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1. INTRODUCTION physical states of a gauge theory a r e  best constructed in 
a gauge which does ;ot Eequire the use of an indefinite In the widely discussed current hypothesis of color 
metric, where the Hamiltonian is positive-definite, and 

confinement in nonabelian gauge theories the spectrum 
the wave function does not depend on the variables which of physical states (hadrons) differs in a fundamental way 
a r e  eliminated by the subsidiary condition (cf. e.g.,7). from the spectrum of the noninteracting system (gluons 
All these conditions a r e  satisfied by the Coulomb gauge, and quarks). Among the questions which ar ise  in con- 
in which we construct the operator S(T). For the clarj- nection with this hypothesis, answers to which a r e  es- 
fication of some problems related to understanding the sential for an understanding of the physics of confine- 
gauge invariance of the model we shall use the gauge ment, we would like to single out and analyze with a 
where A, = 0 (Sec. 2). 

simple example the problem of the quark structure of 
physical states. ~ o r - t h i s  i t  is  necessary to construct 
the wave functions of physical states in terms of the 
operators of the noninteracting fields. 

We solve this problem for a well-studied simplest 
model of confinement, namely two-dimensional quantum 
electrodynamics of massless electrons" (QED~'-~).  For 
this model exact operator solutions have been foundz6, 
allowing one to compute all the Green's functions. The 
characteristic traits of the spectrum can also be deter- 
mined directly from the SchrSdinger e q ~ a t i o n . ~  How- 
ever, the complicated nature of this equation for QEDz 
does not allow one to elucidate the quark structure of 
the states, theref ore  these methods a r e  inadequate for 
our purposes. 

One can avoid the necessity of a direct solution of the 
SchrSdinger equation if one constructs for the given mo- 
del the evolution operator S(T) for finite time, and ex- 
pands i t  in a ser ies  with respect to time exponentials. 
This operator has the expression 

In a field theory the operator S(T) can be constructed 
a s  a functional integral,' where the integration is car- 
ried out between boundary values of the fields defined a t  
the initial and final instants of time: 

We must define this integral not only over a finite time 
interval but also in a finite space volume V=2L. Other- 
wise the physical wave functions will turn out to be or- 
thogonal to the wave functions of the free theory, a fact 
which is related to the finite density of bare quarks in 
the physical vacuum. The boundary conditions a t  the 
edges of volume will be assumed to be periodic, which 
simplifies the discussion of the problem in the momen- 
tum represen tation. 

On the other hand, in two-dimensional theories per- 
iodic boundary conditions forbid states with total charge 
Q#O, whereas an investigation of such states is of in- 
terest from the point of view of charge confinement. 
For periodic boundary conditions states with Q #O a re  
unphysical, since they do not satisfy the supplementary 

Here En is the energy Of the n-th ('n I condition which selects physical states [ ~ q .  (8), See. 
and I'fl) are the bra and the ket of this state, 

21. However, this difficulty has no relation to 
on the coordinates of the system, respectively a t  the ment, and the latter may also be investigated for perio- 
initial time (0) and the final time (T). This method of 

dic boundary conditions. Confinement means the impos- 
solution was proposed some time ago by ~ e ~ n m a n '  for sibility of having a local charge (outside the confine- 
problems of quantum mechanics' The Operator S(T) de- ment radius) and this property does not, of course, de- 
termines the time evolution of arbitrarily formed wave pend on the boundary conditions a t  the edges of the vol- 
packets and its diagonalization (1) allows one to obtain ume. It can be verified also for systems with Q =0, but 
the physical states in terms of a complete se t  of arbi- with a local charge density in space. Therefore, in or- 
trary states, among those states generated by the f ree  der to study properties of states with physical charge Q 
quark operators. $0  i t  suffices to introduce into the system in a conven- 

In the present paper we formulate necessary condi- ient manner an outside charge, s o  that the total charge 
tions for the determination of the operator S(T) and find vanishes. We place the system of charges Q between 
its expression in QED2. The evolution operator and the the outside charges -Q/Z situated a t  the points i L  of the 

663 Sov. Phys. JETP 51(4), April 1980 0038-5646/80/040663-08$02.40 O 1981 American institute of  Physics 663 



space direction (a "capacitor"). Such charges will com- 
pensate the field of the physical charges outside the ca- 
pacitor, without affecting the system inside it. This 
procedure is equivalent to considering the system in a 
finite volume with a cutoff of the nondecaying fields 
which appear in this case. 

The operator S(T) i s  computed in Secs. 3 and 4. 
The analysis of the spectrum of QED,, the properties of 
the states, and the relation between these properties 
and the physics of confinement transcends, essentially, 
the framework of the present paper. The calculations 
a re  carried out for  two versions of QED,: the one-elec- 
tron model (the Schwinger model1) and a model with 
several kinds of electrons interacting with the same 
field A, but with different charges gi.4 

To conclude this section we list  several formulas and 
definitions which will be extensively used in this sequel. 
The Lagrange function of the Schwinger model is given 
by 

P ( x )  =-l/,(F,,) '+i+yQ,$+gA,$'. 
(3) 

The generalization to the case of several types of elec- 
trons is obvious. The current j' in Eq. (3) has to be de- 
fined by means of the Schwinger point splitting8: 

g 
l im$(x+e)  ~ ' $ ( x - E ) - - A ' .  
.-a 2n (4) 

The expression (4) guarantees the gauge invariance of 
the current. 

The Lagrangian (3) conserves helicity, therefore i t  is 
convenient to split J ,  into parts with helicities 4: 

$,=.gnu:"' +*,u:", 

u ' ~  L'=L/2(1*y5) U, y5=yoy1. (5) 

Then the Fourier expansion of & and 

defines the creation-annihilation operators of bare  par- 
ticles: the right -handed and left- handed quarks (R and 
L) .  The evolution operator will be expressed in terms 
of these operators. 

2. DEFINITION OF THE EVOLUTION IN THE 
COULOMB GAUGE 

The wave function \k(T) and the evolution operator (1) 
in a gauge theory depend on the variables of the charged 
quark field and on the potentials of the electromagnetic 
(EM) field a t  the time T. The EM potentials contain 
"redundant" variables- the longitudinal fields. It is 
simplest to get rid of these by a transition to the Cou- 
lomb gauge, by defining the dependence of the wave 
function o r  of S(T) on these variables in an appropriate 
gauge. For this purpose i t  is convenient to choose the 
gauge where A. = 0, in which the longitudinal variables 
(in the two-dimensional case there a re  no others, just 
the potential A,) a r e  dynamical variables. This gauge 
satisfies the conditions stated in the Introduction, and 
in i t  the Harniltonian has a simple form. It follows from 
Eq. (3) that 

Here ern is the Hamiltonian of the free electromagnetic 
field and H@,) i s  the Hamiltonian of the charged parti- 
cles in the field A,. 

In this gauge the evolution operator can be expressed 
in terms of the functional integral: - 

This formula is valid in the second-quantization repre- 
sentation for the fermion operators. Here HMi) is a 
second-quantized Hamiltonian of a charged par t ide  in 
the field, defined by Eq. (7). The formula (8) can be 
brought to the form (2) by means of the standard transi- 
tion to Grassmann  variable^,^ i.e., i t  can be reduced to 
a functional integral over the fermion variables. In both 
integrals (2) and (8) the integration over the field A l k ,  
t) extends over the interval 0 < t < T. For  t = 0 and t = T 
the field takes on definite values Al(x, 0) and A,(%, T). 
These a r e  the values which play the role of the EM field 
variables on which the evolution operator depends. 

The physical part S,,(T) of the evolution operator is 
subject to the supplementary condition7 

div E+p=O, (9) 
which in the gauge A,, = 0 takes the form 

S(T) is subject to a similar condition for t =O. Both 
conditions a r e  satisfied by the expression 

S P A ( T ) = ~ X P  ( + i j  p(x. T ) f  (x .  T ) ~ x )  S . (T)exp (-ij p(x. O ) f ( x .  . 
af ( x ,  t ) / ax=-A , (x ,  t ) ,  

in which Sc(T) is independent of A,. The operator Sc(T) 
is the evolution operator in the Coulomb gauge. Indeed, 
an arbitrary gauge transformation of the evolution oper- 
ator consists in the substitution 

S ( T )  + U ( T ) S ( T )  U f  (O) ,  A , -+Ap=A,+af /a~ , ,  (12) 

where U(T) is exactly the operator in front of Sc(T) in 
Eq. ( l l ) ,  and f(x) is the gauge function. Thus the oper- 
ator Sc(T) which does not depend on the EM field vari- 
ables is the evolution operator in the gauge Ai =0, i.e., 
the Coulomb gauge. It is defined only for  the physical 
states satisfying the condition (9). 

For the reasons discussed in the Introduction we shall 
be interested in the possibility of transition to the Cou- 
lomb gauge when the system is enclosed in a finite spa- 
tial interval (-L, +L). Let us see  how one can general- 
ize to this case the procedure of gauge change and the 
selection of physical states. We impose periodic bound- 
ary conditions on the fermion operators: 

which, as indicated, allow one easily to go over to the 
momentum representation (6) with discrete momentum 
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values p, =n n / i ,  and which do not affect the local pro- 
perties of the system.6 

Since gauge transformations a re  not supposed to vio- 
late the condition (13) one must assume that the gauge 
functions f(x) a r e  periodic, and consequently s o  a r e  the 
potentials A,. Therefore we can expand them in a 
Fourier ser ies  analogous to Eq. (6): 

In momentum space the admissible gauge transforma- 
tions take on the form 

(15) A, (p., t )  +Ao ( P - 9  t )  f f ( P m -  t ) .  

A,(O,t) does not change under such a transformation and 
being gauge invariant, becomes a dynamical variable 
which cannot be removed in any gauge. The dependence 
of S(T) on this variable is arbitrary, and i ts  dynamical 
influence on states is small  as L-  m, since in the Lag- 
range function (3) and in the Hamiltonian (7) the contri- 
bution of this component of the potential enters with a 
factor V" = ( 2 ~ ) " .  Therefore we shall ignore in the 
sequel the dependence of S(T) on A1(O, t), although the 
contributions of this component can be easily taken into 
account a t  each step of the calculation. They do not lead 
to essential physical consequences. 

Another peculiarity of the periodic boundary condi- 
tions was noted in the Introduction. Such conditions a re  
incompatible with states of the system with Q # 0. In- 
deed, integrating the supplementary condition (9) over 
the interval (-L, +L) we obtain 

E (L)  -E (-L) +Q=o. (16) 
Thus for  all charged states for which condition (9) o r  
(16) is satisfied we must have E(L)#E(-L). The only 
way to consider such states, maintaining periodic bound- 
ary conditions, is to modify Eq. (9) and to introduce into 
the system charges from the outside so  as to compen- 
sate exactly the charge Q. If this is done in such a man- 
ner as not to modify the physics of the local phenomena 
far from the external charges, it is obvious that the 
properties of the physical charges of the system in the 
two-dimensional model under consideration can be in- 
vestigated in such unphysical [from the point of view of 
condition (9)] states. 

The simplest method of introduction of an external 
charge into the system, which affects least the physics 
of internal local phenomena, consists in a modification 
of the supplementary condition to 

div E+p(z) -'/,Q(6 (2-L) +6(x+L))=O. (1 7) 

The additional term in Eq. (17) corresponds to a capaci- 
tor, a s  discussed in the Introduction. The supplement- 
ary condition (17) no longer contradicts the periodic 
boundary conditions. Going over to the momentum rep- 
resentation i t  is easy to obtain its solutions for the in- 
terval (-L, L), s o  that now sf i i (q  is represented by 

s,(T) is again independent of A,. 

The exponential factor in Eq. (18) realizes the transi- 
tion to the gauge 

A,(P t )  XI (p., t )  =0, A, ( p a ,  t )  =- ---"- n f L O ,  
ip ,, (19) 

- - 
m+O neo  

This i s  the gauge we shall call the Coulomb gauge. We 
note that in this gauge Ao(O, t)  is not an independent vari- 
able, but can be expressed in terms of the field compon- 
ents with p, it 0. 

In order to determine the expression for S,(T) in terms 
of a functional integral i t  is necessary, as  expressed by 
Eqs. (11) and (18), to separate from the expression (8) a 
factor which corresponds to the gauge transformations 
(15) or (19). This is easily done owing to the fact that 
the operator exponential of the second-quantized Harnil- 
tonian for a charged particle in an external field in Eq. 
(8) satisfies the relations 

For the gauge transformation (19), starting with the 
gauge A. =O, we obtain from Eq. (7) the result that the 
Hamiltonian in Eq. (20) has the form 

The term describing the interaction of the capacitor with 
the field comes from the Ao(O, t )  component of the field 
A,, Eq. (19): 

= ~ j  dXn.cs t , ~ a ( z - L ) + a ( r i ~ ~  I .  
2 (22) 
-L 

Replacing now the integration variables in the integral 
(8) according to Eq. (19) 

A,(P,, t , )  - A t ( ~ n ,  t t - I )  
Ao(pn. t , )= - 

ip,& 
(23) 

we obtain the following forinula for the integration mea- 
sure : 

The expression (24) contains a delta function since we 
have introduced an integration over Ao(pn, T)  in the right- 
hand side. The Jacobian of the transformation has been 
taken into account in the calculation of the common nor- 
malization factor in Appendix 11. 

We now substitute into Eq. (8) the expression (20) with 
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the Hamiltonian (21). We carry  out in (8) a change of 
variables according to Eq. (24). This yields 

Here we have taken into account the fact that AT = ( a ~ d  
ax12 =-+(F , , )~  is a gauge invariant. We emphasize the 
fact that there is no integration over Ao(O, t) in Eq. (25). 
According to Eq. (19) that component is not independent. 

The final formula for  Sc(T) is obtained i f  one separates 
in the functional integral with respect t aAo in (25) the 
part which does not depend on the potentials Ai(x, 0) and 
A,(x,T). It is obvious that this part is obtained by aver- 
aging this integral with respect to A,&, T). Then the 
delta function disappears from the integrand and we ob- 
tain the following formula: 

d A  
&(T)  = .Ao ( x ,  t )  e s p  [ t j  ( $ ) ' a t  d x ]  

0 

X T  e r p  ( : I  -i ~ ( ~ 0 ) d t d x ) ) .  

Here the integration with respect to Ao(x, t) is carried 
out over the whole interval 0 t T, including t =T [ac- 
cording to Eq. (23) the integrand does not depend on 
A&, 011. 

To conclude this section we find the expression for the 
total Hamiltonian of the system in the Coulomb gauge in 
a finite volume also for the case Q # 0. Carrying out in 
(7) a gauge transformation (19) and making use of Eq. 
(9) in order to go over into the coordinate space, we ob- 
tain: 

This Hamiltonian does not contain any arbitrary param- 
eters (cf. Ref. 10). This has to do with the fixing of the 
periodic boundary conditions and the neglect of the de- 
pendence of the wave function on A,(O, t). 

3. CALCULATION OF THE INTEGRAL OVER THE 
FERMl FIELDS 

The "untangling" of the operator exponential in Eq. 
(26) with the help of the usual coherent-state technique7 
leads to the following expression of Sc(T) in terms of a 
functional integral with respect to the fermion fields: 

The expression appearing in the exponential function is 
the QEDz Lagrangian in the Coulomb gauge. For the 

model with several kinds of charged quarks4 the corre- 
sponding Lagrangian is 

1 aA " 
9' = - 2 (+)'+i ; $ , + A ~  i g f + j T o $ , .  

I - .  I-I 

Here JIi a r e  the operators of the i-th kind of quarks, gi 
a re  their charges. The integration in Eq. (28) is over 
all the JI,. The calculations a r e  completely analogous in 
both cases. Carrying them out for one kind of quark we 
can then write down the answer for the model in Ref. 4. 

The Gaussian integral over the fermion fields is cal- 
culated by means of the standard method of separating 
the dependence on the boundary conditions for t = O  and 
t =T. This is achieved by means of a change of integra- 
tion variables 

$=$o+~r, (b=$o+V. (30) 

The finiteness of the time interval T introduces however 
an essential distinction from the calculations which a r e  
often encountered. 

The steepest-descent field JIo has to be chosen so that, 
in addition to being a solution of the Dirac equation in 
the external field, i t  should satisfy the boundary condi- 
tions imposed on 9. These boundary conditions have to 
be chosen the same a s  the ones usually imposed on 
fermion fields: for t = O  the positive-frequency part of 
the fields JI and $ is given, whereas fo r  t =T ,  their neg- 
ative-frequency part is specified. This choice leads to 
the result that af ter  the transition to the second-quan- 
tized form7 we obtain adisentangled operator expression, 
where the creation operators of the particles and anti- 
particles, a*, b' refer to the time t =T,  and the annihila- 
tion operators a, b, refer to the time t =O. This form of 
Sc(T) corresponds to the representation (1) of the evolu- 
tion operator. 

In Appendix I i t  is shown that the problem of solving 
the Dirac equation with the chosen boundary conditions 
reduces to the construction of a definite Green's function 
for this equation. For  the case of the Coulomb gauge in 
which we a r e  interested (in terms of JI, and qL) the solu- 
tion of the equations 

a a a 
ig-4.) $m-0. (dt - BI - @Ao) $Lo=O. (31) 

satisfying the conditions 

- 
d p  

$:>) ( x ,  T )  =bA (5 ) -  J b& ( p )  e ~ ' ~ ' -  
2n' 

0 

can be written in the form 

$ x o ( ~ ,  t )  = J G a p ( x t ,  xrO)aR(x')&'- j  G P )  ( ~ t ,  x 'T)  b.C(z1)&' (33) 

with a similar expression for  JILO. The Green's function 
~kT,'&t,x't') satisfying the conditions formulated in A p  
pendix I, is represented by 

GC cXt,  x r t , )  =G$ ( m ,  x r t r ) e x p  { i g j  a t .  
0 

x j  dx,A.(x, ,  t . )  [G:': ( x t ,  ,,ti) -G:", (x't'. .,ti) I ) .  (34) 
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where Gko2 denotes the usual Feynman Green's functions 
for f r ee  mass less  particles. They have the expressions 

1 1 
G:: - - 

2ni t-tl?(x-2') -;be ( t - t ' )  

After solving a s imi lar  problem for and effecting the 
substitution (30) the equation (28) goes over into the fol- 
lowing expression: 

s c ( ~ ) = ~ D A o ( x , t ) e x p [ + j  ( $ ) 2 d 2 x ] e x p [ @ ( a + , b + , a ,  b , ] D ( A ) ,  

where (36) 

@ (u r ,b * )=  j d x  dx' [a ,+  ( z ) G ? ' ( x T ,  s lO)a.  ( x )  
8 - R L  

+b, ( X ) C ! ~ )  (50, x'T) b.+ (2') -(I.+ ( x )  G!" ( x .  T ,  z ' T )  b,+ ( 3 1 ' )  

-bt ( x )  GI') (XO,  X ~ O )  a i  (z,) I ,  (37) 

and D(A) denotes the integral over $' and T ,  which is 
equal to the determinant of the Dirac equation in the ex- 
ternal field A: 

The integral in (38) is over $' and JI' with vanishing val- 
ues for  t = O  and t =T. As  explained above, the d ,  b* in 
Eq. (36) can again be  considered a s  second-quantized 
operators; the a+, b* in (36) commute with the a and b, 
since they r e f e r  to different times. 

It is well known that D(A) can b e  expressed in te rms 
of t_he Green's function of the Dirac equation in the field 
A,  ~ ' ~ ' ( x t , x t ) ,  according to the formula 

However, the Green's function 6 ' T ' ( ~ t , ~ ' t ' )  is undefined 
for equal arguments, as can be  seen f rom the explicit 
expression (34), (35). The answer depends, generally 
speaking, on the method of taking the l imit  x -x', t - t'. 
This indeterminacy, a t  least  for  T -- -, is directly r e -  
lated to the ultraviolet divergence of the only nonvanish- 
ing simplest loop diagram in QED2, the one determining 
the photon mass." The indeterminacy in the calculation 
of this diagram is removed by the requirement that i t  be 
gauge invariant. The same principle allows one to de- 
termine DM) for  finite T also. 

We require that the expression 

which obviously represents  the evolution operator of the 
system of charged fermions in the external field A ,  
should be invariant with respect  to the gauge transfor- 
mation (1 2): 

%(A, a', b*) = U ( T )  U+(O)S.,(A, a*, b*) U ( 0 )  U T ( T ) ,  

The density p k ,  T )  does not commute with a*(x) and b' 
b), while p(x, 0) does not commute with a h )  and b(x). 
The result  of applying the gauge transformation to the 
second factor  in Eq. (40), to f i r s t  order  in the gauge 
function f k )  is determined by the commutator of the 

operator Jp(x)f(x)dx with S,,(T). We compute this com- 
mutator making use of the expression for  the charge 
density [a'k), b*k) a r e  defined in Eq. (32)]: 

(42) 

and the anticommutation relations 

Separating in the commutator the te rms which do not 
depend on the fermion operators we obtain 

dx' G;" (z 'T,  xT+e)  f (x ' ,  T )  G:" ( r e ,  x'O) f ( z ' ,  0 )  Jx [ x-3'-i6 1 
+(terms with R+L), E-0.  (44) 

On account of Eq. (41) these t e rms  must  be compensated 
by a gauge transformation of D M )  (the t e rms  with the 
operators d ,  b* yield the transformation law for the 
Green's functions). The Green's functions G ' ~ '  in the 
arb i t ra ry  gauge entering Eq. (44) can be  defined accord- 
ing to Eq. (34) if one replaces A. there by Ao-A,  for  
G;~) and by A. +Al for  GIT'. Integrating in Eq. (44) with 
respect  to x and x', we obtain 

The condition (45) leads to a unique expression for  
DM): 

esp(- i lp l  l t-t ' l)  

m2-g2/n. (46) 

This expression is relativistically invariant and for  T - - i t  goes over into the usual expression for  the sim- 
plest loop diagram of QED~" 

One could have obtained the result  (46) in another way, 
requiring that the evolution operator S,,(T) should satis- 
fy the time-dependent Schradinger equation with a Ham- 
iltonian describing the interaction of charged particles 
with an external EM field. The corresponding calcula- 
tion leads to the following interesting expression ofD(A) 
in t e rms  of the external-field Green's function: 

D i d  d  1 1 [ ( t ) .  t )  I . (48) 
I-=' C - I  

In distinction from Eq. (39), the limiting procedure for  
equal values of the arguments in ~" ' (x t , x ' t ' )  in (48) i s  
completely determined. 

The fact that the system has been considered in a fin- 
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ite volume did not introduce any modifications of princi- 
ple in the calculations of this section. 

4. THE FINAL FORM OF THE EVOLUTION 
OPERATOR IN THE COULOMB GAUGE 

In order to obtain a concrete matrix element of the 
evolution operator i t  is necessary to expand the opera- 
tor exponential in Eq. (36) in a series with respect to 
the operators at&), d&) and, separating the appropri- 
ate term, take the corresponding integral with respect 
to Ao. Since the Green's function CA~~(xt,x'tl) depends 
exponentially on Ao, this integral will be of the Gaussian 
type: 

here s, is the effective action for the EM fieldAo, tak- 
ing account of the determinant D(A), (46): 

im' + -exp(-i1p.l It-t'l) ] l o ( - p . ,  t l ) d t  a t f .  
21P"l 

We carry out the calculations in a finite volume, hence 
the integrals in Eqs. (49), (50) with respect to P have 
been replaced by sums. 

The element S,&,,yk) of the evolution operator, being 
the coefficient of the operators 

turns out to be equal to the product 

SC(& ~y , )=So(zh ,  yr)I(xh, Y A ) ,  (52) 
where So(xk,yk) is the indicated element of the evolution 
operator in a free theory. It can be obtained by series 
expansion of the expression 

[the equation (40), with the free Green's functions GA:)~, 
(35)' substituted for GA:; and with the determinant D(A) 
omitted]. Z(x,, y,) is an integral of the form (49). The 
role of the source R(pn, t) in i t  is played by the coeffi- 
cients with which the EM field A. enters into the Green's 
functions ~k:;(xt, x't') which appear in a ser ies  expan- 
sion of Eq. (36). In order to determine them we rewrite 
Eq. (34) in the momentum representation: 

Thus, for the matrix element (51) of the evolution oper- 
ator the source R(pn, t) turns out to be equal to 

In particular, for zero momentum, we obtain from here 

gRi(0)  =gRt(O) =Q, (56) 
where Q is the total charge of the state under considera- 
tion. 

The Gaussian integral (49) can be done in general 
form. It should be taken into account that, a s  already 
noted in Sec. 2, the variable A,(O, t) i s  not indepen- 
dent and must be expressed in terms of the other vari- 
ables according to Eq. (19). We then obtain, making use 
of Eq. (56): 

where the steepest-descent field Ao(pn, t )  satisfies the 
equation 

im2 
&(p,,, t )+m! exp(-ilp,,l It-t'l)Ao(p,,, t ' ) d t f  = ( - 1 )  "Q-gR (en,  t )  

P"P 
- (58) 

It is easy to pass from the integral equation (58) to a 
differential equation. Applying the operator a2/at2 +pi  
to both sides we arrive a t  the expression 

Boundary conditions to Eq. (59) a r e  determined from 
Eq. (58) and have the form 

Solving the equation (59) we find the steepest-descent 
field: 

Q ( - 1 ) "  m20, - 'Q(- l )"-gR. (pm)  -gR, (p , )  
A , ( P , , ~ ) = ~ +  , Ip,l ( o , + l p , l )  

where we have used the notation 

We note that in distinction from the initial Coulomb po- 
tential Ao(p,, t) contains the singularity l/ Ipn I rather 
than 1/p:  which leads only to a logarithmic, rather than 
linear, growth of the potential at infinity. 

Substituting Eq. (61) into Eq. (57) and integrating with 
respect to time, we obtain, finally 
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where the functions F1(pn) and F Z ( P ~ )  have the form 

exp(- i lp , lT)  - 4 0 ,  exp ( - i o , T )  Fi (pn)= , p n l  
(o,+lp,l) '  1-an2 ' 

and So is that part of the evolution operator for Q # 0 
which is related to the presence of the capacitor: 

The equations (52), (53), (62), (64) make i t  possible to 
obtain an arbitrary matrix element of the evolution 
operator (51) in the Schwinger model. The determinant 
Det s, i s  caiculated in Appendix II: 

[ Det s ~ ~ ] - " ' = Z - ' ~ - ' ~ ~ .  (65) 
The quantity Eo represents the energy of the physical 
vacuum, with the energy of the bare vacuum 10) being 
taken as  zero. According to (A.II.13) i t  equals 

Eo diverges logarithmically in the ultraviolet region. 
The equation (66) agrees with the answer which can be 
obtained directly considering the only nonvanishing vac- 
uum diagram in QED2. The normalization constant 

is the partition function for the physical QEDz vacuum. 
At the same time z" '~  is the transition matrix element 
from the bare vacuum into the physical vacuum. The 
fact that it becomes exponentially small with the volume 
V signifies that in the physical vacuum there appears a 
finite density of bare particles, approximately equal to 
the exponent of the exponential in Eq. (67), divided by V .  

We finally generalize the results we have obtained to 
the SegrB-Weisberger model.* As shown by Eq. (36), 
for this i t  is necessary to obtain expressions for the 
Green's functions ~ ' ~ ' h t , x ' t ' )  of each kind of quark, and 
for the determinant D(A)  in this model. It is obvious 
that the expressions for the Green's functions remain in 
force if  one replaces in Eq. (33) the charge g by g,, 
where g, is the charge of the i-th kind of quark. Now all 
types of quarks contribute to the determinant DM). For 
this determinant we obtain again the formula (46), where 
m has to be replaced by 

where m is the mass of the vector boson which appears 
in this model. 

We now obtain an expression for the matrix element of 
the evolution operator of the form (51). We attach to 
each spatial coordinate entering into Eq. (51) an addi- 
tional superscript j, i.e., we denote them by xi", y:'), 
superscript which labels the N kinds of quarks. Repeat- 
ing verbatim the calculations which were carried out 
above we obtain 

~ ( x : " ,  yLn ) = [ D e t  s . ~ ~ ] - ' "  

Here we have introduced the dimensionless constants 

J-I 

(70) 

in place of the coupling constants g,. The quantities R:" 
(pn) and R:"(P,,) for each kind of quark a re  determined 
by Eq. (55); Det .c, does not depend on q ,  and i s  given by 
Eq. (65). 

The diagonalization of the evolution operators (57) and 
(69) allows us to determine all  the physical properties of 
both models in the quark representation and to describe 
their properties. Without getting involved here in this 
tedious probelm, we indicate only that the appearance in 
S(T) of a time-dependence of the type edWT and edPT [cf. 
Eq. (63)] means that the spectrum of these models con- 
sists of massive [with mass (46) or  (68)] and massless 
excitations (cf. Ref. 4). One can show, however, that in 
the Sc hwinger model the massless excitations disappear 
in fact from the s p e c t r ~ m . ~ - ~  

In conclusion we would like to thank Ya. I. Azimov, V. 
N. Gribov, and L. L. Frankfurt for numerous useful dis- 
cussions. 

APPENDIX I 

The solution of the Dirac equation 

[a^-igA ( x )  ]lp=O, (1. 1 ) 
depending on an arbitrary function 

r 

lp(x) =@ ( x )  - G^(T) ( 5 ,  X I )  ( $ - @ A  ( 2 ' ) )  @ ( x l )  # x l ,  (1.2) 
0 

can be expressed, on account of the equations for the 
external-field Green's function: 

[ g - i g ~  ( x )  ] &CT) ( x ,  x') =6(L' (2-x ' )  , 

GcT' ( z ,  5') [6 '+igA(zr)  ] =-6(2) (x-x ' )  

in terms of the boundary values + ( x ,  0) and +(x, T): 

q ( x ,  t )  = GIT) ( x t ,  X ~ O ) ~ ~ @  (x', O)dxf-  GIT'(xt,  1'2') yo@ (x', T ) .  (1.4) 

In order that the solution $(x, t) should be determined by 
prescribed positive-frequency part of @(x, 0) and nega- 
tive frequency part of @(x, T) one must select a Green's 
function satisfying sufficiently complicated boundary 
conditions. 

We introduce the notations 6:: ', e:?, 6:', el?', where 
the f i rs t  subscript denotes the positive-frequency (+) or  
negative-frequency (-) part  of the function e'T'(x, t,x',t') 
related to i t s  dependence on the variable t. The second 
subscript has a similar interpretation for the variable 
t'. Then the boundary conditions for the Green's func- 
tion we a r e  looking for can be written in the form: 
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a) for t=O 

EiT' = 2:;) =o for o<tr<T, 

22 (xe, x'0)=y06(x-x') (e++O) ; (I. 5a) 

b) for t = T  

These conditions mean that outside the time interval 
(0, T) the system is in the vacuum state with switched- 
off field. Therefore from the surfaces 0 and T signals 
can propagate into the interval (0, T) only if on these 
surfaces there a re  sources a t  x and x', defined by the 
well-known represen tation 

G(x, xr)=(OIT{$(x)$(x')} 10) (1.6) 

in terms of the creation-annihilation operators of parti- 
cles and antiparticles in terms of which #(x) and #(x') 
are  expressed a t  the times 0 and T. 

A Green's function with such boundary conditions can 
be uniquely determined. Its properties guarantee indeed 
the selection of a solution determined by the boundary 
conditions above for %+(x, 0) and %,(x, 0). 

APPENDIX II 

The operator s,, in Sec. 4 was represented a s  the 
ratio of two differential operators. Therefore i ts  de- 
terminant can be written in the form 

Det A 

P P 

where we have introduced the notations 
~.=a2/at'+~; Ap=az/atz+pz. (II.2) 

These operators a r e  defined on the class of functions 
satisfying the homogeneous boundary conditions (60): 

A(p,T)+ilplA(p,T)=O, A(P,O)--~IPIA(P,O)=O. (II.3) 
By definition 

o7-J DA (p, t)erp{if A (p, t) A ~ A ( - ~ ,  t) dt . I 
0 

The integration DA(p, t) in (II.4) is taken only over func- 
tions satisfying (II.3). In order to carry  out this inte- 
gration we represent the arbitrary A(p , t )  in the form 

A (P, t) =cp(p, t) +a(p, t), (U.5) 
where 

A . ~  (p, t) =0, cp(p, 0) =A (P, 0). (p (P, T) =A (P. TI. (II-6) 

Solving Eq. (II.6) we obtain 
sin o (T-t) sin o t  

cp (P, t) =A (P, 0) sin oT +A(P,T)=. 

In turna(p, t )=Ofor  t=Oand t=T.  We substitute 
(II.5-7) into (II.4) and separate the integration with re- 
spect to A(p ,0)  and A(p, T). Then 

r 

XI Do(p,t)exp[ij a(-p,t)A.a(~.t)dt]. (II.8) 
0 

According to (II.3), (II.7-8) we have 

cp(~)a.(~)-cp(o)a(o) =-[A2(p, T)+AVP, 0) I (ilpI+o ctg oT) 

+2A(p, T) A(p, O)w/sin oT. (n.9) 

Taking the integral with respect to A ( p  ,0) and A (p,  T) 
and taking into account the fact that the determinant of 
the functional integral in (11.8) equals8 

sin oT DY)=-, 
o (11.10) 

we obtain for D the expression 

sin oT 
D.=(pa-2iolplctg oT-ma)-, 

Consequently Det s, equals 

The product is over all p except p =0, since as was in- 
dicated in Section 2, there is no integration with respect 
to Ao(O, t) in the integrals (25), (26). In a finite volume 
the product in Eq. (II.12) is over integral values of n: 
p,=nn/L. The calculation of (II.23) for T >> l/m up to 
terms of order 1/L leads to the result 

[Det s.~,]-"= (mL)'" exp 

"owing to the obvious analogy we shall call them quarks in the 
sequel. 
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