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We propose a method for evaluating the electron conductivity u(oo,T) as function of the frequency w,, the 
temperature T, and the Fermi energy EF for the case when the electron motion is described by a one- 
dimensional nonrelativistic Dirac equation with a Gaussian random 6-correlated potential. We show that at 
T = 0 the conductivity is given by the Kubo-Greenwood formula u awip2(E,), if o O < E F 4 ,  and 
u(wo) aoi1n200 when EF>A ,, where 24, is the width of the impurity band. The last expression for u(oo)  is 
the same as the one which was obtained earlier [N. F. Mott and E. A. Davis, Electronic processes in 
noncrystalline materials, Clarendon Press, Oxford, 1971; Yu. A. Bychkov, Sov. Phys. JETP 38,209 (1974); V. 
L. BerezinslG, Sov. Phys. JETP 38, 620 (1974); A. A. Gogolin, V. I. Mel'nikov, and E. I. Rashba, Sov. Phys. 
JETP 42, 168 (1975); A. A. Abrikosov and I. A. Ryzhkin, Sov. Phys. JETP 44, 630 (1976)l. We find an 
analytical expression for the conductivity u(T) in the low- and high-temperature limits: u(T)  a T2p (T) as 
T4andEF=Oandu(T)=u(0)+bT2,if~O<EFwhereb>O,ifEFCdoandb<O,ifEF>A,;asT+~~, 
u(T)  a T-'ln2T. Taking it into account that the level densityp(E) a EV-' as E 4  [A. A. Ovchinnikov and N. 
S. Erikhman, Sov. Phys. JETP 46, 340 (1977)l we obtain a power-law dependence for the conductivity 
u(T) a TY+' as T - 4 ,  and not an exponential one as for a pure semiconductor (E, = 0). The results indicate a 
sharp decrease of the conductivity at electron energks EF -Ao (a jump in the conductivity). 

PACS numbers: 72.10.Bg 

The problem of describing the kinetic properties of 
one-dimensional (quasi-one-dimensional) sys tems with 
impurities is a timely one. Most of a l l  because the de- 
struction, even though small, of s t r ic t  periodicity leads 
in  the one-dimensional case to a sudden change in  the 
electronic properties of the system. It was shown al- 
ready in the f i r s t  papers on this problem that the pre-  
sence of impurities leads to the localization of eigen- 
states, '  and to  vanishing of the static c o n d ~ c t i v i t y . ~ * ~  
In Mott and Davis' monograph4 a wide range of theoret- 
ical  and experimental studies of the electronic proper- 
t ies  of non-crystalline substances is discussed. How- 
ever,  in view of the complexity of obtaining quantitative 
results  for disordered systems,  many conclusions 
reached in Ref. 4 have a semi-empirical character, and 
this  re fers  in particular t o  the formulae for  the temper-  
ature and frequency dependence of the conductivity 
u(w,, T) givenin this monograph. It is therefore of in- 
t e r e s t  t o  consider models which enable u s  t o  obtain 
quantitative results .  

Many  paper^^-^ have recently been devoted to this  
problem. In Refs. 6-8 of the presence of impurities is 
simulated by a random "white noise" type potential, and 
in such a model asymptotically exact expressions were 
found for  the frequency dependence of the conductivity 
u(w,) inthe limit of low frequencies w, and for  large 
Fermi  energies EF, thus confirming Mott's ideas. In 
those papers systems were considered which gave a 
model of the situation in a metal [Schrijdinger equation,' 
Dirac equation with ze ro  gap, * single-band approxima- 
tion with an arbitrary energy spectrum7 &&)I.  In this 
connection an analysis of the situation in semiconduc- 
t o r s  when there is a gap i n  the energy spectrum is of 
interest. The present paper is devoted to that prob- 
lem. 

We choose a s  our mathematical model in  the present  
paper a non-realativistic Dirac equation with a 6-cor- 
related random Gaussian potential. Such a model en- 
ables u s  to describe a one -dimensional (quasi-one -di- 
mensional) semiconductor o r  metal with a narrow for-  
bidden band when the mean distance between the impu- 
r i ty centers  is much la rger  than the Bohr radius of the 
eigenfunctions of an electrons4 

It is well known that for  the calculation of the conduc- 
tivity u(w,, T) one needs t o  average a product of Green 
functions over the realizations of the random potential. 
This problem turns out t o  be very complicated as in  
the given case perturbation theory i s  unsuitable. In the 
evaluation of averages it was therefore necessary in  
Refs. 6-8 to sum infinite classes of divergent diagrams 
in order to obtain asymptotically exactly (w,- 0) soluble 
recurrence relations even for  finite quantities. 

We propose in  the present  paper a new method for  
evaluating averages of Green functions without using a 
diagram technique. The representations obtained fo r  
the averaged Green function enable us ta obtain asymp- 
totically exact expressions fo r  the conductivity u(w,) 
a s  w,- 0 in the case when the Fe rmi  energy E, l ies  
sufficiently f a r  from the edge of the impurity band 
[see (26)]. 

5 1. STATEMENT OF THE PROBLEM AND 
DERIVATION OF THE BASIC EQUATIONS FOR 
AVERAGED QUANTITIES 

We consider a system which i s  described by a Dirac- 
type equation in the segment (-L, L )  with a random po- 
tential t ( ~ ) :  

84'1 - i -+[A,+E(x)]$2=Elpi ,  ( g ( x ) ) = O ;  
ax 

728 Sov. Phys. JETP 51(4), April 1980 0038-5646/80/040728-07$02.40 O 1981 American Institute of Physics 728 



where 
(E.(z), E(y))=2~1~6(x-y) .  

Here (. . . ) indicates statistical averages. We choose 
the boundary conditions in  the fo rm 

One verifies easily that conditions (2) guarantee the 
Hermiticity of the Hamiltonian (1). From (1) and (2) 
follows the symmetry condition 

Moreover as L -  * we have the symmetry 

Equations (3) and (4) turn out to be useful to establish 
the symmetry properties of the Green functions. 

Equation (1) has the integral 

where GE and qE a r e  any two solutions of (1). 

Using (3) and (4) we write down the symmetry condi- 
tions for  the Green functions G* a s  L - * : 

[G,,*(x, y ( E )  I'=G~l7(y, z ( E )  =Gzi7(z, Y (E)  
(6) 

and 

G~,*(x ,  y 1 -E)=-Gzzr(x, Y lE) ,  

Giz*(t, yl -E)=Gzl'(x, t/ IE). (7) 

We note that the symmetry (6) holds also fo r  finite L, 
a s  i t  is a consequence of (3). 

We write down the expression fo r  the conductivity 
when the frequency of the alternating current  is a,. To 
do that we use the standard method (see, e.g., Ref. 9)  
and as a result  we get 

1 - - 
o(oo ,  T ) = - j  dE(f(E, T ) + f  (-E, T)} j d + i ( ~ + o o , ~ l x - y ) ,  (8) n o o  

Y 

where f (E, T) is the average number of electrons o r  
holes with energies E at  a temperature T, while the 
quantity j(.E + w,, E Ix - y) is given by the following ex- 
pression: 

The quantities j" a r e  given by the relation 

In obtaining Eq.(9) we used the symmetry propert ies 
(6) and (7) and also the fact that the probability flux and 
the electrical current  for  holes (E <O) have the opposite 
direction. We note that the las t  t e rm in  (9) is purely 
imaginary. This follows easily from (lo), (6), and (7). 
For the determination of the r ea l  pa r t  of the conductiv- 
ity- and that is the only one we shall be interested in- 
it is therefore sufficient t o  be  able to evaluate the quan- 

t i ty jt- j++. The averaging methods differ somewhat de- 
pending on whether the Fe rmi  level E, is situated in the 
impurity band o r  in  the conduction band. We consider 
f i r s t  the case  E, > A, (a metal). 

$2. EVALUATION OF THE CONDUCTIVITY AT T = 0 
FOR THE CASE WHEN EF >Ao 

We write the Green function i n  the following form: 

when x<y, 

where the functions qE (x) and J I E  (x)  satisfy Eq. (1) and 
the boundary conditions for  x = -L and x = L,  respective- 
ly. Using (5) we verify easi ly that (11) is a Green func- 
tion. To  obtain the retarded and advanced Green func- 
tions Gt(x, I E) it is sufficient to add in  the represen- 
tation (11) an infinitesimally smal l  imaginary part  to 
the energy E ii,, and after that go to the limit L -  *. 

To elucidate the idea of the averaging method pro- 
posed in  what follows, i t  is convenient to represent  the 
procedure for  getting the Green functions G' and G- 
f rom Eq. (11) in a special way. To do that we introduce 
new variables. We write the solutions of Eq. (1) with 
the boundary condition for  x = -L and x =  L in  the form 

a(-L) =u(-L) --a(L) =u"(L) =0, 
where 

Substituting (12) into (1) we get an equation for  a, and 
u,: 

da. 0 
-= - t ( x )  {Tcos2 [w(x+~)+ax]  - ~ s i n z [ o ( x + ~ ) + a s ]  , 
dz 0 I 

du, 1 0 (T+ $) ain[2w (x+L) +2azl,  (14) 

a(-L)  =u(-L)=O 

and an  analogous equation fo r  6, and fiz with the boun- 
da ry  condition at x =  L. Substituting (12) into the denom- 
inator of Eq. (11) we get 

2ie 
$EI$E2-~Ez$EI = -exp{u.+&)~in[2oL+u~-8~]. 

61 (15) 

A s  the Hamiltonian is Hermitian, Eq. (15) is non-van- 
ishing if the energy E has an imaginary correction. 
Moreover, the quantity 2wL+ a, - 6, is, generally 
speaking, complex when Im E #  0. Therefore, when 
ImE>O 

(exp[-~ioL-ick+i&j 1 > (esp[210L+ ia , - i~~, lI ,  

and when Im E < 0 the opposite inequality holds [this r e -  
lation between the moduli of exponentials i s  dictated by 
the correspondence with the case when 5 ( x )  = 01. Taking 
into account what has been said we can write (15) in the 
form of a ser ies :  

0 
i[+E,(Y)$E2(y) -$E2(y)$E,(y)]-' = Eexp(-uu-Eu} [sin(zoLf ~ ~ - 8 " )  I-' - 

0 
=Ti - esP(-u,-8,1+2ioL~i(or,-~,)) esp{+i40Ln*2i (a ,+¶,)  n ) .  

E 
n=o 
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Substituting (12) and (16) into (11) we obtain the fol- 
lowing representations for the matrix elements of the 
Green functions: 

G , , * ( x , y I E ) = F -  ( I F -  : ) 'exp{u=-uv~ico ( x - y )  

f O+E 
i i ( a = - a " ) }  [ I  + - e'xp{*2iw (x+L)  *2ias} 

=to-e 
* o + e  

1 
x [ I  + G e x p { ~ 2 i o ( y - ~ ) ~ 2 ~ v ) ]  

X c  exp{*2i[a(x+L)+aX]n)exp{~2i[o(y-L) +ti.ln) 
"-0 

x e x p { r 2 i o  (x -y )  nF2i (a,-an) n ) ,  x<y, 
(17) 

esp{u.-u,~io(x-y)Fi(a,-a,)) 

* o + e  x [ I  + - e x p { * 2 i ~ ( x + ~ ) * 2 i a ~ ) ]  * 0-E 

=to-e 
X [ I +  -exP{F2iw (Y-~) F2it iV)]  

*o+e  

x 2 exp(*2iw (x+L) n * 2 i a , n ) e x p { ~ 2 i o ( y - L )  nF2iti.n) 
"-0 

x e x p { F 2 i o  (x -y )  n r 2 i  (a , -an)n) ,  x c y .  

The matrix elements G:, and G:, , and also the values 
of the Green functions for x >y are  obtained from (17) 
using the symmetry (6). Before taking the limit L-  
we obtain from (17) a ser ies  expansion of the Green 
function (I 1) in  the energy region Im E > 0 (+ sign) and in 
the energy region Im E <O ( -  sign). After taking the 
limit L - and afterwards Irn E - 0 these expansions go, 
respectively, over into G+ and G- .  

When 5 (x) = 0 this is immediately clear. Indeed, in  
that case a ,=U,=~ ,=U,=O and a s  L- we get the fol- 
lowing expression for  Ci: 

, ( E*e(x-y) (E2-A.')'h AO 

AO E F E ( X - y )  (E2-A,2)'h ) ' (18) 

where E (x) = 1 when x> 0 and E(X) = -1 when x <  0. In ob- 
taining (18) we used (13). 

We note that in obtaining the unperturbed Green func- 
tions i t  is important to observe the order of taking f i rs t  
the limit L-  and afterwards Im E-  0, for in the oppo- 
site case ImE- 0 and L-  .o the terms in the represen- 
tation (17) oscillate and have no limit. It turns out that 
when there is a random potential present the calculation 
of the averaged Green functions can be performed by 
taking the energy to be real  right from the beginning, 
Im E=O. This is connected with the fact that,firstly, 
the averaged terms of the ser ies  (17) have a limit as 
L -  m even if the energy is real  right from the beginning 
(vide infra) and, secondly, the ser ies  obtained of the 
averaged quantities is convergent. Taking what has 
been said into account we shall in what follows use for 
the evaluation of the averaged Green functions and their 
products the representation (17) and assume the energy 
to be real. The representation (17) is convenient be- 
cause one can easily obtain for the averaged terms of 
the ser ies  (17) and their products recurrence relations 
which are  asymptotically exactly soluble in  the limit 

For the calculation of the real  part  of the conductivity 
at T = 0 we must find the averaged correlator of the cur- 
rent j+ - j" [see Eqs. (8) to (lo)]. Substituting (17) into 
(10) we get for  that quantity the following represen- 
tation: 

0'0 - =-x ({(f +$) [ I -Fao0(y ) l  
4 E  m,n-o 

where 
F,,Pq(x) =exp (-puJ-qu.+i(mo'-no) (x+ L )  + i ( m a , ' - n ~ )  1. 

(20) 
F,,,pq(x) =exp{-pu".l-qii.-i(mo'-no) (x -L)  -i(mti/-nti,) 1, 

while E' = E+ w,. When obtaining (19) we took i t  into ac- 
count that the quantities a,, ay, U,, and (IY, on the one 
hand, and 8,  and fix, on the other hand, are  statistically 
independent, as follows from (1) and (14). 

We note that as w,- 0 the t e rms  of the se r i e s  in (19) 
tend to zero as wi. This does, however, not enable us  
to  reach any conclusions about the law u(wo) a w:, as 
the double ser ies  in (19) diverges for w,=O. An esti- 
mate of expression (19) requires therefore more accu- 
rate calculations. 

We introduce the equations for the averages ( F g  (x)). 
Using (14) we get 

P9  + L t ( x )  (+ + :) (n-q)Pm,,,-z. 
4 (21) 

To obtain closed equations for the average quantities 
( F g )  we use a techniq:e discussed in a paper by 
Klyatskin and Tatarskii .lo Taking the functional deriv- 
ative of both sides of Eq. (21) and integrating the result- 
ing equation we find 

730 Sov. Phys. JETP 51(4), April 1980 A. A. Ovchinnikov and N. S. Erikhman - 730 



Averaging both sides of Eq. (21) and using the fact that 
[ ( x )  is a Gaussian random function we decouple the re-  
sulting averages of the form (5.F:;) using Novikov's 
formulalo: 

+- 
(E(x)Fmnpq(x))= ( E ( x ) t ( y ) ) (  

8FmnPq ( 5 )  

-- ~ S ( Y )  
) du, (23) 

- 
Moreover, using (1) we transform (23) to the form 

( f  ( x )  F,,,,Pq(x) )=p2 (24) 

After this the averaged Eq. (21) takes the following 
form, if we use (22) and (24), 

dx 

1 2 p a  w Z  

- 5 (3 + ,) (rn'-p2+2p) - -( - + -) (nz-q2+2q) ( F ~ P ~ )  
8 o e  

8' o' 

1 
P'(-+P) E' 

+T(T + $) [ ( m + l )  (7 - -n  (+ - :)I ( F Z ~ , ~ )  

Pll P 1  
+ ( m - p )  (n -q )  (Fm-2,,-?)+(m+p) (n -q )  (Fm+2, . -2)  

P q  + (m-p )  (n+q)  (Fm-z ,n+z))  - {(-+PI (m+p+2)  (F?+,,,) 

P9 p2 E o 2  + (m-p )  (m-p-2)  (F ,,,-... )) - 7 (- + -) {(n+p) (n+q+2) ( F . , + . )  
16 0 E 

+(n-q )  (n-q-2) ( F , ~ P , - , ) ) .  (25) 

We note that Eq. (25) is satisfied also by any function 
of the form (F$ (x) F,P:$, ( y ) ) ,  if x >y . We shall use this 
fact in what follows. 

From (25) i t  is clear that if the condition 

holds, the quantities (Fz (x)) for m Zn contain fast  os- 
cillating factors exp i i  (m -n) wx} and as  x -  CQ have the 
magnitude -A (F,P: (x) ). This fact enables us to neglect 
in Eq. (25) and in expression (19) all  terms with m #n.  
In particular, this means that i n  that approximation we 
can neglect the correlator of the currents j", i.e., 
omit the second sum in (19). Thisvis just the kind of 
approximation used by Berezinskii when calculating the 
current correlator in the Schriidinger equation case.3) 
Taking into account what has been said we can write 
Eq. (19) in the form (see footnote 2) 

where 

Using (20) and (25) we get for the quantities B, and Cn 
the equations 

dc, /d t=i$  (n+'/,)C,+ { C C + 1 ( n + l ) z + C , _ , n z - ~ n ( 2 n 2 n ) ,  (31a) 
Cn ( 0 )  =Bn-&+,, (31b) 

where 

When obtaining (30) and (31) from (25) we neglected, 
in accordance of what was said above, al l  quantities 
(F$) with mZn. Moreover, as B,=limB, ( x +  L),L--, 
the derivative dB,/dt is put equal to  zero in Eq. (30). 
And finally, i n  all  coefficients in Eqs. (30) and (31) we 
retained only the zeroth and f i rs t  order contributions in 
w'- W-w, ,  since w d p 2  <<I. 

The quantities B,, a re  easily found, if we introduce the 
generating function 

Substituting (33) into (30) and using the condition B,- 0 
as n - m, which follows from the definition (28), we 
find for B(z) the following expression: 

Knowing B(z), and hence also the B,, we can, in 
principle, find the coefficients C, ( t )  from Eq. (31). The 
conductivity a(wJ is determined by the integral over x 
of the correlator of the currents j+- [see (2711. To find 
this integral we note that the generating function (34) is 
exactly the same as the function r ( u )  [see Eq. (2.73) of 
Ref. 111, if we reduce them to the same variables. 
Hence, the coefficients B, found in the present paper 
and in  the paper by Abrikosov and ~ ~ z h k i n l '  will also 
be the same. Moreover, the equation for the C, ( t) ,  
(31), is also exactly the same a s  the equations for the 
Cn (t) found in Ref. 11 [see Eq. (2.76)]. We can thus ob- 
tain the integral of the correlator of the currents (27) 
by using the results of Ref. 11, where it was found 
[see (2.81), (2.83), (2.84), (2.96), and (2.9511 that 

Using (8), (9), (27), (32), and (131, and the fact that 
at T = O  the Fermi function is a step function we get 
from (35) f o r  the real  part of the conductivity the fol- 
lowing expression: 

It is clear from (36) that a s  E, - co the conductivity, in- 
creasing monotonically, tends to a finite limit , 

We recall that Eq. (35) is valid under the condition (26). 
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$3. EVALUATION OF THE CONDUCTIVITY WHEN 
EF <Ao IN THE T=O CASE 

The situation in the EF < A, case is in an essential way 
different from the EF > A, case considered above. The 
reason for this is that for energies inside the impurity 
band we have no zeroth approximation for the retarded 
and advanced Green functions, since they coincide in 
that  case. This leads to the fact that the representation 
(17)  for G' and G -  turns out to be inconvenient, since 
the functions a, and Ux introduced above [see (12)]  be- 
come complex for  EF < A,. We therefore proceed dif - 
" -ently. We write the solution of Eq. (1) in the form 

$ ,=exp[u ,+ ia ] ,  $2=exp[u.-ia.l, a ( - L )  = u ( - L )  = O ;  

$ ,=exp[a ,+ i t~ l ,  = e x p - I  a ( L )  =u" ( L )  =O. 
(38)  

The condition that I1, = const. $ a re  eigenfunctions has the 
form 

a ( L )  =nn, a ( - L ) = n m .  (39 )  

Substituting (38 )  into (1)  we get the following equation 
for a, and U,: 

daldx=E-[AO+E(x)  I C O S  2a, 

duldx=-sin(23) [A,+E ( x )  I ,  a ( - L )  = u ( - L )  =O. 
( 40 )  

The equations for &, and 6, a re  the same, but the 
boundary conditions a re  a t  x = L . 

We write down the solutions of Eq. (40)  fo r  5 ( x )  = 0 

Similar formulae a re  valid f o r  6 ,  and 6, with the one 
difference, that L - -L. 

It is clear from (41 )  that E < A, cannot be an eigen- 
value, since 

An-E 
a-=-amtg (m)"', ~ x L - ~ = ( ~ : - e ) r ( x + ~ ) ,  ( 42 )  

and hence condition (39)  is not satisfied for such E .  

Substituting (38 )  into (11)  we get for the Green function 
the expression 

i  exp {u,-u.) 
G ( x ,  YIE)=  

exp { i  (a , -as))  - exp {- i  (a=-a.) 1 

To obtain G' and G-  we use the method described 
above. We assume in the f i rs t  case that ImE>O, and i n  
the second that I m E <  0 and we have then in the denom- 
inator of (43)  

( exp {- i (a , -a , ) }  I > 1 esp {i(a.-ti.)) 1 when Im E>O, 

l e x p { i ( a - & ) )  ] > ( e x p { - i ( ~ - a * ) ]  I when Im E<O 

respectively, for G* and G - .  After that we expand the 
denominator in  a ser ies  and we substitute the resultant 
expression into the expression (10 )  of the correlator of 
the currents j i - -  j''.4) 

If we follow this procedure we get ( x >  y )  

2 Re[jC-(E', E l z - y )  -j++ (E', Elx-y)  ] =exp[uUf-n,'+u,-u,] 

x exp ( i  (a/-81.') -i ( a=-ax) )  [exp { i  (a , ' -a , ) )  -exp{-i  (a,'--a,) ) ] 

"8--m m--- 

One verifies easily that the sums in (44)  give after 
averaging the level density I T ~ ( E ) . ~ )  They a re  non-van- 
ishing (for finite L )  only when E and E' are  eigenener- 
gies. The quantization condition 

which follows from Eqs. (38)  and (39)  is then satisfied. 
We can therefore assume before the averaging that the 
phases in (43)  satisfy condition (45 ) .  This enables us to 
regroup the factors in front of the sums in (44)  in such 
a way that we get for j+ - - j"  the expression 

Expression (46)  must be  averaged. 

One can prove (see the Appendix) that the ser ies  in 
(46)  are  self-averaged quantities a s  L - and k Z  
<<(A: - E ~ ) ~ / ~  and, hence when averaging they can be 
taken out of the average sign and replaced by the quan- 
tity np(E)." It is thus sufficient to average in (46)  the 
factor in  front of the sums. However, if we take it into 
account that the parameter k 2  is small  we can replace 
them by their unperturbed values (41)  when L- 'W. As 
a result we get the following expression for the current 
correlators when E' - E = w, << k2:" 

Reu+-(E+on,  Elx-y)  -j++(E+oo, E lx -y ) }  

Substituting (47)  into (49 )  and then into (8)  and using 
the fact that the temperature T =O we find for the con- 
ductivity when EF >> A, the following expression: 

The level density p(E) has a power-law behavior EY-' 
with v = u12 when E << A,,.'~ Hence it is clear that the 
conductivity is anomalously small in the impurity band 
as  compared with the conduction band. 

Generally speaking, we must add to Eq. (48)  the re-  
sult of integrating over the energy to the lower limit 
s e e  (8)  and (9 ) ] :  

so=-- I T d E  j Q+-(E,  E - W I X - ~ ) - ~ + + ( E ,  E - o O I ~ - ~ ) ) h .  
n o ,  

0 Y 

This integral gives, when we take into account (47)  and 
the symmetry p ( ~ )  = p( - E ) ,  the contribution 

i.e., we can neglect it. An exception is the case EF 
<<A, when both contributions a r e  comparable. In that 
case, substituting (47)  into ( 8 )  we get 
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In deriving (50) we used the fact that p(E) a EV-l. 

84. TEMPERATURE DEPENDENCE OF u(T) 

The distribution function of non-interacting electrons 
and holes has the Fermi form and the chemical poten- 
tial x is determined from the equation 

where N@,)  is the number of electrons at T = 0% > 0). 
From (51) we obtain easily the relations needed i n  what 
follows: 

" z d z  -p l (E,)  
X ( ~ ) = ~ F + 2 S  --T* as T+O,  

ez+l  ~ ( E R )  

x ( T )  + n N ( E F )  =E, (EF>Ao)  as T - r - .  (53 

In deriving (53) we used the fact that p(E)  = 8-I a s  T - m. 

As T- 0 i t  follows from (8) and (9) that 

- z d z  aLa(wo,  E,) 
O ( O ~ , T ) = ~ ( U ~ . X ( T ) ) + ~ ~ ~  aEF2 TZ1  (54) 

0 

where a w,,x(T)] is the conductivity a t  T =0, i f  we sub- 
stitute for the energy E, the chemical potential x(T). 

We consider three cases: E, >> A,, a, << E, << A,, EF 
= 0. Substituting (36) and (52) into (54) and using the 
fact that EF>> A, we get 

- z d z  AolTA 
a (@, ,  ~ ) = a ( o ~ ,  E ~ ,  T=0) -24J  -0- (on)- ,  

ez+ 1 EF' 

where o,(wd is given by Eq. (3 7). In the case w, <<EF 
<<A, we find by substituting (48) and (52) into (54) 

Using the fact that p"(E)> 0 when E <<A, and p2 << A,, l3 

we a re  led to the conclusion that the functions a ( T )  in- 
crease a t  small  T. 

Finally, we consider the case E, = 0. In that case a(T) 
is given by the integral (50) in which the upper limit is 
chosen to be infinite and the integrand is multiplied by a 
factor [exp(E, /~)+ I]-' as for E, = 0 the chemical poten- 
tial x (T)=  0. This leads to the following expression for 

FIG. 1. Typical profiles of the function o(T)  for different 
values of the Fermi energy E,. The dashed lines show the 
behavior of u(T) in the case of purely static impurities 
(lim u(T)=u,(w0), T -4. 

the conductivity: 

In obtaining (57) we used the fact that as E-  O,p(E) 
EV-1 13 . It is clear from (57) that the presence of im- 

purities leads to a power law behavior a(T) a T"" as  
T - 0  and a t  EF=O.  

We now consider the case T- m. Using (8), (9), and 
(53) we get 

where aoO(wo) is given by Eq. (37). It follows from (58) 
that the conductivity o(T) tends to a finite limit a s  
T - We must note here that at high temperatures 
static phonons play the role of impurities and the 
strength of the random potential will be p2-gT, where 
g is the dimensionless electron-phonon interaction con- 
stant. Using (37) this leads to the law a(  T) a T-31n2T. 
Such a law of a decrease indicates that a s  T - * the 
main contribution to the conductivity comes from the in- 
teraction with the dynamic phonons which, as is well 
known, leads to the law o(T)  a T-2.14*15 The formulae 
given here enable us to obtain the qualitative form of 
the function a(T),  and we show this in the figure. 

In conclusion we note that from the symmetry prop- 
er t ies  (7) and Eqs. (8) and (51) if follows that 

as should be the case, if we pay attention to the symme- 
t ry  between holes and electrons. 

APPENDIX 
We shall prove that the quantity 

after averaging with arbitrary functionals ~ { [ ( x ) }  can be 
taken out of the averaging sign, provided the strength 
C12 of the correlator i s  sufficiently small. To do this i t  
is sufficient to show the validity of the following rela- 
tion7) : 

We introduce the quantities f ,(x) through the equation 

f.,. ( x )  =erp [Zi (ma.-n&,) I .  (111) 

It follows from (40) that the quantities f ,(x) satisfy the 
following chain of equations 

Putting rn = n  in (IV) we get 
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One mus t  take all express ions  which follow below i n  
the sense  that  they mus t  be integrated over a s m a l l  
energy interval  ~ E ( L ~ E  >> 1) which tends to zero as the 
length of the sys tem L-  .o. Summing both s i d e s  of Eq. 
(V) o v e r  n f r o m  -.o to +.o we ge t  a n  equation for 
R(E, x): 

' )  = i [ ~ . + l ( r )  ] [exp(2i6.) - exp (-2iar) 1 R (E,  I ) .  (VI) dr 

Using the fact  that the function R(E,x)  is real [ see (1)l 
we wr i te  (VI) in the  f o r m  

- dR(E'z)  -- [Ao+E(z) 1 [sin(2ax) + si~(Za,) ] R ( E ,  r ) ,  
dz  (vn) 

whence 

Taking the second Eq. (40) into considerat ion we  re- 
wr i te  Eq. (VIII) as follows: 

R (E,  x)  =R(E,  L)exp[-u,-IL+u.+u",]. 

Using the fact  that  the perturbing potential [(x) is smal l  
we can replace the functions u, and ii, by the i r  unper- 
turbed values (41). A s  a r e s u l t  of this we ge t  

We thus see that  the function R(E,  x) is independent of 
x as L -  m and f o r  sufficiently s m a l l  p2. On the o ther  
hand, the integral  of the quantity R (E, x )  g ives  the total 
number of levels of the s y s t e m  per unit energy inteval 
(see footnote 5) i.e., 

L 

(6E) R(E, x)dx=2L.const~6E=2Lnp (E)6E0. 
-L 

(XI) 

T h e  number of levels ~ L ~ ( E ) ~ E  is, a p a r t  f r o m  a t e r m  
-JL independent of the actual  real izat ion of the p r o c e s s  
[(x)12'", i.e., it is a self-averaged quantity. Hence it 
follows that also the quantity R ( E ,  x)  which equals  

will be a self-averaged quantity. This m e a n s  that- 
R(E,X) sa t i s f ies  Eq. (II) and therefore when averaging 
the expression (46) we can  take the product 
R@,x)R(E',x) out  f r o m  under the average sign and 
replace it by the product n 2 p ( ~ ) p ( ~ ' ) .  

"when x > y  the function G & , y )  is found by using ( 6 ) .  
 he equation for (3%) is obtained from (25) by changing the 

sign of the right-hand side. 
3'Abrikosov and Ryzhkin used in Ref. 8 a model which is simi- 

lar to ours but with Ao= 0 and with a random potential of the 
form 5 ( x ) +  i ? ) ( x ) ,  where 5 ( x )  and ? ) ( X I  have the following 
correlators: 

One can easily show that in  this case, using the technique 
given above, Eq. (25) breaks up into a class of equations, 
each of which contains only quantities (F$(x))  with a constant 
difference m - n  =const, which at m = n  are  exactly the same 
as the equations obtained in Ref. 8 .  

"1t is important to note that when E <Ao both correlators give 
important contributions and neither of them can be neglected. 

5 ' ~ o r  this i t  is sufficient to use the formula p(E) = - r41m 
(Tr C )  and to take for r 2  the corresponding series obtained 
from (43)  at Im E >  0 .  

')using the relations obtained in that case, which are  analo- 
gous to Eqs. (25) ,  one can show that this approximation leads 
to a relative error  -$(A~~ - E ~ ) ~  f 2  << 1 .  

 quatio ti on (11) means that R ( E , x )  is independent of the actual 
realization of the process ( ( x ) ,  if the length of the system 
L-a. 
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