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The singuiarities of the interaction of decay states in the presence of translational symmetry are considered.. 
It is shown that in the case of low-energy potential resonances observation of weakly decaying autoionization 
bands, with a nonanalytic dispersion law of the imaginary part of the energy, are possible even within the first 
Brillouin zone. The dependence of the decay probability T ( x )  on the quasimomentum is investigated within 
the framework of the exactly solvable model of "muffin-tin" potentials. It is shown that the form of the 
function T ( x )  reflects the singularities of the angular part of the wave function of an isolated center. 

PACS numbers: 71.70.M~ 

1. INTRODUCTION 

The concepts and conclusions of the band theory a re  
the basis of the present-day premises of solid-state 
theory, and in particular of the physics of electronic 
phenomena in crystals. The mechanism of formation 
of bands of electronic states is well known: exchange 
interaction1' lifts the degeneracy of the discrete levels 
of the system of identical centers, and collectivized 
states are  formed, which a re  characterized in the 
presence of translational symmetry by the quasimo- 
merltum vector x .  The intraband dispersion law, i .e . ,  
the dependence of the energy E on the quasimomentum, 
determines the basic characteristics of the motion of 
the electron along the crystal. Calculations of the func- 
tions E(x) at negative energies (the position of the vac- 
uum level is taken to be zero) a re  among the traditional 
problems of solid-state physics. The corresponding 
results are  given in numerous reviews and monographs 
(see, e.g. ,  Refs. 1-3). 

At the same it  is well known that the spectrum of the 
discrete states of single-center systems, correspond- 
ing to poles of single-center Green's functions, has 
in many cases a continuation at E > O .  The complex 
energy levels En with sufficiently small imaginary part 
(i. e . ,  ImE,<< I En 1 )  are  set in correspondence with 
quasistationary (autoionization) states whose proper- 
ties are  close in many respects to the properties of 
the stationary levels. The theory of the interaction 
of resonant and autoionization states is presently rap- 
idly developed, and i ts  results a re  extensively used in 
most diverse branches of physics. This raises the 
natural question: can energy bands of resonance states 
be formed, and what a re  the singularities of the cor- 
responding dispersion laws?2' The answer depends on 
the ratio of the characteristic times, the decay time, 
of the order of (1m E,)-', and the exchange time TO, 

which determines the rate of transition between cen- 
ters.  The formation of collectivized states should ob- 
viously be expected under the condition 

T, In1 E,,< I ,  (1) 

when the electron manages to travel between centers 
many times by the instant of i ts  detachment. 

The behavior of the weakly bound electron in the field 
of two centers that produce a resonance in the P state 
was previously investigated in Ref. 5. The intensity 
of the exchange interaction of two decaying states was 

investigated in Ref. 6. It was shown that in the case of 
resonances of Feshbach type3' the exchange interaction 
is proportional to the geometric mean of the autoioniza- 
tion widths of the isolated centers. The act of transi- 
tion between centers turns out to be strongly suppres- 
sed by the required double inelastic transition. In 
periodic structures, resonances of the Feshbach type 
(without allowance for the excitonic states that transfer 
the core excitation from center to center) should yield 
post-decay rescattering effects, analogous to those 
considered by Kagan and ~ f a n a s ' e v b i t h  nuclear inter- 
actions of the neutron a s  an example. The situation is 
entirely different in the case of potential (centrifugal 
o r  shape7'') resonances. In fact, a t  ka<< 1, where k 
is the electron momentum and a is the distance between 
centers, the penetrability of the barrier separating two 
neighboring centers turns out to be large enough,'' so  
that the electronic transition is rapid and condition (1) 
is certainly satisfied. It is shown in the present paper 
that in periodic structures the potential resonances 
form rather wide autoionization bands whose dispersion 
law has qualitatively new singularities. *' The possible 
physical consequences of this deduction a re  discussed 
briefly in the Conclusion. 

2. DISPERSION LAW OF AUTOIONIZATION BANDS 
IN ONE-DIMENSIONAL CRYSTALS 

We consider the spectrum of the eigenvalues of the 
Hamiltonian 

%(r) =-'12A+V(r), (2) 

which describes the motion of the electron in the com- 
bined field of muffin-tin (MT) potentials'-3 that form a 
linear chain: 

where r is the coordinate of the electron, R, is the 
radius vector of the s-th atomic center, a is the con- 
stant of the chain, and Us is the potential of the inter- 
action of the electron with the s-th center. The system 
of algebraic equations of the theory of multiple scat- 
tering for an aggregate of MT potentials was obtained 
by many workers (see, e. g., Refs. 12 and 13). In 
our case this system takes the form 

T::)=f, ( E )  F:;, (Ra, Rs.) d.2 . 
.'*s I'm' 

(4) 
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The corresponding electron wave functions a re  

Yr(r) = const. C ~ , , ( d h : + '  (kr.) T!?. (5) 
,,I" 

Here P&,(R,,R,.) is the probability amplitude of the 
transition of the electron from the s-th center with 
angular momentum I and angular momentum projection 
m relative to this center to a center s' with respective 
angular momentum and projection 1' and m', i. e . ,  

Y,, is a spherical harmonic, hy'  is a spherical Hankel 
function of the f i rs t  kind, (:::) is the Wigner 3j-sym- 
bol; j,(E) is the partial amplitude of the scattering of 
an electron by an isolated atomic enter; we assume for 
this amplitude, in accordance with the formulation of 
the problem, the single-resonance approximation'0: 

1 r e  
f 1 ( E )  -- - - ------ 

2k E- (Eo-irl12) ' 

where Eo - i ro /2  is the complex energy of the single- 
center resonant level with angular momentum 1, whose 
real and imaginary parts at small kro are  connected in 
known fashion with the parameters of the potentials 

ro=urk2'+', a1>0. (7) 

Neglecting the contribution of the nonresonant terms5' 
and taking into account the translational symmetry of 
the Hamiltonian (2), we seek a solution of the system 
(4) in the quasimomentum representation x = (0, Ox): 

The dispersion equation, whose roots a re  the energies 
of the allowed band resonances, takes in this case the 
form 

By virtue of the axial symmetry of the interaction (3), 
the solution of this equation a re  classified in accord 
with the projection of the angular momentum on the 
axis of the chain and the value of the quasimomentum 
X. At small ka, the solution of (9) can be sought by 
iteration over the terms that contain imaginary parts. 
In the lowest-order approximation we obtain accord- 
ingly an equation that determines the dispersion law 
of the band states without allowance for the autoioniza- 
tion 

E , , ( ~ )  =E,+I', C';,n,(kasr) cos zas' 
y A 

Here 

n,(x) is a Neumann spherical function. The parameter 
x, takes on a continuous spectrum of values within the 
interval [-n, n] (the f i rs t  Brillouin zone), and the cor- 
responding solutions of (10) determine the resonant- 
state band whose end points correspond at  even values 
of (I + m + 1) to the energies 

E : ' ~ " = ~ ~ , , , ( k n )  =E,-r,D,,(1-2-")5 (21 f  1 ) i  ( l ; c ~ ) " + ' ,  

where 

~ ( x )  is the Riemann zeta function. At odd 1 + m + 1 
the connection between the values of the parameter xu 
and the end points of the energy band is reversed [i .  e . ,  
EY;= E,,(in), EY:= E,,(O)]. At E?:<O the lower edge 
of the energy band is under the end point of the contin- 
uous spectrum (the vacuum level). Similarly, in the 
case of strong exchange interaction of the discrete lev- 
els, the upper edge of the band can go off into the re- 
region E >O. The decay of such states is also of in- 
terest .  6' 

The dispersion law E,,(x) has logarithmic singular- 
ities a t  x=*k .  These singularities, however, appear 
at 1 a 2 in the expansion terms that follow x2. For 
resonances with I =  1 we have at small ka 

Introduction of the "effective mass" concepts widely 
used in ordinary band is impossible in our 
case. Accordingly, a t  the boundary of the first  Bril- 
louin zone we have 

I', 
E ( x )  =E (*n) + const. ---;(;r- 1 zal ) ' .  

( ka )  

We consider now the rate of autoionization of the 
states of the resonant bands. According to (9), the 
imaginary part  of the energy, which determines the 
probability of detachment of an electron per unit time, 
can be obtained from the formula 

where j,(x) is a spherical Bessel function. The Wigner 
symbols (i t )  differ from zero only at even values 
of the sum of the indices 21 +A, therefore the sum over 
A in (14) contains only 1 + 1 terms corresponding to even 
values of X from 0 to 21. 

The ser ies  xj,(kasr) cos xas' can be summed analyti- 
cally and expressed in terms of the functions 

sin xs 
j*(x)= z 7 -  

(see, e .  g., Ref. 14). Leaving out the immediate cal- 
culations, we obtain ultimately 

Here Py(x)  is an associated Legendre polynomial and 
q(x) is the Heaviside step function. Thus, the auto- 
ionization rate turns out to be a nonanalytic function of 
the quasimomentum even within the f i rs t  Brillouin zone 
at the points H = i no, which a re  real roots of the equa- 
tion 

where El,(%) is determined from (10). At x >k we 
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have r,, = 0, i. e.  , auotionization of states whose quasi- 
momentum exceeds the momentum of the released elec- 
trons is impossible. A similar result is known, for 
example, for molecular e x ~ i t o n s , ' ~  where i t  applies, 
however, to all states of one (low-energy) branch of 
the collective excitations. In our case, however, the 
transition from nondecaying to decaying states takes 
place within a single band of allowed states. This con- 
clusion describes a general property of resonant bands 
and is not connected directly with the considered model 
of the interactions (3). In fact, autoionization states 
with x >k a re  forbidden by the translational invariance 
of the Hamiltonian, inasmuch as the decay should take 
place under the condition I k,, I = ( H. 1 (k,, is the projection 
of the momentum on the axis of the invariant displace- 
ments), and the possibility of the decay at large k is 
obvious. 

The dependence of r,, on x in the vicinity of the 
quasimomentum no is determined by the angular-mo- 
mentum projection m .  For example, for states with 
I = 1 and m = 0 at the point x = no the autoionization 
width changes jumpwise from zero to a value -Xa-'r0, 
where X is the wavelength of the released electron. 
Actually, a t  ( H. I <no,  near *no, the functions in- 
crease sharply on a scale 

i. e . ,  a quantity of the order of the quasimomentum un- 
certainty due to the finite lifetime of the considered 
states. For states with m $0 we have near the auto- 
ionization threshold 

i . e.  , the derivative changes jumpwise. 

It is important also to note that in states with 12 2 
the function r lm(x)  can have zeros also a t  k > x .  The 
condition r,,= 0 reflects in this case the position of 
the zeros of the associated Legendre polynomial 
~ " ~ ' ( x / k )  = 0. At this ratio of k and x,  the directions 
along which the electron might leave the system cor- 
respond to the nodes of the wave function of the iso- 
lated center. In this case, naturally, no decay is pos- 
sible. 

3. DISPERSION LAW OF RESONANT STATES IN  
TWO-DIMENSIONAL CRYSTALS 

We consider now the case when the centers of the 
resonant scattering a re  located a t  the points of a reg- 
ular two-dimensional lattice 

We introduce f i rs t  some transformations in Eqs. (14) 
to reduce them to a form more convenient for the in- 
vestigation of the decay characteristics of the system. 
To this end, we introduce the operator 

dikz 

and, using the relation12 

and taking into account the theorems for the addition of 
spherical functions, we write7' 

a'+. I'm' 

We next rearrange the system (18) in such a way that 
the operators Y,,(v) a re  replaced by their linear com- 
binations 

(the normalization of the spherical functions corres- 
ponds to the normalization assumed in Ref. 10). This 
rearrangement makes it easy to separate the real  and 
imaginary parts in (18). The system of algebraic equa- 
tions takes the final form - 

The differentiation operators V, and V,, act here on the 
variables R, and R,. in the Green's function G ~ " ( R ~ ,  
R,,, E )  at  the locations of the two-dimensional lattice 
points, and A,,= (T,,* T,,*). We seek the solution of 
the system (20) in the form 

A,:'--A,, e x p ( i x ~ . ) ,  x= (x , ,  x,, 0 ) ,  

is a two-dimensional quasimomentum in the plane of 
the lattice. Using the spectral representation for the 
 ree en's function 

1 erp(~kiR,-R.,  1 ) -  
Go"' (R., R.. ,  E) = - 

2n IR.-R.,I 

and changing to summation over the reciprocal-lattice 
vectors b: 

(So is the a rea  of the unit cell and K= x + 2nb) we have 

(22) 

Calculating the imaginary part of the second term in 
the curly brackets of (22) and using the explicit form 
of the amplitude of the resonance scattering of the elec- 
tron (6), we write 

The integration in the second term in the curly brack- 
ets of (23) is performed in the sense of the principal 
value. Recognizing further that dq = dq,,dq,, where z 
is perpendicular to the lattice plane, we obtain ultim- 
ately after integrating with respect to q,, 

," ' 
where 
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Here k, = (2E - x2)'" and k, is a vector with compon- 
ents ( x ,  xy, - k.1 and coincides with the vector k 
mirror-reflected in the lattice plane. It is seen from 
(25) and (26) that only states of like parity relative to 
reflection in the lattice plane interact with one another 
(the parity of these states coincides with the parity of 
I + I m 1 ) .  For example, for 1 = 1 the system (24) breaks 
up into two subsystems, one of which corresponds to 
m = 0 (odd state) and the other to m = * 1 (even states). 
For the odd state we have the dispersion equation 

E ( - )  ( x )  =E,+L\'-' ( x ,  k )  - 1 /2 i r ' - 1  ( x ,  k )  . (27) 

where 

3 a  4 n  +- q2dqz 1 q . 2 4  
A'-I(%,*)= -- [- zf 

2n So -p,'i2+K'/Z-E n Jz1 
2 

- -3a  $': [ ( k 2 -  Ti;i) eos k~..- - sin XR. .  I , (28) 
R.. 

The dispersion law for the even states is given by 

We have introduced here the notation 

Gnr, x2 
= - q (k t -xZ)s in  rp cos q; 

S,,k7 I;, 

the angle cp is defined by 
xa 

q= arc c- (rn) . a= (ax, a", 0). 

We note the difference between the near-threshold 
values of the function 1rn~'* '(x) with changing k, at 
k2 - x2 << x2. Whereas for  the odd states with 1 = 1 
and m = 0 the rate of autoionization is r "' - k,, for the 
even states at n l =  i 1 we have I"'' - l/k,, just as in 
the decay of the Feshbach autoionization S state. $ This 
result is due to the form of the distribution of the elec- 
tron density relative to the plane of the lattice for d i f -  
ferent projections of m. A specific property of the 
lattice of centers having an autoionization state with 
1 #0 is the dependence of the decay probability on the 
direction of the quasimomentum x.  We illustrate this 
using as an example I =  1 for the autoionization band 
of the even states in the case of a quadratic lattice 
(a, = a, = a). The point group of this lattice contains a 
fourfold symmetry axis, through which pass two pairs 
of mirror-symmetry planes: one is made up of the 
symmetry planes ox and u,, and the other of two diag- 
onal planes passing through the origin. Accordingly 
the angle cp, reckoned from the vector a directed along 
the diagonal of the unit cell, takes on values 0, in/4, 
and n/2. For these values of cp i t  follows from (25) and 
(30) that 

A,Z=O, Aic=Atz. 
Thus, even states on the symmetry axis of the crystal 

decay into symmetrical (g) and antisymmetrical (u) 
states, with 

E:+ ' (x )  =EO+Ac+' ( x ,  k )  - j / , i r Y 1  ( x ,  k )  , (31) 
E:+' ( x )  = E ~ + A ( + ]  ( x .  k) (ru(+' -0). 

where 

The stabilization of the autoionization states for a 
two-dimensional lattice, a t  quasimomenta directed along 
the symmetry axes of the crystal, has a simple physical 
explanation. In fact, since decay is possible only in 
planes passing through the vector x and the z axis, the 
antisymmetrical (u) state, which has a wave-function 
node in these planes, has zero width. It is easy to show 
that for a rhombic lattice this takes place at cp = (0,n/2). 

We examine now the question of the width, position, 
and singularities of the autoionization bands for even 
and odd states in the case 1 = 1. It follows from (28) and 
(33) that for the even states (m = 0) and for the odd 
states the point x =  0 corresponds respectively to the 
upper and lower edges of the energy band, with the 
width of the band of the even states double the width of 
that of the odd states, with a value of the order of -a/a3.  
In the case of a quadratic lattice i t  is also easy to es- 
tablish that the lower edge of the band of odd states (and 
accordingly the upper edge for the even states) wr- 
responds to the value xa = i n  and to the point X in the 
Brillouin zone. The singularities of the behavior of 
E(x) near x = 0 and on the boundary of the f i rs t  Bril- 
louin zone a re  also analogous to the singularities of the 
one-dimensional crystal (see the Appendix). 

4. CONCLUSION 

In conclusion, we discuss the question of the pos- 
sibility of observing effects connected with the popula- 
tion and autoionization of the considered state in one- 
dimensional and two-dimensional systems (these sys- 
tems include polymer molecules, monolayers pro- 
duced on the surface of a solid by adsorption of atomic 
particles, quasi-one-dimensional crystals, etc. ). We 
can point out two processes in which the band structure 
of the autoionization states manifests itself quite dist- 
inctly. These a re  photoionization from the inner elec- 
tron shells under the influence of monochromatic x 
radiation and scattering of a monoenergetic electron 
beam. The energy and direction of the produced (or 
scattered) electrons therefore fix in this case the quasi- 
momentum x of the electron in the intermediate auto- 
ionization state. The function E( ) is therefore obtained 
directly from the threshold, given by Eq. (16), of the 
appearance of photoelectrons (or of resonantly scat- 
tered electrons). For photoionization, for example, the 
frequency threshold is $ = I +  E(x), where I is the 
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ionization potential. On the other hand, information 
on the decay characteristics of the band states is car- 
ried by the intensity of the corresponding process J 
- I'(H). The most interesting effects should then be 
expected near the threshold x = * k .  

States with zero width I' = 0 are  not excited in resonant 
scattering of the electrons, but can become populated 
by photoabsorption (a curious fact in this case is the ve 
very possibility of electron motion in states that are  
located against a continuum background and a re  stable 
with respect to autoionization). We note that the use 
of a directional beam of light quanta makes i t  possible 
to vary the conditions of population of different decay 
states. For example, in the process of photoionization 
from the K shell, when the chains a re  irradiated par- 
allel to their direction, the states predominantly pop- 
ulated should be those with angular momentum projec- 
tion I m I = 1. Similar conditions for preferred popula- 
tion can be produced also for a two-dimensional crystal. 

The search for autoionization bands is of interest in 
itself because of the present intensive research on the 
interaction of electrons with polymer molecules and 
monatomic films on solid surfaces. l6 The predicted 
states might be expected, for example, for a monolayer 
of molecular nitrogen, which has a low-energy reson- 
ance (Eo= 2.3 e ~ ) , '  of for a monolayer of alkali-metal 
atoms (having a p-resonance a t  energies Eo -0.2-0.3 
eV) on the surface of crystalline nickel. 

APPENDIX 

We investigate the singularities of ~ e ~ ' * ' ( x )  near the 
point x = 0 and on the boundary of the f i rs t  Brillouin 
zone. To this end we use an expression for A'-' in 
terms of a sum over the vectors of the reciprocal lat- 
tice [see (28)]. Closing from above the integration con- 
tour and recognizing that a t  infinity the integrals can- 
cel each other, we obtain 

In the case of a square lattice 
I x+ K I  =L ( x , + ~ n n / a ) ~ +  ( ~ ~ + ~ n m / a ) ~ ~ ' " ,  W.2) 

Therefore in the lowest-order approximation in the 
parameter ka<< 1 the expression (A.1) can be written 
in the form 

and also using the formulai4 

we ultimately obtain for the expression (A.3), by the 
procedure described in Ref. 17, 

A'-'=S,+S, 

where 

is the sum along the chain of centers passing through 
the origin, 

It is easily seen that S2 has no singularities near 
x = 0 (the corresponding expansion in powers of x be- 
gins with k = 21, nor near the Brillouin-zone boundary. 
Thus, the singularities of the behavior of A'-' are  de- 
termined by the singularities of the sum St, which can 
be investigated in analytic form [see (12) and (1311. 
This result should be expected, since the divergence of 
the ser ies  (28) a t  large R,, when expanded in powers 
of X, corresponds exactly to the divergence near the 
origin for the reciprocal lattice, i. e . ,  near the point 
taken into account in the analysis of the one-dimensional 
sums. It follows also from the obtained expressions 
that on the boundary of the Brillouin zone, for one- 
dimensional and quadratic lattices, the condition 
grad,ReE(x) = 0 is satisfied, in agreement with the 
properties of ordinary bands located below the vacuum 
level (E <O) . 

 he interaction responsible for electron transition from one 
atomic center to another. 

 his question is meaningful only for structures having a 
channel for free departure of the electron to infinity, i.e., 
linear, two-dimensional, and semi-bounded crystals. 

3 ' ~  classification of the autoionization states of atomic (molec- 
ular) particles is given in the reviewsTpa. 

 he effects investigated by us, which a re  connected with the 
interaction of resonances of the Breit-Wigner type, differ 
substantially from those that take place in exchange interac- 
tion of one-center states of the Bethe-Peierls type. A brief 
investigation of the latter i s  reported in the monograph of 
Demkov and Ostrovskii" for a chain of zero-radius potentials 
that describe S-scattering of an electron by each of the cen- 
ters.  Owing to the lack of a centrifugal barrier (or of some 
other stabilization mechanism) on the isolated centers, the 
problem of bands of quasistationary states obviously does not 
arise within the framework of this model. 

qua heir contribution has a relative smallness -kfo ,  where fo is 
the amplitude of S scattering of an electron by an isolated 
center. 

6 ' ~ h i s  question i s  considered within the framework of the 
model of zero-radius totentials ( 1  = 0) in the monograph of 
Demkov and ~strovskii." 

  noth her method of deriving Eqs. (18) is given in Ref. 5. 
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Self-consistent description of metal-insulator phase 
transition in the two-band model 

S. G. Ovchinnikov 
L. K KirenskiiPhysics Institute, Siberian Division, USSR Academy of Sciences 
(Submitted 8 June 1979) 
Zh. Eksp. Teor. Fiz. 78, 1435-1447 (April 1980) 

A two-band model is proposed for a metal-insulator transition with lattice distortion, with account taken of 
the intraband and interband Coulomb interaction, as well as of the anisotropy of the Fermi surface. The phase 
diagram of the system as a function of the degree of band occupation is constructed by solving the system of 
self-consistency equations for the chemical potential and for the gap. It is shown that two dielectric phases 
exist, and one or the other is stable, depending on the band occupation. The results are compared with 
experiments on oxides and sulfides of transition metals. 

PACS numbers: 7 1.30. + h 

1. INTRODUCTION 

It is that a narrow-band metal whose elec- 
tron spectrum satisfies the condition 

e, (k) -p=-ei (k+Q) +P (1) 

where the wave vector 2Q coincides with the reciprocal- 
lattice vector, is unstable to doubling of the period of 
the cell and goes over into the insulator state. At the 
same time, the band structure of narrow-band transi- 
tion-metal compounds is characterized by the presence 
of several bands that intersect in the vicinity of the 
Fermi level. Therefore more general is a two-band 
model, in which band 1 satisfies condition (1) while band 
2 does not satisfy it. Such a model was proposed in 
Ref. 3, and i t  was shown that allowance for the second 
band greatly broadens the class of possible solutions 
of the self-consistency equation for the order parameter 
A =g(Q)(b,+ bf,)/m, where b, is the annihilation oper- 
ator of a phonon with wave vector q, and g(q) is the el- 
ectron-phonon interaction constant. In particular, 
several nontrivial solutions appear, thus indicating the 
presence of metastable states. 

In Ref. 3, however, no account was taken of the Coul- 
omb interaction. More accurately, account was taken 

of only that part of this interaction which leads to a re- 
normalization of the interaction constants. In the two- 
band case there appears also a coupling between the 
bands on account of the self-consistent occupation num- 
bers,  and this changes the self-consistency equation. 
In addition, i t  was assumed in Ref. 3, in the course of 
the solution of the system of self-consistency equations 
for the chemical potential p and for the gap A ,  that p 
depends little on the temperature T, and p(T =0) was 
substituted in the equation for A. 

The aim of the present paper is a fully self-consis- 
tent description of the metal-insulator transition (MIT) 
in the two-band model, with account taken of the Coul- 
omb interaction. In addition, we consider the influence 
of the anisotropy of the Fermi surface, of the pressure, 
of doping, and of the magnetic field on the MIT. 

2. HAMILTONIAN AND GREEN'S FUNCTIONS 

We consider a system of electrons and phonons des- 
cribed by a Hamiltonian 

where 
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