
TABLE I. 2 lo', -( d 8 . lo-, in which the values of 6 were deter- 

S i m h i t y  theory, &-expansion 

n= l  0.34 4.462 - 1.74 4.8 1.6 
n-2 I 0.x I 4.4m 1 

- I I . ~ O  I - I - ] 1 [ l z l ,  i t 3 1  
n=3 0.38 4.458 - 1.36 - 1.33 

* [PWI-present work. 

P, 6 , ~  ,y p,R, = I'D-6B6-1 and r/r' depend mainly on the 
dimensionality n of the order parameter and on the di- 
mensionality d of the lattice, should be the same for 
magnets belonging to one universality class (n , 
Hematite and iron borate a r e  easy-plane antiferromag- 
nets, their critical behavior is therefore expected to be 
close to that of magnets of class (2,3) (XY model). 

It is seen from the table that the values of P,  6, and 
R,  for hematite a r e  in good agreement with the theore- 
tical values for n = 2, although the values of y for both 
substances a r e  somewhat lower than the theoretical one. 
On the other hand, the exponents 8, y , and y for hema- 
tite agree within the limits of errors  with the analogous 
exponents of iron borate. This also agrees with the as- 
sumptions that the two magnets belong to the same uni- 
versality class. 

The greatest difference between the critical para- 
meters is observed for 8 and R,, which deviate for 
FeBO, towards the values predicted by the mean-field 
theory. This result can apparently be attributed to the 
fact that for hematite the interval of the reduced fields 

mined lies somewhat closer to the critical point (T,, 0) 
than for iron borate, for which fi 6 3 .' 
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Thermal resistance of metal-insulator boundary and 
nonlinear electric resistivity of metal films at low 
temperatures 

Khar'hv PhysicotechnicaI Institute, Ukrainian Academy of Sciences 
(Submitted 28 August 1979) 
Zh. Eksp. Teor. Fiz. 78, 1281-1293 (March 1980) 

The size effect in heat transfer and in the nonlinear electric resistivity of current-heated metallic plates (films) 
is discussed under conditions when the electronic contribution to the formation of the spectral distribution of 
the nonequilibrium ballistic phonons emitted by the metal plays the decisive role. 

PACS numbers: 73.40.Ns, 73.60.Dt 

1. INTRODUCTION 

Experiments on the propagation of heat pulses in 
solids at high temperatures (see, e.g., Ref. 1) have 
increased recently the interest in the thermal resis- 
tance of a metal-insulator (M-I) interface. For an ex- 
perimental study of this resistance (as well as  to ob- 
tain the thermal pulses themselves), extensive use is 
made of electric current to heat thin metallic films 
deposited on bulky single-crystal insulator substrates. 

In these experiments one measures usually the magni- 
tude and spectral intensity of the heat flux Q emitted by 
the film as  a function of the electron temperature T, 
and of the substrate temperature T  (the latter can be 
regarded as equal to the temperature of the helium bath, 
inasmuch as  the propagation of the phonons emitted by 
the film i s  ballistic). The electron temperature T ,  is 
not measured directly but i s  calculated from the change 
of the film resistivity, using the known temperature 
dependence of the resistivity in the equilibrium case.' 
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The relation Q = Q(T,, T) obtained in such experiments boundaries. Thus, in contrast to the preceding case, 
is usually interpreted in terms of a theory proposed by the spectral distribution of the phonons emitted by the 
Littles for the temperature discontinuity at the bound- film contains more information on the electron-phonon 
ary between two solids. If Tecc8,(0, i s  the Debye tem- interaction (EPI) in the metal than on the transparency 
perature of the metal), then Little's result can be ex- a! of the M - I boundary. 
bressed in the form Q-= A(T4,- T4), where A i s  deter- 
mined only by the acoustic characteristics of the metal 
and of the insulator, the procedure accepted in the the- 
ory of acoustic mismatch. If 9 is the angle of the pho- 
non incidence on the interface, then A i s  proportional 
to the interface transparency a!(@) averaged over the 
angles, a quantity representing the probability of pen- 
etration of the phonon in question through the M-1 inter- 
face. In this approach no contribution i s  made by the 
electrons to the thermal resistance of the M-I inter- 
face. 

However, as  will be shown in the present article 
(preliminary results were reported in Ref. 4), the 
acoustic-mismatch theory is  valid only for sufficiently 
bulky metallic samples. Of primary interest to us i s  
the inverse limiting case of thin metallic plates (films- 
the pertinent estimates are  presented later on-the role 
of the electrons in the formation of the temperature 
discontinuity on the M-I interface becomes decisive.'' 

To explain the physical cause of such an increase of 
the electron contribution with decreasing thickness of 
the metallic layer (I, - M - I, sandwich configuration, 
see Fig. I), we consider qualitatively the mechanism 
of heat transfer through an M - I interface. We recall 
f irst  that in sufficiently pure metals the main heat 
carr iers  a re  electrons and not phonons. However, the 
heat transfer through the M - I interface i s  effected 
only by phonons in proportion to its acoustic trans- 
parency. On the metal side of the interface there i s  
located therefore a transition layer in which the ther- 
mal energy transported by the electrons i s  transformed 
into aphononflux. The thickness of this layer is of the 
order of the mean free path of the thermal phonons relative 
to scattering by electrons, lp,(Te)(l, - & V ~ / ~ T , - ~ O - ~  
- cm at helium temperatures). It i s  intuitively ob- 
vious that if d >> I, (d i s  the thickness of the metal 
plate), then the detailed structure of this transition 
layer i s  inessential for the calculation of the thermal 
resistance of the M - I interface; this i s  equivalent to 
the usual approach in which the electron contribution i s  
neglected. 

If, on the other hand, d<< lpe(Te), and a! -1, then most 
phonons emitted by the metal electrons mangage to 
leave the film without being absorbed in its interior 
even after several successive reflections from its  

FIG. 1. 

A consistent formulation of these qualitative con- 
siderations from the kinetic point of view makes it pos- 
sible to describe quantitatively the size effect in the heat 
transfer from thin metal films under conditions of bal- 
listic propagation of the phonons emitted by the film. 
This calculation, which takes into account the finite 
transparency of the M-I boundary in the spirit of the 
acoustic-mismatch theory,' i s  given in Sec. 1. As ex- 
pected, the phonon distribution function in the interior 
of the metal, obtained a s  a result of this calculation, 
turns out to be essentially inhomogeneous in the I,, 
scale and anisotropic, so that the phonon contribution 
R2(9), to the sample resistance (5" i s  the dissipated 
power) calls for a special calculation (Sec. 3). In the 
concluding Sec. 4 we discuss questions connected with 
the organization of the experiment and formulate the 
conclusions. 

2. ROLE OF CONDUCTION ELECTRONS I N  THE 
THERMAL RESISTANCE OF THE METAL- 
DIELECTRIC INTERFACE 

We consider a metallic plate (film) of thickness d, 
whose two faces a r e  in contact with bulky insulators 
I, and I, with known temperatures T ,  and T, (see Fig. 
1). Let a direct current j flow through the sample, 
such that the power dissipated in a unit volume i s  
9 l j 2 / o ,  where a i s  the conductivity of the metal. It i s  
required to find the heat fluxes Q, and Q, if the trans- 
parencies (2, and a, of the interfaces to phonons a r e  
known. 

A consistent theoretical calculation of the heat re- 
leased from the plate at a practical arbitrary relation 
between its thickness 4,  the quantity 2,,(Te), and the 
transparency parameters i s  possible because several 
physical circumstances simplify the problem in this 
situation. 

One of them i s  connected with the possibility of ne- 
glecting the inhomogeneity of the electron distribution 
function over the film thickness if the parameter 
1 is small  (nb and ne a re  the phonon and electron 
thermal-conductivity coefficients). If the char- 
acteristic energies of the electrons a re  such that n, i s  
formed over the length It of the elastic collisions of the 
electrons with the impurities or with the faces of the 
crystallites of the film, while up i s  determined by the 
scattering of the phonons by the electrons, then the in- 
equality given above i s  equivalent to the condition 
(1,/1p,)2 << 1, and the requirement T << OD i s  usually sat- 
isfied in the experiment with a large margin. Here 
1, - (1, 1i)1'2 is the diffusion length and 2, - lpc (T) (8,/1.)' 
is the mean f ree  path of an electron of energy E - kT 
with respect to scattering by phonons (k is Boltzmann's 
constant). 

Another important simplifying circumstance i s  the 
possibility of introducing an electron temperature if 
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T, 2 8 : / c F ,  when a temperature Fermi distribution can 
no longer by established on account of direct inter- 
electron collisions. This value of T, can be justified 
both in the limit! d<< lp and in the limit d >> I,, because 
of the effective interelectron collisions via the pho- 
nons. Therefore the statement that T can be introduced 
in the case d >> C can be regarded a s  a sufficiently 
reliable interpolation of the aforementioned limiting 
cases, where it can be rigorously proved. 

These two circumstances allow us to reduce the posed 
problem to a solution of the kinetic equation for the 
phonon distribution function, and then determine T, a s  
a function of Q and T from the heat-balance equation. 

Finally, one more important simplification, which i s  
particularly significant in the good-transparency (a! - 1) 
case of importance to us, is connected with the pos- 
sibility of formulating simple boundary conditions for 
the phonon distribution function. As will be shown be- 
low, the possibility of ballistic propagation of the p h e  
n m s  emitted by the film not only simplifies greatly the 
allowance for the heat dissipation by the sample, but 
also creates cmditions for a realization of the size ef- 
fect. 

Proceeding to the quantitative formulation of the prob- 
lem, we direct the z axis perpendicular to the inter- 
faces and assume that the problem is spatially homo- 
geneous in the r y  plane. In accord with the statements 
made above, we write down the kinetic equation for the 
phonon distribution function N(q, z)(q is the phonon mo- 
mentum) in the form 

Here s, i s  the projection of the phonon velocity on the 
z axis, and vN is the electron-phonon collision inte- 
gral, which can be reduced in our case, when the elec- 
trons have an equilibrium Fermi distribution function 
with temperature T,, to the form v,,[n(T,) -N(z)], 
where n(T,) i s  an equilibrium Bose function with tem- 
perature T,, while v,, has the meaning of the frequency 
of the collisions of aphonon of energy Bw with the elec- 
trons. In the simplest model considered by us, that of 
electrons with quadratic and isotropic dispersion 
and of the Debye model for the phonons, Ype is deter- 
mined by the magnitude of the EPI and i s  proportional 
to w(v,,- ws/v,,v, is the Fermi velocity). More ac- 
curately, 

Here f i  is the EPI constant (IJ." cF), m is  the electron 
effective mass, p i s  the density of the substance, and 
s i s  the speed of longitudinal sound. 

The general solution of Eq. (1) i s  of the form 

where C  i s  an arbitrary constant and 1, = s,/v,,. We 
introduce now the two functions N Z (q, z )  =N(z, q, q, S O), 
and denote (1,I = 1, where I depends on the angle 6 be- 
tween the direction of the vector q and the z axis. We 

then have for N Z the relations 

where the coefficients CS must be determined with 
account taken of the two boundary conditions on N(z) 
a t  z = 0 and z = d, respectively. These boundary con- 
ditions can b e  easily written down in the case of interest 
to us, that of ballistic propagation of the phonons emit- 
ted by the metal, with account taken of the finite trans- 
parency of the M-I interface within the framework of the 
acoustic-mismatch theory. 

If 4 and b2 a r e  the coefficients of phonon reflection 
from boundaries 1 and 2 Pf = 1 - af, i = 1,2, where 
( ~ ~ ( 0 )  is the transparency coefficient), then the nec- 
essary  boundary conditions take the form 

In the acoustic-mismatch theory the interface trans- 
parency coefficient a! is connected with the angle 0, of 
phonon incidence on the interface, the refraction angle 
O,, and the acoustic impedances of the adjacent media 
by the known relations (see, e.g., Ref. 2) 

where 8, and 8, and a given boundary a r e  connected by 
the relation s, sine, = s, sin6,. (The subscripts 1 and 2 
now pertain to one of the M-I interfaces). 

Combining relations (4) and (5);we obtain the fol- 
lowing expression for C': 

The expression for C< differs from (7) in that the sub- 
scripts 1 and 2 a re  interchanged, and by an additional 
factor x = exp(-d/l). 

Using the expressions for C S ,  we can easily write 
down the solution of the kinetic equation (3) and an ex- 
pression for the heat flux Q, (the analogous formula for 
Q, differs from Q, only in that the subscripts 1 and 2 a r e  
interchanged and the sign is reversed) takes the form 

The quantity T i s  determined from the heat balance 
equation for the electrons Q = Q, - Q,, where Q = Yd is 
the total flux density of the heat passing through the 
boundary of the metal plate. 

We turn now to a question of importance for experi- 
ments with heat pulses,' that of the heat radiated from 
a current-heated metallic plate into a medium with 
temperature T. The sought connection between Q and 
T,, which follows from (8) at T, = T, = T, can be rep- 
resented in compact form by introducing the effective 
resultant transparency &(q, d) of the boundaries, so 
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that 

We note that in contrast to the "bare" transparencies 
a!@), which depend only an the angle of incidence of the 
phonon on the interface in accord with Eq. (6), the ef- 
fective transparency has not only an additional angular 
dependence connected with the quantity x ,  but also a 
dependence on the phonon frequency. 

Changing in (10) from summation to integration, it i s  
convenient to represent the heat flux Q in the form 

where we have introduced the effective transparency 
xo(q)averaged over the angles 0 and defined by the re- 
lation 

Here u = cose, n,(q) z n ( s q / k ~ ) ,  and &(u, d) i s  given by 
(10). 

Expressions (ll), (12), and (10) contain the connection 
between the experimentally observed function T,(Q) (see 
articles 12 and 13 in Ref. 1, a s  well a s  the more de- 
tailed exposition in Ref. 2) and the film thickness and the 
the transparency parameters. In the general case, 
however, since (10) i s  so complicated, the dependence 
of the "form factor" x O(q) on the phonon momentum 
q=ttw/s can be calculated Gut for 5 only by numerical 
computer integration. We consider therefore two limit- 
ing cases of physical interest, when the expression for 
xo(q) can be written in explicit form. 

We determine first  the parameter &, which depends 
on the electron temperature, using the formula 

where 

The formulas corresponding to the usual interpre- 
t a t i o n ~ , ' ' ~  in which the electron contribution to the 
thermal resistance of the boundary i s  ignored, a r e  ob- 
tained from (11) and (12) at E>> 1. In this limit we have 
in fact 6 = a, + ffz 6 and xQ = 5,  and at T, << OD Eq. (11) 
leads to Little's well known result 

n2u 
Q=Yd = --- ( T  T') 

120s"" 

We note that if 9 i s  constant we have T,-dl1' , i.e., it 
increases, albeit weakly, with increasing film thickness 
d. The thermal regime of the film corresponds in this 
case to the usual "Joule" heating. In particular, the 
spectrum of the phonons emitted by the film i s  at equil- 

ibrium with a temperature I",, so that the maximum of 
i ts  special intensity corresponds to an energy t i c l ) ,  - 2.8k7',. 

We consider now the opposite limiting case, when 
primarily d << l,,(T,), but still d >  X, where x = X(T,) is  
the wavelength of the thermal phonon in the metal, so 
that we can disregard the deformation of the phonon 
spectrum of the film (we recall that in the "pure" limit 
considered by us we have x/z,, - s/71, << 1, so that the 
double inequality indicated above can be satisfied). Now 
i f  in addition E << 1 then we easily find from (10) that 
6 = 2d/1 and xo(q) = 2d/s7,,. From (11) we obtain in this 
limit 

where 

It i s  seen from (15) that a t  constant 9 the value of T, 
does not depend on the transparency parameters ff and 
on the film thickness d,  and i s  determined only by the 
intensity of the EPI. 

In this limit (E << I) ,  which we shall call henceforth 
the electronic superheating regime, most phonons 
emitted by the electrons mangage to leave the film with- 
out being reabsorbed in it, and the electrons and the 
lattice can be described with the aid of two different 
temperatures, T, and T.' We note that even though Eq. 
(15) can in fact be written down directly, by using the 
heat-balance condition (as was done first  in Ref. 7), its 
present derivation in the framework of the kinetic a p  
proach determines the limits of its applicability under 
conditions of stationary heating with an electric current. 
Namely, the electronic superheating regime i s  realized 
in the problem of interest to us in "pure form" only 
if the parameter ~ ( 1 3 )  satisfies the inequality &<< 1. 

We note incidentally that Eq. (11) describes also all 
the "intermediate" possibilities that a r e  realized be- 
tween the limiting situations of pure electronic super- 
heating (& << 1) and "Joule" heating (& >> 1) with in- 
creasing dissipated power p, and consequently with 
increasing parameter E .  It is curious to note also that 
in the electronic superheating regime the emission of 
phonons from the film i s  in disequilibrium, and the 
maximum of its spectral intensity corresponds to an 
energy Ew, = 3.9kTe. 

As to the ''Joule" heating, Eq. (14) notwithstanding, 
it can still not be assumed, as  is c u ~ t o m a r y , ~  that the 
phonons in the film a re  at equilibrium with a tempera- 
ture 7',, since such a distribution function causes the 
electron-phonon collision integral to vanish, and hence 
also the power f transferred to the phonons. As will 
be shown by an analysis of the expression for N(q, z ) ,  
the phonon distribution function in this regime i s  essen- 
tially inhomogeneous over the scale of I,,(T,). There- 
fore in the case of "Joule" heating one can only state 
that the distribution function N' of the phonons emitted 

649 Sov. Phys. JETP 51(3), March 1980 



on the film boundary z = d correspond to equilibrium 
phonons with temperature T,. 

To have a clearpicture of the appearance of the size 
effect considered above, we deem it of interest to an- 
alyze in greater detail the expression for the phonon 
distribution function. For simplicity we confine our- 
selves to an analysis of the symmetrical case (a,= a, 
= a, T1 = T2 = T). Then, if we put 

then expressions (4) for NZ take the form 

It i s  seen from (18) that the characteristic length of the 
spatial variation of N z i s  

The functions NZare "weighted" sums of two equili- 
brium Bose distribution functions: n(T) of the phonons 
from the thermostat and n(T,) of the "hot" phonons 
emitted by the electrons of the metal. The relative 
weight of each of these terms i s  determined by the 
quantity n(0 < H. <I) ,  which has a simple physical 
meaning-it is the effective probability that a phonon 
incident from the metal on the M-I boundary will 
leave the film without colliding with electrons. It i s  
easy to show that even in this case, when the bare 
transparency a! is small (Z<< 1) the quantity H. can 
nevertheless of the order of unity if f=d/l<< a. This 
means that i f  5 << a then practically all the phonons 
emitted by the electrons and satisfying this condition 
leave the film (without being reabsorbed in it) with a 
probability on the order of unity, despite of the pos- 
sibility of a nuwbe:. of successive reflections, from the 
interfaces inside the film. In accord with this lucid 
treatment, i t  follows readily from the definition (17) 
that dx/da > 0 and dxil.15 <0, so  that the effective prob- 
ability H. increases with increasing a and decreases with 
increasing film thickness. In the limiting cases we have 
x - 1  a s d - 0  a n d x - a  asd-m.  

We turn now to an analysis of the function T,(Q), using 
expressions (9) and (10). It i s  seen from (9) that Q 
depends on T only via n(T,). It is easily seen then that 
~ Q / ~ T , > o  and @Q/~T;<O, i.e., the function T,(Q) is in 
the general case monotonic and "convex upward." An 
approximate form of these functions at various values 
of the transparency i s  shown in Fig. 1. The less  sloping 
curves correspond to smaller transparency. The tran- 
sition from the T~ to the T' dependence takes place at 
c-1. An important feature of the curves of Fig. 2 is 
that the Q -Tz dependence, which corresponds to pure 
electronic heating, lies lower in the figure than the 
remaining curve (except for the sections where they 
practically coincide). This means that in the limit c 
<< 1 the heat dissipation from the film is the most ef- 
fective (minimal T, at a given Q), i.e., it can no longer 
be increased by improving the acoustic matching of the 
metal of the substrate. 

FIG. 2. 

It should be noted that in a number of experiments2** 
the matching of the film to the substrate turns out to be 
better than expected from the acoustic-mismatch theory 
(which in our case corresponds to the sections of curves 
with E >2). To interpret these results, the authors of 
Refs. 2 and 8 use the so-called absolute black body 
(ABB) model,' which generally speaking i s  not at all 
theoretically valid in the case a# 1. It follows from the 
foregoing that the actually possible regime i s  one in 
which, so long a s  E<< 1, the heat release i s  a maxi- 
mum and does not depend on the transparency coef- 
ficients. In contrast to the ABB model, however, in the 
electronic superheating regime the heat release i s  de- 
termined only by the metal parameters that a re  respon- 
sible for the magnitude of the EPI. 

We turn now to the expression for the effective trans- 
parency [ ~ q .  (101. It can be shown that both deri- 
vatives da/da,  and d&/da, a r e  larger than zero, so  that 
with increasing "bare" transparencies a, and a,, other 
conditions being equal, the effective transparency in- 
creases. Accordingly, d ~ / d a , > O ,  i.e, given a, and 
T, the dissipated power increases with increasing 
transparency. 

We mention also the dependence of the effective trans- 
parency 5 on the film thickness d (other conditions 
being equal). It i s  easy to show that dG/d5> 0, i.e., 
d decreases with decreasing film thickness. It might 
seem that this contradicts the statement that a s  d - 0 
and a t  constant 7', an ever increasing fraction of the 
phonons emitted by the electrons leaves the metal un- 
impeded ( x  -I) ,  and that at f irst  glance this should in- 
volve an increase (and not a decrease) of the effective 
transparency 6.  In fact, of course, there i s  no contra- 
diction at all if it is recognized that a s  d -0 the total 
number of phonons emitted by the electrons decreases 
with decreasing film thickness, something that should 
be treated at constant T, a s  a decrease of 6.  

3. CALCULATION OF THE ELECTRIC RESISTANCE 

As shown in the preceding section, the phonon distri- 
bution function in a metal i s  inhomogeneous over the 
plate thickness and is anisotropic [owing to the depen- 
dence on I ,  Eq.  (19)l. Therefore the calculation of the 
phonon contribution to the nonlinear electric resistance 
of the film, in contrast to the well-known case of elec- 
tron scattering by equilibrium phonons, calls for a 
special analysis. 

We note first  that the quantity measured in the ex- 
periment' was the phonon contribution R ~ ( E ) ,  to the 
total resistance of the film, a contribution connected 
with the differential conductivity u;(z) by the simple 

650 Sov. Phys. JETP 51(3), March 1980 V. A. Shklovskii 650 



relation We recognize also that 

where R,  and p, a r e  respectively the residual resis-  
tance and the resistivity of the sample (p<< pi). We 
assume therefore that the dominant mechanism of mo- 
mentum relaxation of the electrons i s  their elastic scat- 
tering (by impurities, crystallite boundaries, etc.). 
At T , < < 8 , ,  for sufficiently thin films, this is pre- 
cisely the typical experimental s i t ~ a t i o n . ~  

Using the noted smallness pVh<<pi, we can obtain 
by standard methods the following expression for aA(z): 

B,, p + , = ( i - f , + q )  Wq[Nq6(ep+,-~,-Q)+(N-q+1)6(~p~q-~p+Q) 1 
+f ,+PWq[  ( N q + l )  ~ ( E ~ + ~ - E ~ - ~ )  + ~ - q 6 ( ~ D + q - ~ ~ f  B) I .  

(2 1 a) 
Here e and m a r e  the charge and effective mass  of the 
electron, E i s  the electric field intensity, f, = f(& JT,) 
i s  the equilibrium Fermi distribution temperature of the 
electrons with temperature T,, c,=p2/2m i s  the energy 
of an electron with momentum p, E,= E, - cp i s  the elec- 
tron energy reckoned from the Fermi level, C2=tZd i s  
the energy of a phonon of frequency w ,  Wa = npZw/ 
ps2, and N,=N(q,z) and is given by Eqs. (4) and (7). 
We note that in the general case PI # p,, s o  that Na 
# N,. 

We choose the coordinate system such that the z axis, 
just a s  in Sec. 2, is perpendicular to the interfaces of 
the media, and the x axis i s  directed along the vector 
E. Let 8, and p l  be respectively the polar and azimuthal 
angles of the vector q, and let B, and p, be the analogous 
angles for the vector p. Then, changing in (21) for 
summation to integration, we obtain after a number of 
transformations 

(22) 
The quantity c i s  defined here by the relation U, 
= cq, v q/2pp, where p, i s  the Fermi momentum, u 
= cosO,, and n = cosO,. In the derivation of (22) we used 
the fact, demonstrated in Appendix I, that 

2. 2. 

I-- j drq, Jdrpz cos rp, cos rp,@{cos(rp,-q1~)}=-2n 

Here a(%) i s  an arbitrary even function of x = cos(p, 
- p,). Then, choosing 6 to be the 6-functions contained 
in the expression for Bv,,+,(21a), we can obtain Eq. (22). 
We use next the fact that the angular dependence of N, 
is connected only with the quantity u, and integrate with 
respect to v. As shown in Appendix 11, 

where the bar denotes the spatial averaging (20), and 

while 1 and & a r e  given by (19) and (10). 

It is convenient to write the final expression for 6 
(20) in the form 

where 

The quantity 6 is represented in (27) as  a sum of two 
terms. The first  does not depend explicitly on the trans- 
parency parameters and is the expression for the con- 
ductivity of electrons with temperature T,, scattered by 
equilibrium phonons with the same temperature, so that 

The second term of (27) contains the explicit depen- 
dence of 6 on the transparency parameter [via the quan- 
tity ~ , ( ~ ) l .  It is important to note that the expression 
for the conductivity 5 a s  a function of T, and of the 
transparency parameters [ ~ q s .  (27) and (2811 i s  valid 
a t  any ratio of d and I,,, and describes, just a s  in the 
case of (11) and (12), all the "intermediate" possibili- 
t ies between the limiting cases  of electronic super- 
heating (E << 1) and "Joule" heating (c >> 1). In the gen- 
e ra l  case, however, the calculation of the "form fac- 
tor" xR(q), even in the simplest case of bare  trans- 
parencies a independent of the phonon incidence angle, 
cannot be carried out analytically, and a computer must 
be used. Therefore, just a s  in Sec. 2, we consider the 
already mentioned two limiting cases, when X, (q) can 
be calculated explicitly. 

We consider f irst  the case of electronic superheating 
(E<< I), i t  is easy to show that in this case xR=4/3 and 
a simple comparison of (27) and (11) yields 

where io=nes  is a characteristic of the metal. Thus, 
in the electronic superheating regime (E << 1) the con- 
nection between the experimentally observed quan- 
tities ,6pvh(E) and 9 i s  linear, and the EPI constant p 
therefore drops out. 

In the opposite limiting case of "Joule" heating (E << 1) 
the connection of p L ( ~ )  w i t h 9  is more complicated. 
Assuming for simplicity that (Y i s  constant, we can 
easily show that x , ( ~ )  = s~,,a/4d-q-'. Then, using (27) 
and ( l l ) ,  we get 
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pphT(fiO =ppb ( T I )  -9/4il12, (31) 
where T, is  given by the Little formula (141, i.e., T, 
-91 14. Inasmuch a s  pDh(Te) - TE, by virtue of (29), we 

find that the first term of (31) i s  proportional tog5I4.  
The presence in (31) of a second term proportional to 
g - ~ ~ c a n  be easily explained from the physical point of 
view. In fact, in the "Joule" heating regime, the pho- 
non distribution function i s  a t  equilibrium over a large 
part of the fi lm thickness, with an electron tempera- 
ture  T,, so that the main contribution to the resistance 
[the first  term of (31)l takes the form usual for the 
equilibrium case. However, even in the case r, >> 1, at 
distances on the order of I (T,), a s  already noted, the 
phonon distribution function remains essentially in- 
homogeneous, and it i s  this which leads to the appear- 
ance of the second term in (31). The foregoing argu- 
ments show that the second term of (31) should be small 
compared with the first  in proportion to the parameter 
&-I<< 1. A more detailed estimate shows that asymp- 
totically, at E >> 1, 

It should be noted, however, that it i s  obvious from 
physical considerations that the estimate (32) cannot 
be extrapolated to the case E - 1. Indeed, in the inter- 
val of g corresponding to &(T,)- 1, a change should 
take place from the relation pDh - g typical of E: << 1 
to the relation ~,,,.-9"'~ corresponding to the limit E 

>> 1. Therefore in the case E - 1 both terms of (27) 
should be of the same order. 

4. CONCLUSION 

It follows from the preceding analysis that in the 
electronic superheating regime (E  << 1) both the integral 
Q(T ,) dependence and the spectral distribution of the 
phonons emitted by the film a r e  determined only by the 
properties of the metal and a r e  practically independent 
of the substrate characteristics. Thus, in contrast to 
the "Joule" heating regime (c  >> 1 ), in the case of elec- 
tronic superheating there i s  no need to take explicitly 
into account the mechanisms of the heat removal from 
the sample, and the effects nonlinear in the electric 
field a re  not masked by the pure thermal effects. There- 
fore  the results of the corresponding experiments in the 
&<< 1 regime contain information on the EPI in the met- 
al. In particular, experiments on the determination of 
the thermal resistance of an M-I interface make i t  pos- 
sible to estimate a microscopic quantity such a s  
I (T,).' Without dwelling in greater detail on these 
questions,2' we make only a few remarks on the pos- 
sibility of experimentally realizing the electronic super- 
heating mechanism. 

The point i s  that this realization entails not merely 
formal satisfaction of the inequality E<< 1. It must also 
be  remembered that the criterion & << 1 was derived 
under the assumption that the phonons radiated by the 
film electrons propagate ballistically, i.e., that it i s  
possible to neglect the flux of the so-called reverse 
phonons. In the case &<< 1 this neglect is  always theo- 
retically justified. It follows from (13), however, that 

the electronic superheating mechanism is easiest to 
realize precisely at 6 - 1, and in this case the presence 
of even a small number of "reverse" phonons can 
greatly distort the experimental results  even if the 
criterion E << 1 i s  formally satisfied. 

Without entering into a theoretical discussion of the 
methods of decreasing the number of "reverse" pho- 
nons, we mention only that in addition to using single- 
crystal bulk substrates there a re  at least two other 
experimental possibilities of minimizing the number 
of these phonons. The first  i s  to decrease (other con- 
ditions being equal) the widths of the investigated films, 
to make maximum possibleuse of the effect of "spreading" 
of the heat into the substrate. The second possibility 
is connected with using pulsed heating of the film in 
such a way that the characteristic time of return of the 
"reverse" phonons to the film a r e  longer than the dur- 
ation of the pulse (which must, however, not be long 
enough to establish a stationary state in the film). In 
this case the requirements on the width of the film can 
be greatly relaxed (compared with the case of stationary 
heating), owing to the lack of a characteristic thermal 
"background" for this heating. 

A simple experimental criterion for determining that 
the film i s  actually in the electronic superheating 
regime i s  the absence of discontinuities of the observed 
physical quantities when the helium bath temperature 
goes through the X point. In fact, since the physical 
characteristics of the metal electrons in this regime 
are  no longer dependent on the bare  transparency a, 
it follows that further improvement due to cooling the 
film with superfluid h e l i ~ m , ~  can only strengthen the 
inequality E << 1. Moreover, if the discontinuities exist 
nevertheless, their magnitude can be a measure of the 
"distance" from the regime of interest to us. 

We list, finally, those of our results which a r e  of 
greatest importance for experiments. 

1. In the experimental situation of interest to us 
(see the Introduction), depending on the value of the 
parameter E - 2d/aZ (T,), two substantially different 
heat-removal mechanisms a re  possible. If E. >> 1, the 
usual "Joule" heating, which has been well investigated 
in a number of studies of the thermal resistance of an 
M-I boundary,',' i s  realized. In the case E<< 1 elec- 
tronic superheating becomes possible, wherein the ef- 
fects nonlinear in the electric field intensity a r e  deter- 
mined only by the properties of the metal and a r e  no 
longer dependent on the acoustic transparency of the 
M-I interface. 

2. Equations in closed form were obtained for the 
experimentally observed quantities Q(T,) and RDh(T,) 
for arbitrary E [ ~ q s .  (11) and (27)l. These permit,' in 
principle, comparison with experiment. 

3. Even in the case of ideal acoustic matching of the 
metal and the substrate in sufficiently long films, elec- 
tronic superheating cannot be eliminated in principle 
[and depends on the disspated power 9 in accord with 
Eq. (1511. 

4. ~n the "Joule" heating regime & >> 1, the nonlinear 
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dependence of the  electric resistance on the  field 
s t rength does not  reduce to a pure  t empera ture  depen- 
dence [with T ,  determined f rom Eq. (11)1, but con- 
t a ins  a correct ion proportional to E-' and due to the 
inhomogeneity of the phonon distribution function over  
the length l,(T,) [~qs .  ( 3 1 )  and (3211. 

APPENDIX I 

Let  u s  prove Eq. (23) .  To th i s  end we  change over  
in the integral I f rom the  var iab les  cp ,  and cp2 to the new 
variables  x = ( p ,  + p 2 ) / 2  and J ,  = cp ,  - 40 ,. We can then 
show that 

2% 2n o cn+p/z zn n-112  

~ = j d p , j d p ~ ~ ( p , p ~ ) =  j d $  j dxZ(x.+)+jd+ J dxZ(x.$)? 
0 0 -2x - I , ' Z  0 1 ' 2  

( 1 . 1 )  
where  

Z(x, $) = (cos 2 x+cos q) Q (cos $)/2. 

Integration with respec t  to x yields 

t n  

I= d$cD (cos $1 [ (2n-~)cos  $-sin $1. 
0 

T h e  change of variable  # = #' + a reduces this  integral  
to one with symmetr ic  limits,  af ter  which ( 1 . 2 )  s im-  
plifies to 

I=2n d$ cos $@ (-cos $1. ; 
Finally, f rom ( 1 . 3 )  we readily obtain ( 23 ) .  

APPENDIX II 
We calculate the integral  ( 2 4 ) ,  where  the integration 

l imi t s  x, and r, are determined by the roo ts  of the 
t r inomial  

where a = - 1 ,  b = 2uv and c  = 1  - 2 2  - vZ, SO that b2 
- 4nc = 4 ( 1 -  u2 ) (1  - v2 ) .  Then, breaking up the integral  

into two p a r t s  and using the fact  that  

we readi ly obtain ( 24 ) .  

')The question of the effect of the electrons on the size of the 
Kapitza jump between a metal and He11 was considered 
earlier in the known paper by A n d r e e ~ . ~  The mechanism 
proposed there for this influence is most effective precisely 
in the case of strong acoustic mismatch between the media in 
contact (CY 5; l o 9  for the boundary between a metal and H~II) .  
The mechanism whereby the electrons influence the tempra-  
ture jump, which i s  discussed below, is most effective pre- 
cisely in the opposite limiting case of high transparency 
(a -1) .  

2 ) ~  generalization of some of the conclusions of this paper to 
include real spectra of electrons and phonons, and a discus- 
sion of the ensuing possibilities of extracting information on 
real  EPI in a metal from experiments performed in the elec- 
tronic superheating regime, will be reported in a separate 
paper. 

3 ) ~ t  is  assumed that liquid helium flows on one side of the 
metallic film. 
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