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The Cooper and Peierls instabilities in a metallic filament with a cross section of several atomic units are 
investigated. It follows in the selfconsistent field approximation that although the Peierls transition 
temperature T, decreases with the filament diameter exponentially, the transition can be observable 
because of the large pre-exponential factor. The transition itself is represented as a sequence of transitions 
of the separate bands. Allowance for the fluctuations in second order of the renormalization-group 
method, within the framework of the multicomponent Fermi-gas model, shows that below the 
corresponding T, there is only short-range order in the system. The superconducting fluctuations suppress 
the dielectric ones near T,. It is shown with the aid of the "bosonization" method that this effect is due to 
the difference between the influence of the long-wave fluctuations of the electron density on these two 
types of instability. The different susceptibilities and critical exponents are calculated. 

PACS numbers: 71.30. + h, 74.40. + k 

1. lNTRODUCTlON pling between the filaments. In a filament, this pa- 
rameter i s  i ts  diamter d. When d i s  large we have the 

Metallic filaments with diameters of several atomic well-investigated object-the bulk metal. By decreasing 
units occupy, with respect to their physical prop- the filament diameter we can track the variation of cer- 
erties, a position intermediate between one-dimensional tain physical properties and see how new ones appear 
and three-dimensional systems. The spacing of the a s  the filament becomes one-dimensional. 
discrete energy levels corresponding to different states 
of the transverse motion turns out in such filaments 
to be larger than or equal to some energy scale that i s  
a characteristic of some considered phenomenon. This 
phenomenon has therefore a different behavior in a 
filament than in the bulk material, and turns out to be 
close to what should be observed in the one-dimensional 
case. At the same time, the large number of different 
transverse-motion states that participate in the phe- 
nomenon make thin filaments different from purely one- 
dimensional systems. 

A specific feature of a one-dimensional system i s  
i ts  inherent Peierls  in~ tab i l i ty .~  It manifests itself in 
the appearance in the system of a superstructure with 
a period ~ / D , ( E =  1) and i s  accompanied by a restruc- 
turing of the electron spectrum. A gap opens on the 
Fermi surface and some of the electrons lower the 
kinetic energy. The corresponding energy gain com- 
pensates for the loss of the elastic energy of the lattice 
and makes such a transition energywise favored. 

In the case of a filament, the appearance in the fila- 
ment of a superstructure with a period corresponding 

A similar physical situation i s  realized also in a to the Fermi momentum of one of the transverse- 
quasi-one-dimensional system made up of one-dimen- motion states produces an energy gain mainly on ac- 
sional metallic filaments that a re  weakly coupled.' count of the electrons corresponding to this state of 
There a r e  known experimental facts that point to a transverse motion, since the Fermi momenta of the 
similarlity between the physical properties of the two different transverse-motion state a r e  not commen- 
systems.' The three-dimensionality parameter for a surate, whereas the loss in the lattice elastic energy 
quasi-one-dimensional system i s  the transverse cou- is proportional to the number of atom in the filament 
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cross section. Therefore the order parameter cor- P/EO 
responding to the Peierls  splitting decreases expon- 
entially with the filament diameter. However, in con- 
t ras t  to the superconducting transition, we have here 
a large pre-expmential factor of the order of the Fermi 
energy. Therefore the Peierls  singularity must still 
be  taken into account for filaments with a diameter of 1.6 

about several atomic units. 
1.2 

The Peierls instability manifests itself differently in I I I I 

a quasi-one-dimensional system.' In this case Peierls  
I 

I 5 IL' 15 *fl .IJ., . . ,  
instability takes place in a large region of transverse N=(po d / z r  

coupling. The effect of the fluctuations in these sys- 
tems is different. In a thin filament the fluctuations 
upset the long-range order,4 whereas in a quasi-one- 
dimensional system, at nonzero coupling and finite 
temperature, long range order can be present.1 The 
impossibility of a phase transition at finite tempera- 
ture in a thin filament is physically due to the destruc- 
tive action of the long-wave collective excitations.* As 
will be shown below, they affect the Peierls  and the 
Cooper instabilities differently, suppressing the former 
and enhancing the latter with increasing d. In the limit 
of large d we obtain a bulky superconducting metal. 

2. PEIERLS TRANSITION IN A THIN FILAMENT IN 

FIG. 1. Dependence of the chemical potential on the transverse 
dimension of the filament. 

cross  section, and i s  equal to 

where p, is the Fermi momentum of the bulk metal. 
The peaks on the curve of Fig. 1 correspond to the 
s tar t  of the filling of the next band with increasing d. 
In Fig. 1, v ,  denotes the degeneracy multiplicity of the 
corresponding band. me-dimensional filaments cor- 
respond to N 2 3 ( 2 / ~ ) ' ' ~ =  2.2; in this case only the first 
band with 1% 2 i s  filled. 

THE MEAN-FIELD APPROXIMATION We consider first, in the self-consistent-field a p  
We consider a thin metallic filament. The single- proximation, the Peierls  transition in a thin filament. 

electron states in it a re  determined by the longitudinal It consists in the appearance of a static distortion wave 
quasimomentum p and by the number of the band I ,  in the lattice. The equation that determines the phonon 
quantities characterizing the different transverse- spectrum in the system i s  of the form 
motion states. Correspondingly, the electron energy 
E,@) near the Fermi surface can be written in the form 0 2 = ~ L 2 ( ~ )  ( l - n2 (Q,  .. T) 1. - L ( Q )  

(6) 

e l ( ~ ) = v l ( I ~ l - - ~ l ) ,  (1 T  
nLo (Q, o ,  T )  =2 - z;x j >,( , .  ~ ) G I + L Z + Q .  s+r). (7) 

where o, and p, a re  the longitudinal velocity and longi- , I  

tudinal momentum of the electron on the surface in the The temperature at which the distortion first appears 
I-th band. in the lattice can be obtained from the equation 

The position of the energy level 77, of the transverse 
motion, and hence v ,  and p,, depends strongly on the I=- 2nL2 ( Q )  IILo (Q ,  0, T p )  . 
transverse dimension d of the filament. In the actual %(Q)  (8 

analysis we consider a filament with a square cross  The polarization operatorno in (7) goes over in the 
section, for which we choose limit a s  d - a  into the known Lindhart function. At 

finite d we can represent 11° with logarithmic accuracy 
12, la=Z~-tl"'. l*,"=l, 2 , 3 , .  . . , (2) in the form 

The chemical potential i s  obtained from the equa- 
tion 

At small values of d the distance AE between neigh- 

(4)  boring bands may turn out to be larger1) than T,. For 
the upper bands 

where n i s  the volume density of the electrons and does A . S = L I , / ~ .  (11) 
not depend on d. The dependence of 1 on the filament 
size, which follows from (2)-(4), i s  shown in Fig. 1. Therefore the indicated relation means also that 

The dimensionless parameter that characterizes the EsoBd, (12) 
thickness of the filament is the quantity N, which i s  
proportional (with a coefficient of the order of unity) where 6: = voT, i s  the correlation length of the Peierls 
to the number of atoms that can be  placed in the filament state at T = O .  In this case the main contribution to (9) 
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is  due to those bands for which the difference AE i s  
minimal: 

At a specified Q this condition is  satisfied only for def- 
inite bands. For Q = 20, and L = 0 the main contribution 
to (9) is  made by the n-th band. We then obtain from 
(8) for the critical temperature 7'",orresponding to the 
appearance in the filament of a Peierls  distortion with 
a period n/p,, 

Here N,(O) i s  the state density on the Fermi surface 
in the n-th band, and N(0) i s  that of the bulk metal. 

At a temperature lower than the highest T i  of (14), 
the initial bands split into a number of minisubbands, 
owing to the appearance of a superstructure in the sys- 
tem. In the n-th band a corresponding gap opens on the 
Fermi surface. For the remaining bands a gap will 
appear on the Fermi surface if the momentum of the 
band i s  commensurate with 0,. This can occur only 
accidentally and will be neglected. We can expect this 
transition to result in a substantial restructuring of the 
spectrum near the Fermi surface only in the n-th band. 
Therefore, with further lowering of the temperature, 
a Peierls transition corresponding to the next value of 
?'",from (14) can occur in the system. 

Thus, in the self-consistent field approximation, the 
Peierls  transition in a thin filament takes the form of 
a sequence of dielectric transitions of individual bands, 
starting with a certain optimal one. All the s, in (15) 
a r e  of the same order, so that in estimates we can as- 
sume then1 to be equal to the same value s. For a 
filament described by expressions (2) and (3) we ob- 
tain for 7': 

Figure 2 shows plots corresponding to Eq. (16) and 
s = - 0.5. The maximum critical temperature from (16), 
corresponds to the condition 

At N \' 1 this temperature i s  realized in filaments with 
d = mn/p, where m i s  an integer. The next highest cri- 
tical temperature i s  

At large N, the last to take place i s  the dielectrization 
of the band for which zi=N, and consequently 

T ; " ' = E ~  PXP(-NIIsIv). (20) 

FIG. 2. Dependence of the Peierls-dielectrization tempera- 
ture on the transverse dimension of the filament. 

The present results were obtained in the self-con- 
sistent-field approximation, which i s  not adequate for 
systems with small dimensionality. Moreover, even 
in this approximation, a consistent approach calls for 
simultaneous consideration of the Cooper and Peierls 
instabilities. This pertains particularly to the region 
of parameters and temperatures in which T Z  T;  = 
T , ;  ccb. These questions a re  discussed in the last sec- 
tion, where we go beyond the framework of the self- 
consistent field and take into account the first-order 
fluctuation corrections. It will be made clear that the 
temperatures determined above a r e  only the scales 
over which the fluctuations of the corresponding quan- 
tities become strong. 

3. USE OF THE RENORMALIZATION-GROUP 
METHOD I N  THE PROBLEM OF THE PHASE 
TRANSITION IN  A METALLIC FILAMENT 

To simplify the calculations, we shall use a model 
of the considered system. Let all the bands be non- 
degenerate and have the same velocity u, on the Fermi 
surface. The interaction Hamiltonian takes in the band 
representation the form 

where V i s  the volume of the system and L is  i ts  length; 
w , ( q )  exp(ikr,,) i s  the eigenfunction of the electron in 
the filament; u(r - y)  i s  the effective potential of the 
interaction between the electrons, including the Coulomb 
repulsion and attraction via exchange of virtual pho- 
nons. 

Without specifying the nature of the concrete inter- 
action mechanisms, we assume that the interaction can 
be reasonably described by a BCS-type model, i.e., 

We note that the condition E: >> d is  satisfied for all d. where w, i s  a cutoff parameter on the order of the 
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Debye frequency. We assume that w, << Ar,, where A& 
is the distance between the neighboring bands." In this 
case an electron that participates in the interaction (23) 
and has a fixed momentum k can belong to only one band 
whose Fermi momentum 0 ,  i s  close to L. The mo- 
mentum conservation law, expressed in terms of the 
Fermi momenta of the corresponding bands, 

separates the nonzero interband-interaction constants. 
Equation (24), besides being satisfied randomly for 
certain I, can be  always be satisfied in three ways by 
choosing I .  The corresponding interaction constants 
a r e  shown in Fig. 3. The dashed and solid lines in Fig. 
3 represent electrons with p > 0 and p <0, while the 
subscripts n and m with n +  m denote the numbers of the 
bands. 

Thus the considered system i s  described by the 
model of the multicomponent Fermi gas5 with bare 
interaction; this model i s  represented in Fig. 3. We 
shall analyze this model by the renormalization-group 
method, summing the most significant perturbation- 
theory graphs. Since the Fermi gas remains one-dim- 
ensional a s  before, the graphs have the same form as in 
the one-dimensional case.' What i s  new here com- 
pared with the one-dimensional problem i s  the large 
number of all possible interaction constants. 

The invariant charge, with the aid of which we can 
obtain the other characteristics of the system, i s  de- 
fined in this case a s  follows: 

where dn i s  the renormalized value of the residue a t  the 
pole of the Green's function of the n-th band; A, B, and 
C a re  the amplitudes corresponding to the scattering 
processes shown in Fig. 3. 

In the general case all the introduced interaction con- 
stants should be regarded a s  different, and to deter- 
mine them it  i s  necessary to solve a system of equa- 
tions. This system can be obtained'" by expressing in 
differential form the functional relation that follows 
for the invariant charge from the definition (25). We 
have thus 

where E = ln(~/w,), $ is the function of Gell-Mann and 
Low and i s  determined by perturbation theory. We ob- 
tain similar relations for a, and c,,. 

The graphs for the scattering amplitude and for the 

n n n m n  m 

FIG. 3. Nonzero interelectron-interaction constants in the 
BCS model for a filament. 
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mass  operator, which contribute to *of (27), coincide 
topologically with the corresponding graphs for a one- 
dimensional system.' They differ in the calculations 
only in the presence of convolutions in the inner lines 
with respect to the indices of the interaction-constant 
components. The results of the calculation of Jr in sec- 
ond order of the renormalization-group method can be 
represented in the form 

The form of Eqs. (28)-(31) i s  symbolic: m e  more 
convolution with respect to the spin indices is nec- 
essary. In the second-order terms that enter in (28)- 
(30) with a plus or minus sign this convolution i s  ef- 
fected in the Cooper or Peierls  channel, respectively. 
The method of performing the convolution in the third- 
order terms of (28)-(30) and in the function *, can be 
understood from Fig. 4. It is convenient to choose the 
spin structure of the interaction constants in the form 

In Eqs. (26)-(32) above the interaction constants a re  
dimensionless. They were obtained by multiplying the 
corresponding dimensional constants by the state den- 
sity of one band, i.e., 

a,, ,.+a,, 2,4d21N,(0). 

The constant a:, i s  connected with the constants, of (15) 
by the relation 

where the factor z describes the renormalization of 
the interaction constant on account of the energy region 
from c D  to E,.' Relations similar to (32)- (34) can be 
written also for b and c. 

Equations (26)-(31) cannot be solved exactly, but at 
large N the character and the form of the solution can 
be established 

FIG. 4. Scattering-amplitude and mass-operator graphs that 
ensure a second-order contribution to the function of Gell- 
Mann and Low. 

V. N. Prigodin 



4. SUPPRESSION OF THE PEIERLS SINGULARITY 
NEAR A SUPERCONDUCTING TRANSITION 

In the present problem we have a free parameter, the 
number N of the atoms in the filament cross  section. 
It enters in Eqs. (28)-(31) a s  the number N@-N) of the 
filled bands over which the summation in the expres- 
sion for rk extends. We assume first  that all the con- 
stants in (28)-(31) i s  of the same order. The param- 
eter fl i s  readily separated in this case and the ser ies  
for rk can be represented in the form 

Corresponding here to the Cooper graph i s  the first  
term containing N. The second-order term, but with- 
out R, corresponds to the Peierls  graph. Actually the 
interaction constants corresponding to these two scat- 
tering channels a re  different. This must be  kept in 
mind in what follows. 

We have calculated \Ir above up to third-order terms 
inclusive. Generalizing this result, we can assume 
that the n-th order terms a r e  likewise of the form 

where f, and p, a re  numbers on the order of unity. We 
change to the usual normalization of the interaction con- 
stants, i.e., we refer them to the state density of the 
Fermi surface of the entire system: g- y f i .  We then 
express rk in the form 

We can conclude therefore that the expressions (28)- 
(31) for \Ir a r e  valid if g < l  o r  y<N. In the limit a s  
N-* the result i s  exact, and the ser ies  for i s  left 
with only the f i rs t  term, which corresponds to allow- 
ance for strictly Cooper graphs. It was investigated 
earl ier  in Ref. 5. 

We consider now the region of large but finite values 
of N. In this case we can retain in (35) only the terms 
that include N, and can treat the Peierls  channel by 
perturbation theory. Equations (26)-(31) with the 
Peierls  corrections neglected take, after convolution 
with respect to the spin variables and in the approxi- 
mation of equal interaction constants, the form 

where b, = b, * b,;  b, and b, correspond to the form (32) 
a s  applied to b. 

The stable fixed points (38) a re  b + =  - 2 and b-=O. 
b + =  0. This corresponds to electron pairing in a Cooper 
state withS,= 0, as well as  b.. = - f ,  b + =  0, which corre- 
sponds to superconductingpairing of the electrons in a 
state with  IS,^ = 1. We canestablish the temperature scale 
A within which the interaction constants reach the vi- 
cinity of the fixed points and the scaling region begins. 

We put b! = X,/iJ and b: = 0, which corresponds to short- 
range interaction.' Equation (38) can then be  rewritten 
in the form 

where < is the temperature of the superconducting 
transition of the bulk metal. It follows from (38) and 
(39) that a t  T>> A the superconducting transition can be 
described in the mean-field approximation. In the region 
T 5 A it becomes necessary to take the fluctuation cor- 
rections into account. As a result X tends to a large 
but finite value (X - -m), and by the same token the 
phase transition a t  T # 0 vanishes. In the region T << A 
the various correlators that characterize the super- 
conducting properties of the systzm a r e  power-law func- 
tions. At T = A we have X = - 1.5N and consequently the 
correct limit is obtained a s  N --. 

The foregoing results were obtained under the assump- 
tion that all the bare interaction constants a re  of the 
same order. The influence of the Peierls  channel can 
then be  studied by perturbation theory, and can be 
assumed to be  weak at N >> 1.4 In the parameter region 
where 2'; 2 c, however, this assumption i s  incorrect  
The constants a, that describe the interaction of the 
electrons of the n-th band turn out to be 2RX. It is 
then necessary to consider simultaneously the Cooper 
singularity and the Peierls  singularity with momentum 
transfer 2P,. To this end, we rewrite (26)-(31) in the 
following manner. 

We group all the constants into three types in accord 
with Fig. 3: 

a=a,; b=b.,; 6=bk, .  (41) 

Here n is the selected band, k Pn, and I #n. We take 
the Peierls  singularity into account only for the elec- 
trons of the n-th band. We thus have from (26)-(31) 

where Z=2a, - a,. When we assumed above that g: 
.: 0, b: < 0, and b: = 5: = 0, we have confined the analysis 
to the Cooper supercondutting singularity. 

An important parameter that characterizes the be- 
havior of the system is I .  In the mean-field approxi- 
mation, I enters in the definition of the superconducting- 
transition temperature for the electrons of the n-th band 
(T:) and the dielectric-transition temperature (Ti) in the 
following manner: 

The ratio of the correlators that characterize the fluc- 
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tuations of the dielectric (n,) and superconducting @,I 
type in the selected bandls6 has  the following dependence 
on I: 

It follows from (46) and (47) that at  I>O strong dielec- 
t r i c  fluctuations take place in the system, and the super-  
conducting fluctuations a r e  weakened. The  situation i s  
reversed at  I < 0. 

It i s  assumed in (42)- (45) that Nb = Nb: = n: = I,. It 
follows then from (43) that in the high temperature 
region T >> A, just as in the one-dimensional case, I 
is an invariant (if b+ and 6 ,  a r e  left out of (42) and (431, 
the lat ter  coincide with the corresponding equations 
from Ref. 6). Therefore if I >O the dielectric fluc- 
tuations in the system increase. No Peier l s  transi- 
tion takes place, however, even if Ti>> T:. 

The interaction constant n, in the n-th band ceases to 
increase when it reaches a value on the order  of unity 
at  T = A,. The scale of A,, according to (421, is  

A,,=Ia,,OI'* esp {11'2a,,~).  (48) 

Recognizing that aK i s  connected with s, from (15) 
by the relation (341, .we can rewrite the expression for  
An in the form 

where T", i s  obtained from (14). 

Near T:, the values of h and in (43)-(45) begin to 
increase. As a result,  I tends to unity. In accordance 
with (46) and (47), the dielectric fluctuations become 
suppressed in this case. 

We note that at T i>>  T: Eqs. (46) and (47) contain a 
solution such that h +  - 0 and I - const > 0. This would 
correspond to the preservation of strong dielectric 
fluctuations also at  T < T :. It becomes necessary then, 
however, to include in Eqs. (45)-(47) the higher t e rms  
of the s e r i e s  expansion of *. 

In the next section we present  a physical interpre- 
tation of the results  within the framework of the phe- 
nomenological approach. 

5. EFFECT OF COLLECTIVE EXCITATIONS ON THE 
SUPERCONDUCTING AND DIELECTRIC 
FLUCTUATIONS 

The decisive role in a phase transition in a thin 
filament, just a s  in the case  of a one-dimensional sys-  
tem, is  played by the collective excitations. The re-  
sults described above can also be understood in t e rms  
of collective excitations. Assume that there a r e  no 
interband interactions (b, ,  = c,,  = 0). Each band can then 
be se t  in correspondence with a one-dimensional sys- 
tem having a certain Fermi  momentum 0, and an  inter- 
action constant n,. The collective excitations of the 
system of electrons of the n-th band constitute oscil- 
lations of the electron and spin d e n ~ i t i e s . ~  If a: .(O, 
then a gap A, appears at low temperatures in the spec- 

tcum of the spin waves, and at  T < A, they a r e  in- 
essential.  The long-range order,  which would cor-  
respond i l  the absence of fluctuations to the state of 
a Pe ier l s  dielectric o r  a Cooper superconductor, is  
destroyed by the long-wave low-lying part  of the elec- 
tron-density, which can be described with the aid of 
the following ~amil tonian* '  7-9 

(all the quantities here and below pertain to the n-th 
band), where i, and $ a r e  the density and phase op- 
erators:  [j5, $1 = - i6 (x  - x ' ) ;  K i s  the electronic sus-  
cepti5ility of the system fo r  a homogeneous field and 
i s  proportional to the compressibility, while u i s  the 
speed of the electronic sound: 

The Hamiltonian (50) can be  obtained regularly within 
the framework of the "bosonization" method.' This  
question is considered in detail f o r  the case  of a one- 
dimensionalsystem inapaper  by Firsovand the a ~ t h o r . ~  

The Hamiltonian (50) can also be expressed in t e rms  
of the "angle" and "angular momentum" variables:' 

Here  r and $, the current  and particle-number oper- 
ators,  a r e  connected with ,8 and cp by the relations 

The representation (50) is convenient fo r  the study of 
the superconducting fluctuations in the system. It can 
be  used to express the Green's function of the fluc- 
tuations in the form 

where 7 is the "imaginary" time. In our case  where 8 
i s  in the form (50) the averaging in (54) reduces to 
taking the Gaussian integral with the functional 

The result  of the calculation of (54) can be represented 
in the form7-' 

4u 
a,. 5 = -  

(58) 

In the study of the dielectric fluctuations the form 
(52) turns out to be more convenient. Calculation of the 
density correlator  n with a momentum close'to 20, 
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reduces then to a calculation of the continual integral 

(59) 
where F is taken in the form 

Comparing (55) and (60) we find that for a Peierls 
singular it y 

From (571, (58) and (611, (62) it follows that in a cer- 
tain sense the superconducting and dielectric singul- 
arities a re  mutually exclusive: if strong dielectric 
fluctuations a re  present inthe system, then the super- 
conducting fluctuations a re  attenuated, and vice versa. 
We rewrite (56) and (59) in the (k ,  w )  representation: 

From (63) and (64) we can determine the parameter 
region in which the superconducting and dielectric fluc- 
tuations coexisl. It is obtained from the condition 
(r,>1/2, or,>1/2 and is given by7 

In the region I > 3/5 dielectric fluctuations a re  present 
in the system and Cooper pairing becomes impossible. 
At 1 < - 3/5 the situation is reversed. 

We turn now to interband transitions. Using the op- 
erators introduced above, the corresponding contri- 
butions to the interaction Hamiltonian can be written 
in the form3' 

Here El,, and Earn describe the probability of a transi- 
tion of an electron-hole pair between bands n and m .  
The interaction described by the constant c , ,  from 
(25)-(31) is potential in character and is inessential in 
this case. It was assumed above that all the momenta 
0, are  mutually noncommensurate. Therefore the quan- 
tity 2(h, - 0,) in (67), as  a function of n and m ,  assumes 
arbitrary values, and as a result the sum F, i s  equal 
to zero. 

Thus, the entire influence of the interband inter- 
action reduces to establishment of a correlation be- 
tween the superconducting phases that correspond to 
different bands. The temperature at which a single 
phase cp is established over the entire cross  section of 

the filament is equal to A from (40) in the case b,,=a,. 
In the region T << A the complete functional of the sys- 
tem W can be written in the form 

where F, i s  a functional of the form (50) with param- 
eters corresponding to the n-th band. If the band pa- 
rameters a re  equal, expression (68) coincides with the 
corresponding functional used in Ref. 4. 

The new functional (68) changes also the expressions 
for the correlation length and for the critical expon- 
ents. These changes can be described by making the 
following substitution in (56)-(58): 

The order of magnitude of the new &, is: 

where N is the number of participating bands. 

The result (70) corresponds to enhancement of the 
superconducting fluctuations in the system. The es- 
tablishment of a single phase cp in the filament cross  
section means, in accord with the indicated "incom- 
patibility" of the superconducting and dielectric transi- 
tions, a total suppression of the dielectric fluctuations 
in the system, i.e., as T- A we have 

We note that the results obtained in the present sec- 
tion are  not based on perturbation theory. It follows 
from (511, (58), (59), (61) and (62) that a! and 5 can be 
expressed in terms of observable quantities. In turn, 
the will also enter in the observable quantities. 

6. CONCLUSION 

Thus, in the case of the thin metallic filament con- 
sidered above, the Peierls and Cooper instabilities 
manifest themselves in the following manner: At high 
temperatures, the bands for which T," from (14) exceeds 
T: from (14) exceeds TE from (40) will tend towards 
a Peierls splitting. The bands correspond to different 
T: behave in this case independently. According to 
(181, the maximum T," corresponds to a band with p, 
=n/d .  The neighboring bands have the next highest 
value of T ,". 

The tendency to a Peierls transition is described 
with the aid of the density correlator n with a mo- 
mentum close to 2p,. In the region T >> Ti,  in accord 
with the self-consistent-field approximation, we have 
for IJ 

where y, = (T - TF)/T,". This manifests itself in the 
phonon subsystem a s  a giant Kohn anomaly-damping of 
the phonon frequency S2(2pn). 
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In the case  of one band, however, just a s  in the case  
of a one-dimensional system, consideration of the 
Peier l s  singularity alone is insufficient. Account must 
be taken of the Cooper singularity and fluctuations. As 
a result,  the pole singularity of (72) vanishes near T; 
and the correlators IT and R (the lat ter  characterizes 
the superconducting fluctuations in the n-th band) takes 
on in the region A << T << A,  the scaling form (63) and 
(64) corresponding to the one-dimensional situation. 

It follows from (63) and (64) that at  I >O the dielectric 
fluctuations a r e  in the stronger ones, and in the region 
1>3/5 they suppress the superconducting fluctuations. 
A charge density wave with period n / p ,  i s  then present  
in the system. While there is no long-range order,  a 
short-range order  is  present; (P ,5 , )2>> 1. Defects and 
inhomogeneities cause a coupling of the charge-density 
wave, and the conduction electrons of the n-th band 
that a r e  coupled with i t  do not participate in the con- 
duction. Just  as in the region T < A,, the electrons of 
the n-th band make no contribution to the spin suscep- 
tibility of the system, which can be expressed in this 
case  in the form 

x=p8 ~EL(?Z~)'~'~~~(-!?), no, T 

where k ,  is  the Bohr magneton. 

In contrast to the dielectric fluctuations, the super- 
conducting fluctuations of the different bands a r e  cor-  
related. As a result  they enhance one another and a t  
T < A  they a r e  only longitudinal, i.e., the supercon- 
ducting phase becomes hard in the filament c r o s s  sec-  
tion. According to (7), at  T <A the correlator  R equals 

The correlation length becomes large, and one can ex- 
pect an approximate manifestation of superconducting 
properties. The dielectric fluctuations a r e  suppressed 
near T,. 

Thus, an interesting phenomenon i s  observed near 
T,: with decreasing temperature, the dielectric s ta tes  
of the individual bands a r e  destroyed. The reverse  of 
damping, enhancement of the phonon frequency, should 
take place in the phonon spectrum, which returns as a 
result to i ts  initial form. 

It was assumed above that the interaction constants do 
not change with changing filament diameter. In this 
case, according to (34), one can expect an increase of 
the superconducting parameter  A on account of the di- 
electr ic  fluctuations. Compared with the previously in- 
vestigated quasi-one-dimensional system,' however, 
this effect i s  weakened in a thin filament, because the 

Peier l s  singularities of the different bands a r e  not cor-  
related. A special analysis of this question cal ls  for 
knowledge of the concrete mechanism of the attraction 
between the electrons, which can vary with the filament 
diameter. 

The thin-filament model considered above describes 
quantitatively sys tems of the so-called secondary crys-  
tals, consisting of a dielectric asbestos matrix fiIled 
with metal (Hg, Ga, Sn, o r  In) in the form of thin fila- 
ments with diameter  from 20 to 150 A. The distance 
between the filaments i s  of the order  of 200-500 A, s o  
that tunneling between the filaments can be neglected. 
The experimental results  on secondary crystals  i s  dis- 
cussed within the framework of the present model by 
Bogomolov et dl.' It i s  possible that when account i s  
taken of the coupling between the filaments, this model 
can be  used a lso  for the polymer (SN)iO. 

In conclusion, the author thanks Yu. A. Firsov for a 
helpful discussion and V. N. Bogomolov and Yu. A. 
Kumzerov for  constant interest  in the work. 

"1t will be shown below that this condition is satisfied for all d. 
The upper limit of the region of considered d is determined 
from the condition A& < T! or  d <[!, where is the correla- 
tion length in the superconducting state a t  T= 0. 

2)~ctually, near the critical point, an important role is played 
by the interaction of electrons with energy lower than or of 
the order of Tp. Therefore the requirement A& >> w can be 
replaced by the weaker one A& >> Tp, which is always satisfied. 

3)~xpressions (66) and (67). just a s  (54) and (59). can be ob- 
tained by using the Bose representation for the Fermi opera- 
tor s .8 
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