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~akharov '  and one of us  have described a technique of the corresponding static configurations, and propose a 
integrating the equations of gravitation in vacuum by the scheme for classifying these solutions with the aid of 
method of the inverse scattering problem, for station- clear and illustrative diagrams. 
ary gravitational waves and axial symmetry. An exact 
2n-soliton solution of Einstein's equations was obtained 
in explicit form, and some of its general properties 
were considered. Here and below we designate the num- 
ber of solitons in the solution by 2n (n is a natural num- 
ber) order to emphasize the fact that this number should 
be even, i f  we require that the metric tensor have a 
physical signature and Euclidean properties at infinity 
of space (see Ref. 1 and Sec. 2 of the present paper). It 
was indicated in Ref. 1 that each pair of solitons in the 
constructed solution forms a bound state (if there a re  
only two solitons, then this state corresponds to the 
Kerr solution), and the general 2n-soliton solution de- 
scribes in asymptotically flat space a stationary con- 
figuration consisting of any such two-soliton formations 
that interact with one another. For a sufficiently re- 
mote observer, the gravitational field of such a config- 
uration can be regarded a s  an external field generated 
by n localized axisymmetric rotating objects, each with 
its own mass and its own mass center on the symmetry 
axis. The total mass of the field source is equal to the 
sum of the masses of the indicated objects, and the co- 
ordinate of their common mass center is given by the 
usual expression of particle mechanics. It was empha- 
sized in Ref. 1 that this interpretation is applicable just 
from the point of view of a sufficiently remote observer, 
and generally speaking becomes meaningless in regions 
where horizons and singularities a r e  located. 

In the present paper we continue the investigation of 
Ref. 1 for the purppse of analyzing the internal (singu- 
lar) regions of %-soliton metrics. We point out im- 
mediately that in our desire to make our analysis lucid 
and to separate the principal and qualitative singulari- 
ties of the solutions, we confine ourselves to the static 
case, i.e., to gravitational fields described by diagonal 
Weyl metrics. The qualitative character of many re- 

It i s  shown that in the general case the equilibrium 
conditions for  a configuration of n 2-soliton particle- 
like formations calls for the presence, on the symmetry 
axis between them, of weak singularities (that do not 
manifest themselves in the invariants of the curvature), 
of the type of violation of local Euclidian behavior; this 
can be interpreted as the presence of "supports" be- 
tween the masses. However, there exists also a class 
of multisoliton solutions that describe static configura- 
tions with positive total mass and do not contain such 
singularities. These solutions correspond to a set  of 2- 
soliton particles, some of which have negative mass pa- 
rameters (in the free state, these parameters should be 
interpreted as physical masses). It is clear from gen- 
eral  considerations that under definite conditions such a 
configuration can have a positive total mass  and be inan 
equilibrium state, without requiring the presence of 
"supports. " 

The difficulties with the interpretation of the internal 
regions of the Weyl metrics a r e  well known. They stem 
from the contradiction between the equilibrium state of 
masses and the equations of motion, which require that 
these masses fall on each other. Naturally, the resolu- 
tion of the contradiction calls for the presence of some 
singularities in the internal regions. Thus, only the ex- 
ternal regions of the considered metrics a re  satisfacto- 
ry from the physical point of view. They can describe 
external fields of static axisymmetric bodies, whose 
matter blocks the internal regions in which they sub- 
stantially alter thereby the character of the solution. 

Another result of the present paper is establishment 
of the fact that the Tomimatsu-Satu solution with zero 
angular momentum and with arbitrary integer distortion 
parameter is a particular case of 2n-soliton static so- 
lutions. This is discussed in detail in Sec. 3. 

su lk  is applicable also to a general stationary case with We note in conclusion that this paper can be read with- 
rotations, and this provides a good understanding of out referring to Ref. 1 i f  the method of obtaining the so- 
some main properties of the investigated solutions. lutions considered here is not of interest. We indicate 

In the present paper we investigate the structure of also, to avoid misunderstandings, that the metric in- 
singularities and horizons of static 2n-soliton metrics, vestigated here [formula (I)] was obtained directly from 
consider the causes and conditions of the equilibrium of formulas (3.7), (3.8), and (5.1) of Ref. 1 as  the 2n-soii- 
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ton solution on a flat background. Formula (5.2) of Ref. 
1 was not used to obtain this solution. 

2. ASYMPTOTIC PLANE STATIC SOLITONS 

The general 2n-soliton static solution of the Einstein 
vacuum equations, in the presence of axial symmetry, 
is described by a diagonal metric that has, in the Weyl 
cylindrical coordinates, the following form' 

where Co is an arbitrary real  constant satisfying the re- 
quirement that the metric have a Lorerrtz signature, and 
the quantities pk aze real  or pairwise complex conjugate 
and a re  calculated from the formulas 

pk=W,-z+el[ ( W , - Z ) ~ + ~ ' ] ~ ~ ,  k=l ,  2 , .  . . , 2n, (8 
where W, a r e  arbitrarily chosen real o r  pairwise com- 
plex conjugate constants, and &,=I or  -1 is an arbitrary 
chosen sign. 

Greatest interest from the physical point of view at- 
taches to those metrics of type (1) which describe asym- 
ptotically plane waves. In accordance with the interpre- 
tation of {p, z ,  cp) a s  cylindrical coordinates, we shallas- 
sume that the metric (1) should tend to a Lorentzian one 
a t  (P2 +z') '/~- m, and ascertain the limitations that this 
imposes on the choice of the constants in the metric (1). 
Fa r  simplicity we confine ourselves to consideration of 
only real  p,, and consequently also real  W,. 

As p - a and a t  finite z we obtain for p, the asymptotic 
equation 

p h = ~ ~ p { l +  ( i lp)  E A ( W ~ - Z )  +O(lIp2)} (3 

and consequently 

P i . .  . I&" I '* 
g*=-=~~. . . e,, 

pan 

Since the coefficient l/r in the expansion of the Newton- 
ian gravitational potential f a r  from the source ( r  is the 
distance from the source) is a constant proportional to 
the total mass, and as p- .o and a t  finite z the value of 
p agrees in first-order approximation with the distance 
to the scurce, the coefficient of lip in (4) should be a 
constant equal to -2M, where M is by definition the to- 
tal mass of the source. Consequently, we get from (4) 

The f i rs t  equation in (5) denotes that half of all  the 
a re  equal to unity, and the other half to minus unity. 
The second condition allows us  to calculate the total 
mass of the source from the given Wk and &,. 

For convenience, we subdivide all the pk (and conse- 
quently all the W,) into pairs with opposite signs &,, and 
replace the Latin indices (k, 1, = 1,2, . . .2n) by the Greek 
indices (a, 0, y =I, .  . . , n )  that number these pairs. 
Thus, the aggregate of all  the p, now turns into the ag- 
gregate p;, where the upper sign corresponds to the 
sign c,. We replace also each corresponding pair of 

constants W: by a new pair of real  constants zy and my, 
and obtain 

fir*= W,*-z* [ (W,*-2) 2+pZ]", 

'̂ F 1 

As p -- m the coefficient of dp2 +ak2 in the curly brack- 
ets in the metric (1) should become equal to unity. From 
this condition and from expansions (3) and (4) we obtain 

The conditions (5) and (7) a t  real  W, are  not only nec- 
essary but also sufficient for the metric (1) to be asym- 
ptotically flat everywhere a t  infinity (including the in- 
finitely remote points of the axis z = 9, p = 0). 

The metric obtained in this manner has 2n arbitrary 
constants W,. It is possible to subject these constants 
to one more condition, because of the leeway in the 
choice of the origin on the z axis, s o  that the general 
solution depends on 2n - 1 essential parameters. In ad- 
dition, at fixed values of these parameters there is a 
leeway in the choice of the signs &, (subject to the only 
condition that the number of pluses and minuses be 
equal). As follows from the sequel, a t  a different choice 
of signs we obtain, generally speaking, solutions that 
differ in their physical interpretation. 

Before we proceed to the interpretation of the various 
types, we investigate, following Ref. 1, the behavior of 
the field far from the sources. To this end we intro- 
duce for each pair p; i ts  own pair of spherical coordin- 
ates r, and 0,: 

p=[ r,(r,-2m,) 1'" sin 0,, 

z==zT+ (rT-m,) cos 8,, 

and also the "true" spherical coordinates r and 8: 

p--k(r-2M) ]'"sin 0, z=z.+ (r-M) cos 0, (9) 

where the constant M is the total mass introduced in (5) 
and (6), and zo will be additipnally defined later from 
the condition that there be no dipole term in the expan- 
sion of the Newtonian potential as r -a. 

From (I) ,  (2), and (8) we obtain for  p t  and goo 

the coefficient (-1)" in the last  e~press ion  is not signifi- 
cant, since i t  can be eliminated by reversing if neces- 
sary the sign in front of the entire interval (1). 

F a r  from the sources (i.e., as r -- m) we can obtain 
from (8) and (9) the expansion 

where 
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q ~ = 2 ( M - m , ) ~ + 4 ( ~ - m ~ )  (z,-zn) cos 0 

+(Af-m,') sine 8- ( z , - ~ ~ ) ~ ( 1 - 3  cosz 8). 

For the Newtonian potential cP of the field a t  infinity 
(which is connected with the component goo by the formu- 
la goo = 1 - 2@) we can obtain, using (10) and ( l l ) ,  an ex- 
pansion that offers already some interpretation of the 
parameters that enter in the general solution 

1 - 1  

Here M is the total mass of the system and is made up 
of all the m,, which can be assumed to be the masses of 
the individual parts of the source system. 

The absence of a dipole expansion term in (12) is due 
to the following choice of the constant zo: 

and corresponds to the concept of a mass-center whose 
position on the z axis is zo,  while the coordinates of the 
original part of the source with mass m, are  z,. 

The quadruple moment Q ,  of the 2n-soliton field is 
calculated from the formula 

The constructed expansion of the field fa r  from the 
source, and the interpretation obtained on i ts  basis for 
the parameters, do not, however, describe completely 
the character of the solutions, since they do not yield 
the structure and the properties of the source, (in par- 
ticular, the presence of singularities, horizons, their 
single connectivity, etc.). In addition, i t  is not clear 
how to resolve the seeming contradiction between the 
presence, for example, of a 4-soliton solution in which 
two masses located on the axis with a certain distance 
between them a r e  a t  equilibrium, on the one hand, and 
the law of motion of the bodies that follows from the 
field equations and forbids this equilibrium, on the 
other. The answer to these questions calls fo r  a more 
detailed analysis, which will in fact be presented below. 

3. CLASSIFICATION OF THE SOLITON SOLUTIONS 

In the preceding section i t  was indicated that the con- 
sidered solution with real  parameters W, can be subdi- 
vided into families of several types (between which, 
however, there exists a continuous transition with re- 
spect to the parameters W,), in accordance with some 
formal attribute-the different choice of the signs E, in 
Eq. (2) for the quantities p,. It will be shown subse- 
quently that this difference is not purely formal, and the 
obtained types of solutions have different physical inter- 
pretation. 

From the general form of the metric (1) it is already 
clear (as confirmed by an investigation of the behavior 
of the invariants) that all the singularities of the inves- 
tigated metrics, a s  well as the event horizons, can be 

located only where one of the following conditions is 
satisfied: p = 0 ,  p, = O  (for certain k), and p2 + p,p, = 0  
(for certain k and I). Using expression (2) we can easily 
verify that each of these conditions can be satisfied only 
a t  the symmetry-axis points p =o." For our purposes 
i t  is therefore sufficient to study only the behavior of the 
field in the region near the axis p =O. 

The behavior of-each p, a t  small p is described by the 
formula 

/.I: ( z )  = W A - Z + E ~ ~  Wk-e I .  

This behavior of p, at  different E, can be more clearly 
illustrated by the plots of Fig. 1. The hyperbolas pk(z)  
in Fig. l a  for different signs E, and a t  fixed p f  0 a re  
crowded towards their asymptotes, and in the limit as 
p = 0 they acquire the form of the broken lines indicated 
in Fig. lb. 

From (13) o r  from the form of the plots of Fig. 1 i t  
follows that for each k we have p , = 0 ( ~ ~ )  near the e- 
axis points i s  more positive than z = W, if E, = l, and 
more negative if E, = -1. Near the remaining points of 
the axis, pk have finite values, with pk =p;(z ) +0(p2). 

We consider a small vicinity of a certain point of the 
axis, with coordinate z. An important characteristic of 
this point is the total number of different p, that a re  of 
the order of 0(p2) in the vicinity of this point. Let their 
number be s. Then the products of all the pa in the vi- 
cinity of this point will be of the order of 0(p2'). Since 
the coefficient of the metric is 

it  follows that in the vicinity of the chosen point, a s  the 
axis i s  approached (as p - 0), goo will have a finite value 
i f  s =n (we call this axis point regular), and goo tends to 
0 if s >n. Consequently, the considered point of the ax- 
is is on the surface of an infinite red shift (which coin- 
cides in static fields with the horizon of events). Final- 
ly, goo increases without limit i f  s < n ,  thus indicating 
the presence of some singularity in this place on the ax- 
is.2' 

We now construct a diagram that makes i t  possible to 
represent clearly different possible types of fields. To 

FIG. 1. a) Behavior of the functions pk at constant p=const. 
The arrows indicate the change of the plot as p- 0. b)  Limiting 
position of the pp( z )  at p =  0. 
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this end we place on the horizontal axis (the z axis) 2n 
points z = Wk, k = 1,2, .  . . ,2n (or, in a different notation, 
n pairs of points z = Wt, y = l , 2 ,  . . . ,n). The vertical 
bars drawn from these points a re  directed up a t  the 
points z = W; and down a t  the points z = W;, s o  that the 
direction of a bar  corresponds to the choice of the sign 
in front of the square root in the expression for  p: [for- 
mula (6)]. Since, C:$ick = 0, in accordance with (4), the 
number of bars directed up and down from the axis is 
the same. 

An arrow along the axis means that one of the pk a t  
this location of the axis is of the order of 0(p2). Inas- 
much a s  according to (13) and Fig. 1 each p: is of the 
order of 0(p2) a t  z > W:, and p; is of the order of 0(p2) 
a t e  < W;, each bar in the upper of lower half-plane of 
the diagram adds one arrow to the right o r  to the left a t  
some point of the z axis. If s arrows a r e  located in a 
given place on the axis, then goo in the vicinity of these 
points of the axis is of the order of O(p'2h-S)). 

Thus, by assigning definite (arbitrarily chosen) values 
of the real  constants Wk and by fixing one of the possible 
variants of the choice of the signs c,, we place vertical 
bars  on the diagram in the indicated manner, and then 
determine a t  each place of the z axis the number of ar- 
rows generated by them. Knowing the total number of 
arrows a t  a given place of the z axis, we can determine 
the behavior of goo in the vicinity of these points and, 
consequently, ascertain whether these points of the axis 
a re  regular or  whether they belong to the event horizon 
or  to a singularity; this in turn makes i t  possible to de- 
scribe the structure of the source of the field, and con- 
sequently assign a definite physical meaning to the solu- 
tion. 

We consider f i rs t  the simplest case of 2-soliton solu- 
tions (n = 1). Only the two types of diagram shown in 
Fig. 2 a re  possible here. 

Diagram I of Fig. 2 corresponds to the Schwarzchild 
solution with positive mass and horizon, while diagram 
of type II corresponds to a solution with a bare singular- 
ity, obtained from the Schwarzchild solution with M > 0 
by reversing the sign of the mass. This follows from 
the fact that W; < W; in the case of a diagram of type I, 
so  that we can write Wf =zI  r M, where M > 0. We then 
have from (10) goo =1- 2 ~ / r .  The horizon r = 2M cor- 
responds, according to (9), to the z-axis segment be- 
tween Wf and W ;. In the case of the diagram 11 we have 
W ;< W f ,  so  that in the expression Wt =el  TM we must 
assume M < 0 and the segment of the z axis between W i 
and W; corresponds to a bare  singularity ( r  = 0 in the 
Schwarzschild solution at M<O). 

In the more complicated case of 4-soliton solutions 
= 2) we have six types of diagrams, which a re  shown 

in Fig. 3. The axis points where there a r e  two arrows 
a re  regular and goo has in them finite values. Where 

FIG. 3. 

the number of arrows exceeds two, goo- 0 and we a re  
dealing with a horizon of events. Where the number of 
arrows is less than 2, goo-- GQ and we encounter a bare  
singularity. The same types of solutions a re  convenient- 
ly represented in another manner-see Fig. 4. In Fig. 
4 the hatches mark the location position of the horizons, 
and the sawtooth line marks the positions of the bare 
singularities. The remaining points a r e  regular. We 
now examine these types separately. 

Solutions of type I (Figs. 3 and 4) form a 3-parameter 
family whose characteristic feature is the presence of a 
connected horizon of events. It is interesting to note 
that this family, which is continuous in the parameters, 
includes in particular the Schwarzschild solution a s  well 
a s  the Tomimatsu-Sato solution2 with zero angular mo- 
mentum and with a distortion parameter 6 =2. In fact, 
as  already stated, when a pair of W, with different signs 
ick merge, the corresponding poles cancel each other 
and we obtain a solution with two fewer solitons. On the 
diagram this corresponds to coalescence and mutual 
cancellation of two oppositely directed bars. If a pair 
of ba r s  merges on the diagrams of Fig. 2, this corre- 
sponds to M - 0 and we obtain in the limit a flat space. 
If on diagram I of Fig. 3 the inner pair of oppositely di- 
rected bars  coalesce (the inner pair W,), then their mu- 
tual annihilation results in diagram I of Fig. 2, i.e., we 
have the Schwarzschild solution. If bars  with identical 
directions coalesce pairwise in diagram I of Fig. 3, the 
resultant solution coincides with the Tomimatsu-Sato 
solution with zero angular momentum and 6 = 2. 

Solutions of type 11 (Fig. 3) contain two horizon events 
separated by a region of irregular behavior of the grav- 
itational potential (the functions goo). When the segment 
representing one of the horizons contracts to a point 
(this corresponds to the corresponding mass tending to 
zero), we obtain in the limit the Schwarzschild solution. 
It would therefore be natural to interpret solutions of 
this type as fields produced by two black holes that a re  
a t  r e s t  a t  a certain distance from each other. However, 
the existence of such a static solution contradicts pat- 
ently the law of motion according to which these bodies 

RI P 
FIG. 4. 

=- 
FIG. 2. 
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should fall on each other. The contradiction is elimin- 
ated by the fact that solutions of type 11 actually do not 
admit of such interpretation, since, just a s  in the known 
Curzon s ~ l u t i o n , ~  a t  the axis points located between the 
horizons (where the field should be regular) there the 
spatial metric is not locally Euclidean (the small  circle 
surrounding the axis a t  this point and contracting to a 
point has a periphery-to-radius ratio not equal to the 
limit to 2n). This circumstance suggests, e.g., the pre- 
sence of a "support" between the m a ~ s e s . ~  

Solutions of type 111 (Figs. 3 and 4) contain a horizon 
and a bare singularity. Physically they a r e  hardly ad- 
missible, since they contain a bare singularity corre- 
sponding to a negative mass. We emphasize, however, 
that some of these solutions have a positive total mass, 
and this can correspond to a physically acceptable ex- 
tended source. 

Solutions of type IV a r e  obtained from solutions of type 
111 by reversing the direction of the z axis. 

The remaining solutions (types V and VI) a r e  the ana- 
logs of types I and LI, and differ in that the masses of all 
the sources a re  negative. Reversal of the sign of each 
of the masses annihilates a corresponding horizon and 
replaces i t  by a bare singularity. The negativity of all  
the masses makes these solutions physically unaccept- 
able. 

In the general case of a 2n-soliton solution, the num- 
ber of arbitrary parameters of the solutions increases 
with increasing n (it is equal to 2n - I), and the number 
of different types of fields that differ in the character of 
the source also increases. However, even a t  arbitrary 
n all the solutions can. likewise by subdivided into a num- 
ber of types in accordance with their physical nature. 

The fields of the f i rs t  type, just a s  in the 4-soliton 
case, a re  those having a connected horizon of events. 
With increasing n, the internal structure of the source 
becomes more complicated. Among the fields of this 
type a re  the Schwarzschild solution a s  well a s  the 
Tomimatsu-Sato solution with zero angular momentum 
and with a distortion parameter 6 equal to n. The 
Tomirnatsu-Sato solution is obtained when all the z ,  
and all the m, are  equal, i.e., when all  the vertical 
upward bars merge on the diagram (all the W; coin- 
cide and a re  equal to W'), a s  do all the vertical down- 
ward bars (all the W; merge into W-). As a result we 
obtain the diagram of the Schwarzchild type I (Fig. 21, 
the only difference being that both bars on i t  a re  now 
thick and a re  of order n (a thick bar of order n is de- 
fined as  one obtained by coalescence of n ordinary 
equally directed vertical bars). Thus, the Tomimatsu- 
Sato solution with zero angular momentum depends on 
only one continuous arbitrary parameter (one of the two 
arbitrary constants W' and W' can be eliminated by 
shifting the origin along the z coordinate), and of one 
discrete integer parameter n. This solution, just as  the 
Schwarzchild solution, is of the 2-pole type (we recall 
that we a r e  dealing with poles of a matrix \k function in 
the complex plane of a spectral parameter, see  Ref. 1). 
It can be shown, however, that in contrast to the 
Schwarzchild case, both poles in the Tomimatsu-Sato 

solution a r e  not simple but multiple. The multiplicity of 
both poles is the same and is precisely equal to the dis- 
tortion parameter, 6 =n. This leads to the assumption 
that the general case of the Tomimatsu-Sato solution 
(with distortion) also apparently corresponds to a situa- 
tion with two n-fold poles of the 9 function and with a 
flat space-time a s  the background geometry. 

The idea that the Tomimatsu-Sato solution corresponds 
to multiple poles of the 9 function in the complex plane 
of the spectral parameter was f i rs t  advanced by M. 
~ r a n c a v i ~ l a . ~ '  

The second type includes solutions with several some- 
what separated horizons. To interpret these solutions 
a s  fields produced by a system of isolated bodies i t  is 
also necessary to postulate the presence of "supports." 

Two other types of field a r e  obtained when the signs of 
all the masses a re  reversed, as  a result of which the 
horizons corresponding to positive masses a r e  replaced 
by bare singularities with negative mass, s o  that these 
solutions a r e  unphysical. 

Finally, we include in the last type all the remaining 
solutions, which constitute fields produced by different 
combinations of sources of the types listed above, but 
with smaller values of n. As a rule, solutions of this 
type call for the presence of "supports." Exceptions a re  
possible here however, and a re  of physical interest. 
The reason is that a system of bodies containing both 
positive and negative masses can be at equilibrium with- 
out requiring, obviously, the presence of any "supports." 
The attraction of the positive masses should in this case 
be offset by the repulsion by the negative masses. It is 
important to emphasize that on introducing "negative 
masses" we have in mind only the circumstance that 
some of the parameters m, in the solution can be nega- 
tive. Actually the physical mass of a source is defined 
only for a sufficiently remote observer and is equal to 
the sum of all  the m,. If this sum is positive, the cor- 
responding solution can correspond to a physically rea- 
sonable situation. At the most, such a solution can de- 
scribe the external field of a real  body inside of which 
the metric has a different character. 

The condition for the absence of any "supports," i.e., 
the condition for regularity of the metric outside the 
horizons and of the true singularities (in particular, the 
condition that the space metric be locally Euclid) leads 
to definite relations between the values of their masses 
and their relative distances. These relations can be in- 
terpreted as  the general-relativity analog of the condi- 
tion for the equilibrium of a system of bodies. We con- 
sider next a concrete example of such a solution and de- 
termine the corresponding equilibrium conditions. 

Among the 6-soliton solutions there i s  one possessing 
the diagram shown in Fig. 5. This solution contains two 
horizons corresponding to positive masses (for simpli- 
city we assume these masses to be identical and equal 
to M), and also a bare singularity of negative-mass -m,  
located halfway between them. 

We derive first  the condition for local Euclidean spa- 
tial metric a t  the regular points of the z axis (i.e., out- 

659 SOV. Phys. JETP 51(4), April 1980 G. A. Alekseev and V. A.  ~elinsk; 659 



- - 4  -- 
M -m M 

I %VvA"! 

FIG. 5. 

side the horizons and singularities) in a general 2n-soli- 
ton case, and then apply this condition, which is thecon- 
dition for the equilibrium of a system of sources, to the 
solution shown in the diagram of Fig. 5. We consider 
for this purpose a certain regular point of the z axis. 
At this point, goo has a finite value and consequently in 
the vicinity of this point the number s of the quantities 
/.Ln that a re  of the order of 0(p2) is n (the number of ar- 
rows on the diagram at  this point is also equal ton). We 
designate the parameters W, corresponding to these p, 
by Wf (which can include both W' and W-), and remain- 
ing ones by W:. The same symbols will be used also 
for the corresponding p,. We note that for semi-infinite 
regular sections of the z axis, the se t  of all  the Wfcon- 
sists only of Wf on the positive section of the axis and 
of W; on the negative section of this axis. 

When a certain small circle surrounding the z axis 
near a chosen regular point contracts to a point, the 
limit Po of the ratio of its periphery to the radius, mul- 
tiplied by 2n, is given in accord with (1) by the expres- 
sion 

P,"- lim (gJp2go,) - lim 
P-0 wn 

(14) 
where Co is defined in (7). 

As p - 0 we have, according to (13), 

+0(P2)), 
p+-pa{ 2 (z- who) 

In the vicinity of the regular points of the axis, where 
p i  is equal ton ,  we have 

where the product is calculated in the denominator over 
all W, for which p, is 0(p2) in the vicinity of the consid- 
ered point of the axis, and in the numerator over all the 
remaining W,. 

For P: we can obtain from (14)-(16) 

The product in the numerator is taken here over all p 
that number W t ,  and at each fixed p-over all  q that 
number Wt. In the denominator, the product is calcu- 
lated over all k that number Wf, and for each k-over 
all 1 that number W i. 

In order for the spatial metric to be local Euclidean at 
the regular points of the z axis, it is necessary to have 
Po = 1. It follows from (17) that P: = 1 on both semi-in- 
finite regular sections of the z axis, inasmuch as in 
these sections the se t  of all the Wi coincides with the 

set  of all Wi or  with the se t  of all W;, while w t  coin- 
cides respectively with W; o r  W;. In the intervals be- 
tween the bodies, however, the equality Po = 1 does not 
hold in general. Postulating the satisfaction of this 
equality for each interval between the bodies on the ax- 
is ,  we obtain the sought equilibrium conditions: 

The diagrams constructed above make i t  easy to sub- 
divide all the W, into % and W$, and also into Wf and 
W;. In fact, at each point z =wk we draw a vertical ba r  
whose direction upwards (downwards) indicates that this 
W, i s  Wf(W;). Next, to the right (in the case of W f )  o r  
to the left (in the case of W;) of each vertical bar  we 
add at every point of the z axis one horizontal arrow 
each, designating thereby that the corresponding p, is 
of the order 0(p2). Thus, after f i rs t  choosing some 
point on the axis, we ascertain which Wk a re  due to the 
arrow corresponding to this z .  These W, make up in 
fact the se t  Wifor the chosen point. The remaining W, 
belong to the se t  WX. 

We calculate f i rs t  the value of P: for the 4-soliton so- 
lution with two horizons (type I1 on Fig. 3 o r  4). The 
points z = W, a re  subdivided into pairs W,f in the follow- 
ing manner (W,, . . . , Wq are  numbered in the order in 
which they follow each other along the z axis from left 
to right): 

w,=w,+, w2=w,-, Ws=W,+, w4=w,-. (19) 
Introducing for each pair Wt new constants z ,  and m,, 
which characterize respectively the position of each of 
the horizons and the corresponding mass, we obtain 

W,*=z,Tm,. (20) 
In the interval between the horizons on the diagram 11 
of Fig. 3 there a re  two arrows, one of which due to W1 
and the other to W.,. Therefore W1 = W; and W, =W; 
form the se t  Wi, and the remaining Wz = W ; and Wg = W; 
make up the se t  Wf for this interval. From (17), taking 
(19) and (20) into account, we obtain after cancelling 
identical factors 

where a =zz - z is the distance between the masses mi 
and mz. Equality to unity takes place only when one of 
the masses vanishes, so  that in the presence of two 
masses, mi > 0 and mz > 0, we have Pi # 1 on the axis 
between them, and there is no local Euclidean behavior. 

We now consider similarly the 6-soliton solution illus- 
trated in Fig. 5. In the sequence along the z axis we 
have 

We place the zero of the coordinate z a t  the center of the 
singularity with negative mass and obtain thereby e z  =O. 
We denote the distances between the bodies by a ,  s o  that 
z 3  =-el =a. Because of the symmetry in the entire sys- 
tem, the equilibrium conditions (the local Euclidean 
conditions) for both intervals between the bodies coin- 
cide. For the sake of argument we consider the right- 
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hand interval. The set  Wi contains here W,, W,, and 
W,, while the se t  W t  the points Wz, W,, and W5. There- 
fore the equilibrium conditions (18), with allowance for 
(21), take the form 

(wz-w,)a(w,-w,)2(wi-wi)2(ws-w,)2 
=(w,-w,)z(w'-w.)2(w,-wz)z(w,-w3)2 

o r  
a2[a'-(m+M)2] =(aZ-MZ) [a2- (m-M)' ] .  

From this we easily calculate the distance between the 
bodies as a function of their masses, a t  which the fol- 
lowing equilibrium takes place. 

(RIM) == (M-m)ZIM(M-4m).  (22) 

It follows from this expression that equilibrium is pos- 
sible i f  0 <m/M < 1/4. At m =0, Eq. (22) yields a =M. 
This corresponds to vanishing of the bare singularity 
and to coalescence of the outermost horizons into one 
(the mass of the corresponding source is then 2M). As 
m increases from zero to M/4, the value of a increases 
monotonically and tends to infinity as m - M/4. This is 
in full agreement with the Newtonian limit, in which 
such a configuration is in a (neutral) equilibrium if and 
only if m =M/4, and the distance a can be arbitrarily 
large. 

We note finally that the requirement M > 4m, which 
follows from the equilibrium condition (22), ensures 
automatically a positive total mass of the source, equal 
to 2M - m, for the considered 6-soliton solution. 

4. INVARIANCE OF THE CURVATURE OF THE 
SOLITON SOLUTIONS 

We have considered s o  far  the behavior of the soliton 
solutions far from the sources, and also near the sym- 
metry axis, and have shown that the metric coefficients 
of the soliton metrics (in the diagonal case) can have 
singularities only on the symmetry axis. We examine 
now the behavior of the invariants of the curvature ten- 
sor of these solutions. 

The Riemann curvature tensor, which coincides in 
vacuum with the Weyl conformal curvature tensor, has 
in the case of vacuum two complex (or four real) inde- 
pendent algebraic invariants: 

where 
+ * * 

Rlw=Rim+iRW, R~=' l r~u~"Ri jmn,  

R,,,, is the Riemann tensor. 

For static fields with axial symmetry these invariants 
can be expressed in terms of two real functions, Ip2 I 
and Q, using the formulas 

11=8(1P19+3p) ,  Iz=48(IPla-Q2)Q, (23) 

where P is a certain complex function. 

Calculation of the functions P and Q for 2n-soliton 
metrics leads to the expressions 

1 
P = L ( - Z ~ B + A ( A +  I )  ( A f  2 ) )  = - P I ,  

8 ~ ~ g p e  8p2g,p 
1 1 

Q =-(AA+A+A)= - Qi.  
8pZgc+3 8~'gpp 

The complex functions A and B a r e  of the form 

From (23)-(25) it follows that the invariants I ,  and Iz can 
become infinite only where at least one of the following 
conditions holds: 

pZg,,=O, A+m, B- t - .  

The last  two conditions, however, cannot be satisfied, 
since the functions A and B a re  bounded a t  all  p and e .  
In fact, each term in the expression for A is a complex 
function with modulus unity: 

(cos a + i  sin a), 
4 -* 

where 

cos ah  = 
er(Wh-z) 

[ ( W,--Z)~+~"]"  

sin ak = '39 

[ (W,-z) "pZ] ' 

from which it follows in fact that A is bounded. In the 
same notation, the function B takes the form 

B = sin ah (eos ak+i sin a h ) ¶ .  
k-1 

from which i t  is obvious that the function B is bounded. 

Thus, the singularity in the invariance of the curva- 
ture should take place only under the condition p2g,o = O  
which, a s  can be easily verified by using the explicit 
form of the metric (I), can be satisfied only on the sym- 
metry axis. This i s  the necessary condition for the pre- 
sence of a true singularity. Therefore to ascertain 
whether a singulariy is present in this solution, it suf- 
fices to study the behavior of the invariance of the curv- 
ature near the symmetry axis points, i.e., as p - 0. 

We consider an arbitrary point of the axis with coor- 
dinate z + W,. As p--0 putting p<< IW,-z I ,  we can ex- 
pand the functions A and B in powers of p in the vicinity 
of this point. At p = 0 we have 

A=2 (n-s)  , B=O, 

where s is the number of different pk (they were desig- 
nated p: above), which a r e  of the order o ( ~ ~ )  in the vi- 
cinity of the considered point of the axis. These values 
a re  obtained fo rA and B from (25) i f  i t  is recognized 
that the corresponding pl terms in (25) a re  equal to -1 
at  p = O  (a total of s terms), while the remaining 2n - s 
terms a r e  equal to unity. The corresponding terms of 
the expansions for the functions A and B a s  p - 0 and at 
z # Wk a r e  obtained directly from (25). We finally get 
the following expansions: 

A=2(n-s)  +zpA,(z) +p2A2(z )  f . . . , 
Bsp.4, ( z )  -/llp'A,(z) f . . . 

zn 
ek 

(26) 
A t ( z ) =  Em. 

hi;, 
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For P, and Q ,  defined in (24) we have 
P,-4(n-s) (2n-2s+l)  (n-s+l)+ipA, .  12(n-s) (n - s+ l )  

+pz{6A,[2(n-s)  (n-s+l)-l]-3A,2(2n-2s+l))+. . . , 
Q1=4(n-s)  (n-s+l)+p2[U,(2n-2s+l)+A?]+. . . . 

The coefficients of the metric (1) as  p -- 0 and a t  z # 

have the following expansions: 
-21"-81 ..= (f) *(wk-z )  [ , + o ( ~ ~ )  I ,  ncwl - z )  

where 

The product l7(K - z )  is calculated here over all for 
which p1 a t  a given z and p- 0 is of the order of o($), 
and the product ll(Wf - z )  is calculated over all the re- 
maining W, (i.e., Wt). 

From (24)-(27) we obtain expressions for the functions 
P and Q 

p ,  -2cn-r)cn-i+I)-tK P ( z )  (4(n-s) (2n-2s+l)  (n - s+ l )  
+12ipA1 ( z )  (n-s)  (n - s+ l )  +pZ(6Aa(2 (n-s)  (n - s+ l )  -1)  

-3A?(2n-2~+1) ]+ . . .) [ l + O  (pa)  1, 
(29) 

Q = p - 2 1 n - ~ ~ 1 n - 8 + 1 1 - 2  K ( z )  {4 (n-s )  (n - s+ i )  

+p2[2Aa(2n-2s+l)+AIz]+.  . .) [ l + O ( p 2 ) ] ,  

where Al(z) and Az(z)  a re  defined in (26), and K(z)  in 
(28). We recall also that s is equal to the number of ar-  
rows on the diagram in the considered place on the axis. 

An unbounded growth of the functions P and Q when a 
certain point of the axis is approached means that in 
this place the curvature invariants Zl and Zz become in- 
finite, and consequently a true singularity is present 
there. We now examine the question of the presence of 
true singularities in soliton solutions, considering sep- 
arately different values of s. 

1) s =n. These points of the z axis were called regu- 
lar,  since the metric coefficients assume in their vicin- 
ity finite (nonzero) values (although local Euclidean be- 
havior can exist a t  the points themselves). For P and Q 
we get from (29) in this case 

P=-3K(z)  (2Az+A,') [ l + O ( p )  ]<a, 

Q = K ( z )  (2A,+A17 [[I+O(p) I < = ,  
i.e., the curvature invariants a re  regular a t  thesepoints. 

2) s <n. According to (27) a t  these points goo - 00,  and 
we obtain for P and Q 

P=p-"n-'1cn-'+1)-zK(z)X4(n-s) [n-s+l)  (2n-2s+l) [ l + O ( p )  ] +m, 

Q=p-z1n-')1n-a+'~-2K(z)X4(n-s) (n - s+ l )  [1+0  ( p )  ] +m. 

In this case we encounter a true singularity. 

3) s =n + 1. At these points, according to (27), goo 

- 0, i.e., a horizon of events takes place. Then 

P=K ( z )  (-6.4,+3A,') [ 1 + 0 ( p )  

Q = K ( z )  (-2A,+A," [ l + O ( p )  ] < a .  

The horizon turns out to be regular. (An example here 
can be the Schwarzchild solution shown on diagram I of 
Fig. 2.) 

4) s > n  + 1. In this case goo -- 0, i.e., we likewise a r e  
dealing with a horizon, but the values of P and Q in- 
crease here without limit 

P=p-21n-*)~"-'+1)-2K ( 2 )  X4(n-s)(n-s+l)  (2n-2s+l) [ 1 + 0  ( p )  ]-+a, 
Q , p - 2 1 n - ~ ) l ~ - ~ + I ) - Z  K ( z ) X 4 ( n - s ) ( n - s + l )  [ l + O ( p )  ] +a, 

i.e., the horizon is singular in this case. 

We note in conclusion that an analysis of the behavior 
of the invariants I, and Z2 far from the sources leads to 
the following expressions: 

Since the fields under consideration a r e  asymptotically 
plane, i t  follows, a s  expected, that the principal terms 
of the expansions of the invariants of the curvature a r e  
determined only by the total mass of the source 

and agree with the corresponding expressions for the 
invariants of the Schwarzchild field. 

' ' ~ n  exception i s  the case when Wk= Wi and &,= - E,, wherein 
p2+ p,pi= 0 for all p and z. In this case, however, the 2n-sol- 
iton solution reduces to a different one with two fewer soli- 
tons, so that when the parameters Wk of two pole trajectories 
pa with equal signs &,coincide, these poles (and the solitons 
corresponding to them) annihilate each other. 

')We note here that the transition to the Weyl coordinates p and 
z is frequently effected with the aid of a transformation that 
degenerates on the exis, so that although all the singularities 
of the metrics do lie on the p = O  axis, they a re  not neces- 
sarily segments, and can consititue surfaces with different 
geometries. 
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