a way that the azimuthal angle q is mea- 
sured from the direction of the vector G and the polar 
angle from the direction of motion of the particle, we 
obtain 

Since analytical expressions (8) and (12) exist for the 
dielectric function cl and c2, the energy loss can be ob- 
tained from Eq. (19) in terms of the dielectric approach 
for an arbitrary velocity of the incident particle. For 
velocities significantly greater than the Fermi velocity, 
we can obtain from Eq. (19) analytic expressions for the 
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Fourier components of the energy loss. In a homogen- 
eous electron gas1 for high velocities the energy loss is 

where m is the electron mass. 

In contrast to the case G =0, for nonzero Fourier 
components of the energy loss the integral over cp in Eq. 
(19) will depend on the magnitude of the momentum 
transfer Eq. For  large momentum transfers q >> G the 
unit vector d(q +G) * b(q) and the integral over the angle 
rp in Eq. (19) is equal to 2r, as for a homogeneous elec- 
tron gas. In regions of low momentum transfer, where 
q << G, the unit vector d(q + G) *d(G) and the unit integral 
over the angle cp is close to zero. We can assume ap- 
proximately that collisions with a momentum transfer 
less than ZG, where G is the reciprocal-lattice vector 
considered, do not contribute to the G- th Fourier com- 
ponent of the energy loss. 

Utilizing the sum rule for the imaginary part  of the 
inverse dielectric function, it is easy to obtain from 
Eq. (19) 

Z ~ e z ( o p Z  2rnu 
S (G) = --- f(G)ln-. , 

uz hG 

Equation (18) for high velocities of the incident particle 
v >> v, with allowance for Eqs. (20) and (21) can be writ- 
ten in the form 

(22) 
where 

is the relative density of valence electrons a t  the point 

The equations (21) and (22), in contrast to the corre- 
sponding formulas of Ref. 7, were obtained without the 
additional assumption that the generalized harmonic os- 
cillator strengths of the atomic electrons a re  analogous 
to the generalized harmonic oscillator strengths. They 
differ also in that in them the principal parameter char- 
acterizing the energy loss is w,, and not the mean ion- 
ization potential. 

Equation (22) is convenient for analysis of the energy 
loss of light channeled ions; i t  permits direct calcula- 
tions of the energy loss in any of the axial or  planar 
channels of the crystal if the electron density distribu- 
tion in the crystal is known. If the velocity of the chan- 
neled ion is so high that the inner electrons begin to be 
excited, then i t  is necessary to take into account their 
contribution also.21 The energy of a proton correspond- 
ing to the Fermi velocity of the valence electrons of sil- 
icon is 23 keV, and therefore for protons with an energy 
of several hundred keV the condition of applicability of 
Eqs. (20)- (22), v >> v,, is completely satisfied. 

Very fast relativistic particles whose velocities a re  
close to the velocity of light interact with matter a s  with 
an electron plasma. The energy loss of such particles 
is not determined by the structure of the target atoms, 

but depends on the electron density of the material. In 
order that Eq. (22) be applicable for  particles with vel- 
ocities close to the velocity of light, we shall include in 
i t  a change to take into account relativity. ~ o u l d ~ '  has 
shown that in the slowing down of relativistic particles 
in a homogeneous electron plasma the maximum mo- 
mentum transfer is increased by a factor y = (1 - f12)-'/2 
in comparison with the nonrelativistic case, while the 
minimum momentum remains the same a s  in the non- 
relativistic case- equal to Zwdv. In addition, for close 
collisions i t  is necessary to take into account the effect 
of electron spin, which leads to an additional term in 
the stopping formula equal to -f12/2, where fl =v/c and 
c is the velocity of light in vacuum. Thus, the energy 
loss of a very fast relativistic particle with charge Z1 in 
an inhomogeneous electron gas is 

The plasma frequency and the Fourier components of 
the electron density for relativistic particles must be 
taken with inclusion of all  electrons, and not only val- 
ence electrons, since in slowing down of very fast rela- 
tivistic particles all electrons a re  drawn into the inter- 
action, regardless of their binding with the nuclei of the 
atoms. The stopping formula of this work differs from 
those of Ref. 7 in that in Eqs. (20)-(23) we have the 
plasma frequency of the electron gas, and not the mean 
ionization potential of the atoms. The use of Eq. (23) 
does not require the additional introduction of a correc- 
tion for the density effect, since in the dielectric ap- 
proach the influence of screening is taken into account 
from the very beginning. 

In spite of the fact that very fast relativistic charged 
particles interact with the electrons of matter a t  dis- 
tances greater than the average interatomic distance in 
the crystal, the dependence of the energy loss on the lo- 
cation of the trajectory in the crystal is preserved, and 
consequently the loss experienced by channeled parti- 
cles should differ from the energy loss of particles 
moving in an unoriented crystal. 

For y s 10 it  is necessary to take into account the 
binding of the inner electrons with the nucleus, particu- 
larly in calculations of the contribution of distant colli- 
sions. 

4. RESULTS OF NUMERICAL CALCULATIONS. 
COMPARISON OF THEORY WITH EXPERIMENT 

In the preceding section for  velocities v >>v, we ob- 
tained simple analytical formulas for the slowing down 
of a charged particle in an inhomogeneous gas of val- 
ence electrons. At lower incident-particle velocities 
the integration in Eq. (19) must be carried out numer- 
ically with inclusion of Eqs. (8), (12), and (15) for the 
elements of the dielectric matrix. 

In Fig. 1 we have shown the results of a numerical 
calculation of the energy loss of a proton with energy up 
to 250 keV in a homogeneous electron gas with an ener- 
gy gap characteristic of the valence electrons of silicon. 
The value of the energy gap was chosen as 4.8 e ~ , ' ~  and 
in this case the results of the calculation for ei(q, 0) 

744 Sov. Phys. JETP 51 (4). April 1980 Burenkov et a/. 



significantly. 

FIG. 1 .  Energy loss of protons in a homogeneous electron gas 
with parameters corresponding to a gas of silicon valence 
electrons: dot-dash-from the data of Ref. 23, thin solid line- 
Ref. 5, heavy line-results of the present work, dashed 
curve-experimental energy loss of protons in the (111) axial 
channel of silicon.i0 

agree with the results of pennZ4 for q 20.2. Our data in 
this energy interval lie somewhat below those obtained 
by Brandt and ~ e i n h e i m e r ~ ~  and Desalvo and ~ o s a . ~  The 
discrepancy is due to the different choice of the matrix 
element of interband transitions ~ ~ ( 9 ) .  In the present 
work the matrix element exactly satisfies the sum rule 
for the imaginary part of the dielectric function for all  
q, whereas in Refs. 23 and 5 for q s 2k the sum rule (9) 
is satisfied only approximately. 

The energy loss values calculated by us  a r e  in good 
agreement with the experimental energy loss in the 
(111) axial channel of silicon.1° The distribution of val- 
ence electrons in this channel is close to uniform, since 
the Fourier component of the valence electron density 
f(220) which determines the inhomogeneity of the elec- 
trons in the (111) channel is close to zero.25p26 The con- 
tribution to the total energy loss due to excitation of in- 
ner electrons is negligible a t  the energies considered, 
and therefore the energy loss calculated for valence 
electrons is in good agreement with the experimental 
energy loss of ions channeled in the (111) axial channel 
of silicon. 

In most experimental studies of channeling, the aver- 
age energy loss of a particle which has passed through a 
thin oriented single crystal is measured. Usually one 
takes as the average energy loss the energy loss of a 
channeled particle measured on the basis of the peak of 
the energy spectrum of particles a t  the exit from the 

Only a few studies have used small-angle 
detectors after the passage through the crystal to sep- 
arate the fraction of the best-channeled particles.'2 

The energy loss values measured in the peak and a t  
the edge of the spectrum may differ substantially. This 
is particularly true of the energy loss in the most open 
channels of silicon, (110). As a result of the rapid var- 
iation of the electron density over the cross section of 
the channel, the energy loss depends strongly on the 
trajectory of the ion in the channel. The spread in the 
energies of particles which have passed through a crys- 
tal oriented in the (110) direction is several times 
greater than the spread of the spectrum of unchanneled 
particles. As a result the energy loss values determin- 
ed a t  the edge and a t  the peak of the spectrum differ 

In Fig. 2 we have given a comparison of the theoreti- 
cal and experimental energy loss values for light ions in 
the silicon (110) channel. We have given the universal 
stopping function" B(E)/AZ~, , (M~V~/C~),  where 

as a function of the energy per amu (A is the mass and 
Z,,, is the effective charge of the incident particle). 
The effective charge of * ~ e *  ions, which is determined 
by the capture and loss rates of the moving particle, 
was taken from Ref. 27. In the figure we have shown 
data of experiments on proton stopping by Appleton et 
al.' and Della Mea et al." and also the energy loss of 
4 ~ e '  measured by Eisen et ~ 1 . ' ~  a t  the peak and a t  the 
edge of the energy spectrum. 

The experiment of Eisen et al.12 was carried out with 
a small-angle detector, and therefore the energy loss 
measured a t  the edge of the spectrum can be interpret- 
ed as the energy loss of a well channeled particle mov- 
ing along the channel axis. The energy loss of well 
channeled ions was calculated with allowance for the 
nonuniformity of the distribution of the local electron 
density in the (110) channel of silicon. The Fourier 
components of the electron density were taken from 
Ref. 25 and the (111) Fourier component from Ref. 26, 
where the accuracy of the measurement i s  appreciably 
better. The energy loss to valence electrons with al- 
lowance for the nonuniformity of electron density is ap- 
proximately 4% lower than the energy loss in a homo- 
geneous gas of valence electrons. The energy loss 
measured a t  the peak of the energy spectrum of parti- 
cles channeled in the silicon (110) axial chamel agrees 
quite well with the energy loss in a homogeneous gas 
with the parameters corresponding to silicon valence 
electrons. 

In Fig. 3 we have given the stopping function for par- 
ticles moving in the silicon (111) axial channel. The ex- 
periments of Refs. 8, 10, and 11 were carried out with 

FIG. 2. Universal stopping function for protons and ions 
channeled in the (110) axial channel of silicon: .--energy loss 
measured at the peak?2 0-energy loss measured at the edge 
of the s p e c t r ~ m ? ~  . and U-results of Ref. 11 on channeling of 
protons and deuterons, respectively. The solid line is the en- 
ergy loss in a homogeneous gas of valence electrons; the 
dashed line takes into account the inhomogeneity of the electron 
density distribution in the channel. The deviation of Zdf from 
2 for helium ions, calculated with the formula from Ref. 27, 
increases with decrease of the ion energy; for E= 500 keV Zdf 
= 1.87, while for E= 100 keV Z,,= 1.48. 
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FIG. 3.  Universal stopping function for protons, deuterons, 
and He ions channeled in the (111) axial channel of Si. The 
points are from the following experiments : A-data of Ref. 10, 
.-Ref. 8, 0, 0, and A-data of Ref. 11 respectively for pro- 
tons, deuterons, and helium ions; the dashed curve i s  the con- 
tribution of valence electrons. 

wide-angle detectors: the energy loss was measured a t  
the peak of the spectrum. The (111) axial channel of 
silicon is narrower than the (110) channel and therefore 
a t  incident-particle energies of several MeV per amu i t  
is necessary to take into account the contribution of in- 
ner electrons. The loss to inner electrons was calcu- 
lated in the dipole approximationz8 for particles moving 
along the channel axis. The calculated stopping function 
satisfactorily describes experiment. 

The model of energy-loss calculation developed in 
Section 2 for light ions permits discussion of the rela- 
tion between the energy loss of channeled particles and 
the local electron density. The energy loss of a parti- 
cle, like the electron density in a crystal, is expressed 
by a Fourier series in the reciprocal-lattice vectors. 
In Fig. 4 we have shown the electron density and the en- 
ergy loss of 100-keV protons in the (110) axial channel 
of silicon, calculated numerically in accordance with 
Eqs. (18) and (19). The energy loss distribution for the 
most part follows the shape of the electron density dis- 
tribution, but the energy loss is not sensitive to small 
details of the valence-electron density distribution. 
Since the density of valence electrons varies smoothly 
in space, the Fourier components of the electron den- 
sity f(G) fall off rapidly with increase of the length of the 
reciprocal-lattice vector. As can be seen from Eq. (21), 
S(G) falls off with increase of G sti l l  more rapidly, and 
therefore the function S(p) is determined mainly just by 
the Fourier components of the vector G,,, of smallest 

FIG. 4. Distribution of density of valence electrons (solid line) 
and of energy loss (dashed line) of 100-keV protone in the (110) 
axial channel of silicon. The values have been normalized s o  
that when averaged over the crystal they are equal to unity. 

absolute value. If we neglect corrections originating 
from vectors G > G,,,, the energy loss depends linearly 
on the electron density p: 

where 

In Fig. 5 we have shown the relative energy loss in the 
silicon (110) channel as a function of the relative density 
of valence electrons. The smooth line is given by Eq. 
(24) and the circles show the relation between S and p a t  
various points over the channel cross  section. It is evi- 
dent from the figure that although not all  points lie on 
the straight line, nevertheless on the average the de- 
pendence of S on p is satisfactorily described by the 
straight line (24). 

At very high velocities where v >> E G / Z ~  and v2 >> Eo,,/ 
2m, a s  can be seen from Eqs. (22) and (24), the coeffi- 
cient 0- 1/2, which is an expression of the rule of 
equipartition of energy loss in close and distant colli- 
sions. For particle velocities of the order of several 
times the velocity v, or  lower, depending on the band 
structure of the material, deviations from the equipar- 
tition rule can be observed both in the separation of the 
energy loss into plasma and single-particle components4 
and in the distribution into local and nonlocal energy 
losses. 

We note that the coefficient 0, which is equal to the 
fraction of the energy loss proportional to the local 
electron density, a t  finite velocities is always less than 
the fraction of the energy loss due to single-particle ex- 
citations. Thus, for protons with energy E =loo-500 
keV moving in the (110) and (111) axial channels of sili- 
con, numerical calculation with Eq. (19) gives respec- 
tively 0 = 0.50 and 0 = 0.24, while the fraction of the en- 
ergy loss to single-particle excitations a! differs ap- 
preciably from 0. At E =I50 keV, for example, a 
=0.70. At lower energies /3 increases, as a result of 
the fact that a t  such velocities plasma oscillations a re  
not excited, but only single-particle oscillations. Here 
the localization of these excitations is strengthened, 
since a t  low energies only excitations with a wave vec- 
tor close to 2k, contribute to the stopping, while excita- 
tions with k < 2kF turn out to be suppressed. This ex- 
plains the decrease of the ratio of the energy loss of 
channeled ions to the energy loss in an unoriented target 
a t  low energies in the experiment of Eisen et ~ 1 . ' ~  

The difference between the coefficients a! and 0 is due 

FIG. 5.  Relative energy loss in the silicon (110) channel as a 
function of the relative density of valence electrons. 
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to the nonlocality of single-particle excitations a t  low 
and intermediate velocities. This difference is greater, 
the greater is the ratio ~, , , , /2k~, which is equal to the 
ratio of the characteristic dimension of the excitations 
at low velocities to the channel dimension. For  exam- 
ple, for the most open channels of aluminum Gmr,J2kF is 
16% greater than in the case of semiconductors with a 
lattice of the diamond type. This leads to the result 
that the dependence of the energy loss on the local elec- 
tron density in an aluminum crystal is weaker: p=0.4 
a t  E = 100 ke~ /amu.  The value of the energy gap affects 
p to a smaller extent. Thus, for diamond at  E =  100 
k e ~ / a m u  p is only 5% higher than for silicon. 

Since the electron density in the (111) planar channel 
is determined mainly by the same Fourier component 
f ( l l1)  as in the (110) axial channel, the ratio between S 
and p in the (111) planar channel is the same as that in 
the (110) axial channel, which is given by Eq. (24). The 
electron densities near the axis in the axial and planar 
channels a re  different, amounting to p,,, =0.25 in the 
(110) axial channel and prel =0.68 in the (111) planar 
channel. Therefore the energy loss of well channeled 
charged particles with energy 100 k e ~ / a m u  amounts to 
S,, = 0.63 for an axial channel and S,,, = 0.84 for a planar 
channel; thus, a 25% decrease of the energy loss occurs 
in the transition from planar to axial channeling. In 
the experiment of Eisen et ~ 1 . ' ~  a 20% decrease of the 
energy loss of hyperchanneled helium ions with energy 
100 k e ~ / a m u  was observed in (110) axial channels in 
comparison with the case of (111) planar channels of 
silicon. 

At the present time i t  has been shown experimental- 
1y13*29 and theoretically (see for example Ref. 30) that 
channeling is preserved even a t  relativistic energies of 
the incident particle. Esbensen et aL2$ have measured 
the energy loss of n mesons, K mesons, and protons 
with energies 2-15 GeV both in unoriented crystals and 
in the channeling regime. The energy loss of relativis- 
tic particles was measured on the basis of the pulse- 
height spectra obtained from crystals which simultane- 
ously served a s  a detector. Since the electrons knocked 
out of the crystal by the incident particle do not con- 
tribute to the measured energy loss spectrum, i t  is 
necessary to calculate the energy loss limited in energy 
transfer. The maximum energy transfer To depends on 
the size of the crystal and for the crystals studied by 
Esbensen et U Z . , ~ ~  according to the calculations of the 
authors, amounts to 500 keV. The maximum momentum 
transfer then is (2rn~,,) ' /~ instead of 2myv and the ex- 
pression under the logarithm in Eq. (23) acquires the 
form ( 2 r n ~ ~ ) ' / ~ v / ~ w , .  

In Fig. 6 the energy loss calculated with Eq. (23) for 
well channeled positively charged particles in silicon 
planar channels is compared with values obtained ex- 
perimentally. The local relative density in the channels 
was calculated from the experimental data of Refs. 25 
and 26. Correction was also made for the width of the 
energy-loss spectrum, with inclusion of the Landau dis- 
tribution." The theory correctly predicts a decrease of 
the energy loss in the case of channeling for very fast 
relativistic particles with momentum p / ~ c  2 10 in the 

FIG. 6 .  Energy loss of positively charged particles (M > m) in 
the silicon planar c h a ~ e l s  {lll), {110), and (100) and in an 
unoriented crystal {OOO); the experimental points are from 
Ref. 29. 

region where the stopping is determined not by the 
structure of the atoms but by the total electron density. 

At lower incident-particle energies the energy loss 
calculated with Eq. (23) is higher than the experimental 
value, since the effects of binding of the target elec- 
trons with the nuclei of the atoms begin to be felt. 

5. CONCLUSION 

In this work we have proposed a simple analytical mo- 
del for the dielectric function ~ ( q ,  w). Using the sum 
rule for the nondiagonal elements of the dielectric ma- 
trix, we have obtained a relation between the nondiagon- 
a1 elements of the dielectric matrix cO,0(q, w )  and the di- 
electric function. As a result of the analytical model 
developed for the dielectric matrix, the theory of the 
slowing down of channeled light ions using a quantum di- 
electric formalism takes a simple form. 

In the region of not very high energies, channeled 
light ions a re  slowed down only by the valence electrons 
of the atoms of a crystal, and therefore the proposed 
theory completely describes the energy loss of such 
particles. Equation (22) expresses the relation between 
the local electron density and the energy loss. The en- 
ergy loss is approximately proportional to the local den- 
sity of valence electrons. The proportionality coeffi- 
cient connecting the relative energy loss and the elec- 
tron density is less than the ratio of the energy loss due 
to single-particle excitations to the total energy loss. 
In narrow channels the fraction of the energy loss which 
is proportional to the local density is small, and the en- 
ergy loss depends to a greater degree on the average 
electron density. 

In open channels such a s  the (110) axial channel and 
the (111) planar channel of silicon, the contribution of 
the energy loss proportional to the local density is 
greater, so  that neglecting the inhomogeneity of the 
electron density in these channels leads to an e r ro r  up 
to 40°/0 for the energy loss of ions. For the f i rs t  time it  
has been rigorously demonstrated that the energy loss 
of well channeled charged particles in axial channels is 
less than in the planar channels which intersect this ax- 
is. At low and intermediate velocities the ratio S(p) de- 
pends on the electronic structure of the material. 

Allowance for the inhomogeneity of the valence elec- 
trons is important not only a t  velocities a t  which the 
stopping of channeled ions is accomplished only by val- 
ence electrons, but also a t  higher velocities, since the 
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contribution of valence electrons to the stopping is al- 
ways significant. 

The theory presented in this work for stopping in an 
inhomogeneous electron gas can be applied also to the 
calculation of the total energy loss of channeled relativ- 
istic particles, where the stopping i s  determined by the 
effect of the density of the medium. 

In conclusion the authors express their gratitude to 
Professor 0. B. Firsov and also to Professor J. Lind- 
hard and Dr. H. Esbensen for the interest which they 
have shown in this work and for helpful discussions. 
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Features of the suppression effect under conditions of 
hyperfine quadrupole splitting 

G. V. Smirnov and V. V. Mostovol 
I. V. Kurchatov Institute of Atomic Energy 
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Zh. Eksp. Teor. Fiz. 78,1490-1497 (April 1980) 

We report the first experimental investigations of the effect of suppression of a nuclear reaction under 
conditions of hyperfine quadrupole splitting. The investigations were performed on a perfect iron borate 
crystal enriched with the resonant isotope Fe5'. A strong effect of the interference of different nuclear 
transitions on the form of the Mossbauer spectrum of the gamma-quantum Laue diffraction is observed. 

PACS numbers: 76.80. + y 

In our preceding articles' we reported investigations 
of the suppression effect (SE) of a nuclear reaction in 
an Fe5'B0, crystal for pure nuclear magnetic diffrac- 
tion of the Mossbauer rays. Besides the advantages of 
iron borate for the study of the SE described in Ref. 1, 
there a r e  also other advantages that make it possible to 
expand the research on the effect, particularly to in- 
clude the case of quadrupole splitting of the nuclear en- 
ergy levels. 

has a large number of reflections in which complete or 
almost complete extinction of electron diffraction is ob- 
tained a s  a result of mutual cancellation of waves scat- 
tered by atoms of different species, iron on the one 
hand, and boron and oxygen on the other. For example, 
complete compensation is reached in the previously in- 
vestigated* (222) reflection, where pure nuclear diffrac- 
tion was observed for the f i rs t  time ever in scattering 
of quanta on nuclear transmitions with Am= 0. 

As was previously observed,' the iron borate crystal Another advantage of the considered crystals is the 
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