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Velocity dependence of the density of the normal 
component, and hydrodynamics of superfluid flow at high 
velocities 
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It is shown that the dependence of the densities of the normal and superfluid components of helium I1 on 
their relative flow velocity gives rise to a velocity dependence of the type of the equation to which the 
hydrodynamics of the superfluid flow reduces. As a result, hyperbolicity regions enclosed in the ellipticity 
region of the equation for the velocity potential (similar to "supersonic zones in subsonic flow") can arise in 
nonuniform flow around comers and roughnesses. The critical velocity of the transition from the elliptic type 
to the hyperbolic type is determined and its temperature dependence is calculated. 

PACS numbers: 67.40.Bz, 67.40.Hf 

We discuss in this article the circumstances that 
reveal certain singularities of supersonic-flow hydro- 
dynamics, which escape attention when an analogy is 
drawn with the flow of an ideal classical incompress- 
ible liquid. For  example, it must be assumed that when 
a superfluid flows around sharp corners o r  convexities 
on a solid surface there exist in the vicinities of the 
latter regions where the continuity equation changes 
from elliptic to hyperbolic. These regions a re  similar 
to  the supersonic inclusions in superfluid flow, which 
a re  know from gasdynamics (see, e.g., Refs. 1 and 2), 
and whose presence is accompanied usually by forma- 
tion of discontinuity surfaces (shock waves3). It seems 
to us that these circumstances a r e  of importance for 
the hydrodynamics of helium I1 in general, and when 
vortex formation is considered in particular. Their 
physical basis is the dependence of the density of the 
normal component on the relative velocity of the com- 
ponents, as determined by Khalatnik~v.~ 

1. To demonstrate the hydrodynamically important 
consequences of the velocity dependence of the compo- 
nents of helium II, we confine ourselves to the relativ- 
ly simple case of stationary isothermal flow of the su- 
perfluid component while the normal component is at 
res t  (v,= 0) and in the absence of an external-force 
field. The system of equations of two-velocity hydro- 
dynamics4n5 reduces in this case to the equations that 
specify the potential character and the continuity of the 

flow: 

rot v.=o, (1) 

div j,=O, (2) 

where j,= p,v,. The continuity equation for the entropy 
is satisfied identically. The continuity equation for the 
momentum and the equation of motion of the superfluid 
component yield one and the same equation, which de- 
termines the pressure gradient1'. 

grad P=-p, grad ('l,~,'). (3) 

The system of hydrodynamic equations is supplemented 
by the dependence of p, on v,, the concrete form of 
which is immaterial for the time being (see Sec. 4 
below). 

2. Equation (2) can be transformed in the following 
manner: 

p. div v.+v, grad p,=O, ( 2 4  

o r  
dps 

PO div v.+ -v,grad dw. ws=O, 

where v, = I v, ( and dp,/dv, = a&/a v, + (ap,/a P) (dp/dv,), 
and according to  (3) we have dp/dv, = -p,v,. It follows 
from the last two equations that the solutions of the 
Laplace equation that holds for an incompressible fluid 
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where cp is the velocity potential (v,= grad rp, Arp 
= div v,), a re  applicable only in those cases when the 
stream lines coincide with the lines p,= const or, 
eq~ivalently,~'  with the lines v, = const. We note that 
the latter coincide with the lines P =  const. 

In this connection, the presence of a dependence of 
p, on v, does not contradict the fact that the only real- 
ized flow regimes a re  described by the incompressible- 
liquid equations that satisfy the just-obtained condition 
v, gradp, = 0 or v, gradv, = 0. These regimes are:  
1) potential rotation around one vortex filament cp 
= (F/2n)o! [r is the circulation and a! = tan-'(y /x)], 
2) uniform flow, rp =vfi(u,= const). 

Opposite examples are: flow of an incompressible 
liquid containing a pair of vortices, rp  = (r/2n)(a 
- a2)(al,, = tan-'y/(xr x,), * x o  are  the coordinates of the 
vortex and of the antivortex), flow around a right cor- 
ner, cp = ~ r $  cos(2a/3) (+=x2+y2, A =const). These 
solutions of Eq. (4), which correspond to stream lines 
that a re  not constant-velocity lines, do not satisfy Eq. 
(2), and can not describe the flow of a superfluid liquid 
at velocities such that the p,(v,) dependence i s  signifi- 
cant. Included among these examples a r e  solutions of 
Eq. (4) that describe flow around convexities on a flat 
surf ace. 

The circumstances noted above a re  worthy of atten- 
tion also for the following reason. I t  is  known that very 
plausible general considerations and convincing experi- 
ments (see, e.g., Refs. 9-11) confirm the assumption 
that vortex formation in helium I1 is localized on inho- 
mogeneities of the boundary surfaces, such a s  corners 
and roughnesses. A hydrodynamic analysis, however, 
based as usual on Eq. (4), shows that a vortex produced 
in the vicinity of a solid surface can be carried away by 
the flow into the interior of the liquid (and not towards 
the wall, where it would be absorbed) only from a mac- 
roscopic distance (even if a large inhomogeneity is pre- 
sent on the surface; see, e.g., Ref. 12). The problem 
raised by this contradiction must apparently be solved 
outside the framework of the hydrodynamics of incom- 
pressible liquids. 

We advanced similar assumptions in Ref. 2, where 
the treatment was within the framework of the phenom- 
enological theory of superfluiditye6 It will be shown 
below that its conclusions a re  not limited to the region 
of applicability of this theory3) and a re  confirmed by 
the Landau t h e ~ r y . ~ ' ~  

3. We replace Eq. (4) by a more general equation for 
the velocity potential cp, which follows from (2b): 

where 
1 dp, d q  acp 

au=p.Si i i  ---- -- 
v, dv, a z i a x ,  

The discriminant of the corresponding equation of 
characteristics can be readily shown, after elementary 
but somewhat unwieldy transformations, is equal to4) 

Consequently, the type of equation (5) depends on the 
sign of the derivative dj,/dv,: it is elliptic at dj,/dv, 
> 0, parabolic at dj,/dv,= 0, and hyperbolic at dj,/dv, 
< 0. We shall return to this question in Sec. 5. 

The critical velocity v, at which the transition from 
the elliptic to the parabolic type takes place will be 
designated v,. The surface (line) on which v,=v, is 
called the transition surface. 

4. Thus, the type of Eq. (5), and consequently also 
the properties of the solutions of the system (1) and (2) 
(the character of their dependence on the boundary con- 
ditions), a re  determined by the concrete form of the 
function j,(v,) , which a re  specified in turn by the func- 
tion p,(v,). We examine now the latter without the simp- 
lifying restriction used in Secs. 1-3. 

The dependence of the density of the normal compo- 
nent p, on the relative velocity u =  Iv,-v,l i s  deter- 
mined by the already mentioned Khalatnikov formula4 

where 

p, and p,, a re  the known contributions of the rotons and 
phonons to the normal density a t  u = 0, p ,  is the momen- 
tum of the immobile roton, and u, is the velocity of the 
first  sound. 

The density p,, equal to p- p,, depends correspond- 
ingly on the relative velocity u. The function p,(u) de- 
termines two critical velocities: the maximum veloci- 
ty, which is compatible with the superfluidity v, 

and the velocity v,, at which 

If v,= 0, then the last formula coincides with the equa- 
tion dj,/dv,= 0 that determines the transition of Eq. (5) 
from elliptic to hyperbolic. The quantity j,s p,(u) 
u = p,I v,-v,l is the modulus of the flux density of the 
superfluid component or  its momentum (per unit vol- 
ume) in a reference frame tied to the normal compo- 
nent. 

The velocities v, and v, a t  different temperatures can 
be determined by numerically solving Eqs. (8) and (9). 
The velocity v, was already calculated in similar fash- 
ion in Refs. 13 and 14 (see also Refs. 16 and 17). 
Simultaneously with the calculation of v, we repeated 
also the calculation of v, at various temperatures in 
the interval 0.2-2.1 K. We used Eq. (7) and the exper- 
imental data, gathered in Wilks's book,'5 on the para- 
meters u,, p, ,  p, and A of the energy spectrum of 
helium 111, and also on the total density p, which a re  
needed to tabulate p, and p,, and to convert from p, to 
ps. 

In view of the lack of sufficiently accurate and de- 
tailed information on the temperature dependence of 
the derivative 8(p,/p)/B~ we have neglected in the nu- 
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merical calculations (see below) the u-dependence of 
the total density p (as is well known, 8p/8u2= 0.5p28(pn/ 
p ) / 8 ~ )  and the pressure dependence of the parameters 
of the energy spectrum of helium I1 [this is equivalent 
to replacing the total derivative dp,/dv, by the partial 
derivative 8p,/8vS, which differs from the former by 
the amount given following Eq. (26) in Sec. 21. It can 
be shown that (in the temperature and velocity interval 
of interest to us) the e r ro r s  due to this neglect does 
not exceed several percent. 

In addition to the temperature dependences of v, and 
v, (Fig. I ) ,  we plotted the functions p,(u), (Fig. 2), 
j,(u) (Fig. 3), and p,(j,) (Fig. 4) at various tempera- 
tures. 

It must be emphasized that in the units in which the 
curves of Figs. 2,3, and 4 were plotted, the dimen- 
sionless quantities p,/p, and j,/p,v,, as well as the 
ratio v,/v,,(p, =p,(O)) practically coincide with the 
results of the calculations by the phenomenological 
superfluidity theory even a t  T = 2.1 K (for details see 
Sec. 6). 

5. We turn now to a discussion of Eq. (5) (we recall 
that it pertains to the case vn= 0,u =us). It can be re- 
duced by the coordinate transformation x ,y ,z - [, v ,  1; 
to the form 

where A,,A,,A, a re  the roots of the equation I a,,,- 
= 0, which can also be solved directly, but we shall 
write out only the connection between the quantities 
A,,A2,A3 and the invariants of the quadratic form 

aipris (i, k= 1,2,3), 

which a re  relatively easy to calculate: 

where A,, are  the minors of a,, in the determinant 

1 ' i k l  

At us= 0 Eq. (7) yields dp,(v,)/dv,~v,= 0 and dj,/dv, 

FIG. 1. Temperature dependences of the critical velocities: of 
the break of the superfluidity (v,) and of the transition from the 
elliptic type to hyperbolic (v,). 

u / u m  

FIG. 2. Dependence of the density of the superfluid component 
p, on the relative flow velocity u of the components at various 
temperatures: 1-T =2.1 K, 2-1.8 K, 3-1.5 K, 4-1.1 K, 
5-0.8 K, 6-0.5 K, 7-0.2 K. 

.-" 
= Ps. In this case the fact that all three coefficients 
A,, A,, A, in (10) a re  positive follows directly from Eq. 
(lo),  which goes over in this limit into the Laplace 
equation [A,= A,= h,= p, in (lo)]. At small v, expression 
(11) remains positive. It vanishes before expressions 
(12) and (13), which remain positive at dj,/dv,= 0, since . - 

p,(v,)> 0. It follows therefore that at v,=v, only one of 
the coefficients A,, A,, A, vanishes, and a t  v,> v, it re- 
verses sign and Eq. (10) [and with it also (5)] becomes 
hyperbolic. Since the function j,(v,) ( Fig. 3) has only 
one extremum, reversal of the sign of another coeffi- 
cient is already impossible in the entire interval v, 
<v,<v,, where Eqs. (10) and (5) a re  thus properly 
hyperbolic. 

6. In the phenomenological theory of superfluidity the 
function p,(u) is defined by the formula6 

and p,= 0 at v=v,, 

In this theory the critical velocity v, turns out to be5' 

u,=3-'"~,=3.33.10~ (Ti-T)'I3 [cm/sec]. (16) 

It was f i rs t  introduced in Ref. 18, where it was shown 
that at a given value of j, the states with u> v, (the low- 
e r  branches of each of the p,(j,) plots of Fig. 4) a re  
unstable (but they a re  stable for a given u). At u = v, 

FIG. 3. Dependence of the superfluid flow j,= p& on the rela- 
tive velocity u at the various temperatures listed in  the caption 
of Fig. 2. 
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FIG. 4. Dependence of the superfluid component p, on the flux 
j, at the various temperatures listed in the caption of Fig. 2. 

we have 

Plots of the dimensionless ratios p,/p, and j,/p,v, 
at T =  2.1 K, shown in Figs. 2-4, practically coincide 
with the calculations by Eq. (14), and the ratio v,/v, is 
practically equal to at 2.1 K. We note that this al- 
most complete coincidence i s  observed just for the in- 
dicated dimensionless ratios rather than for the calcu- 
lated quantities themselves, but even the latter a re  in 
sufficient agreement. For example, at T =  2.1 K we 
have according to (15) v , ~  10.1 m/sec, whereas 
Khalatnikov's formula yields v,= 14.6 m/sec. 

Formulas (14) and (16) are  similar to the gasdynamic 
relations (see,  e.g., Ref. 19) between the density p and 
the velocity of an ideal gas, the speed of sound c, at 
the point where i t  is equal to the gas velocity, and the 
maximum gas velocity v in adiabatic flow. The quan- 
tities p,,u,v,, and v, correspond to the quantities p, 
v ,c,, and v ,,,, and it is necessary to put c,/c, E y = 2. It -- - -- 
must be emphasized that v, is not a complete analog 
of the speed of sound. In particular, there is  no de- 
pendence of v, on u similar to the dependence of the 
speed of sound on the flow velocity in gasdynamics. 
The velocity v, i s  the analog of c, only in the sense 
that it is the boundary between the ellipticity and hyper- 
bolicity regions of Eq. (5), in analogy with the subsonic 
and supersonic regions in gasdynamics. The incom- 
plete analogy between a gas and the superfluid compo- 
nent of helium I1 (even as  T - T,) manifests itself also 
in the absence of an inflection point on the j,(u) curve 
(Fig. 3) ,  unlike the j(v) plot (cf. Fig. 42 of Ref. 19). 

7. Using two-velocity hydrodynamics, we regard the 
function p,(u) and those ensuing from it (Figs. 2-4) a s  
locally valid at any point of the inhomogeneous flow, 
whose inhomogeneity is thus connected only with the in- 
homogeneity of the velocity distribution. 

In the phenomenological theory of superfluidity, a s  
already noted in Sec. 2 (see footnote 2), p, depends not 
only on u but also directly on the spatial coordinates. 
Equation (14), which is analogous to (7), is valid only 
in the case of uniform flow. In non-uniform flow Eq. 
(14) is replaced by a differential equation that takes at 
v,= 0 the form 

Afcf-f"=(Vrp)'f, (17) 
where p= pS/pa ,us= (fi/m)grad cp, A V2 and V are  the 

operators of differentiation with respect to the coordi- 
nates measured in units of the coherence length I: 
= 2.73 10-'(~,- T ) - ~ / ~  [cm] (see Ref. 17). 

Together with (2), which can be rewritten in the 
form 

v (f Vrp) =0, (18) 

Eq. (17) makes up a system shown in Refs. 7 and 8 to 
be always elliptical. 

It appears that the difference thus observed between 
the Landau two-velocity hydrodynamics and the hydro- 
dynamics of the phenomenological theory may in prac- 
tice not be as great a s  might appear at f irst  glance. 
The point is that the volume of the liquid in which sub- 
stantial changes of the modulus of the wave function 
take place is bounded by layers of thickness of the or- 
der of the coherence length { (we have in mind the lay- 
e r s  at the walls and the layers in which are  concentra- 
ted the abrupt changes of the velocity and density-the 
discontinuity "surfaces"). With increasing distance 
from this layer Af falls off exponentially and Eq. (7) 
goes over into (14). Consequently the difference be- 
tween the situation expected at lower temperature and 
the situation as T - T, reduces to the fact that in the 
latter case the thickness of the discontinuity "surfaces" 
is of the order of the interatomic distance a ,  whereas 
at T,-T<< T, their thickness 5 is much larger than a. 

"1t is possible to use in place of (3) the Bernoulli integral of 
the Landau equation p(P, T ,  us)+ 0.5v:=const, where p i s  the 
chemical potential per unit mass. Only in the case of small 
v, can p be expressed in the form po(P, T)-  (p,,/2pk: and the 
result po(P, T)+ (p/2pk:=const obtained. At higher ve loc i~  
ties the last equation is not exact. 

')1n the phenomenological theory of superfluldity6 the lines p, 
=const and v,=const do not coincide in general, since p, de- 
pends on the coordinates not only through its dependence on 
v,, so that grad p,a (dp,/dv,) grad 0,. However, as shown in 
Refs. 7 and 8, even in this case the streamlines must coincide 
with the line v q =  const if the solutions of Eq. (4) are  to remain 
applicable. 

"we are  glad to thank V. L. Ginzburg for a question raised in 
connection with our paper8 (which contains preliminary re- 
sults of Ref. 7), the answer to which is the present article. 

' ) ~ n  Refs. 7 and 8 are  considered only planar flows. Equation 
(5) and the conclusions that follow i t  are  free of this limita- 
tion. We note that in the case of planar flows the two-dimen- 
sional equation (5) has, in contrast to (61, a discriminant 
p,dj/dv,. Thus, in both cases the sign of the discriminant is 
determined by the derivative 4/dvSr which can be rewritten 
with the aid of (3) in the form d j d h , =  p,(l -v2$vf), where v: 

z @ P  /dp,? . - --. - - 
5 ) ~ e  note that the invariant a [Eq. (1211 reverses sign at  

vS(3/7)'/'v,, as  does the invariant S [Eq. (13)l a t  us= (3/5)'/%. 
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Dielectric fluctuations in ultrathin metallic filaments 
V. N. Prigodin 
A. l? Zoffe Physimtechnical Institute, USSR Academy of Sciences 
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The Cooper and Peierls instabilities in a metallic filament with a cross section of several atomic units are 
investigated. It follows in the selfconsistent field approximation that although the Peierls transition 
temperature T, decreases with the filament diameter exponentially, the transition can be observable 
because of the large pre-exponential factor. The transition itself is represented as a sequence of transitions 
of the separate bands. Allowance for the fluctuations in second order of the renormalization-group 
method, within the framework of the multicomponent Fermi-gas model, shows that below the 
corresponding T, there is only short-range order in the system. The superconducting fluctuations suppress 
the dielectric ones near T,. It is shown with the aid of the "bosonization" method that this effect is due to 
the difference between the influence of the long-wave fluctuations of the electron density on these two 
types of instability. The different susceptibilities and critical exponents are calculated. 

PACS numbers: 71.30. + h, 74.40. + k 

1. lNTRODUCTlON pling between the filaments. In a filament, this pa- 
rameter i s  i ts  diamter d. When d i s  large we have the 

Metallic filaments with diameters of several atomic well-investigated object-the bulk metal. By decreasing 
units occupy, with respect to their physical prop- the filament diameter we can track the variation of cer- 
erties, a position intermediate between one-dimensional tain physical properties and see how new ones appear 
and three-dimensional systems. The spacing of the a s  the filament becomes one-dimensional. 
discrete energy levels corresponding to different states 
of the transverse motion turns out in such filaments 
to be larger than or equal to some energy scale that i s  
a characteristic of some considered phenomenon. This 
phenomenon has therefore a different behavior in a 
filament than in the bulk material, and turns out to be 
close to what should be observed in the one-dimensional 
case. At the same time, the large number of different 
transverse-motion states that participate in the phe- 
nomenon make thin filaments different from purely one- 
dimensional systems. 

A specific feature of a one-dimensional system i s  
i ts  inherent Peierls  in~ tab i l i ty .~  It manifests itself in 
the appearance in the system of a superstructure with 
a period ~ / D , ( E =  1) and i s  accompanied by a restruc- 
turing of the electron spectrum. A gap opens on the 
Fermi surface and some of the electrons lower the 
kinetic energy. The corresponding energy gain com- 
pensates for the loss of the elastic energy of the lattice 
and makes such a transition energywise favored. 

In the case of a filament, the appearance in the fila- 
ment of a superstructure with a period corresponding 

A similar physical situation i s  realized also in a to the Fermi momentum of one of the transverse- 
quasi-one-dimensional system made up of one-dimen- motion states produces an energy gain mainly on ac- 
sional metallic filaments that a re  weakly coupled.' count of the electrons corresponding to this state of 
There a r e  known experimental facts that point to a transverse motion, since the Fermi momenta of the 
similarlity between the physical properties of the two different transverse-motion state a r e  not commen- 
systems.' The three-dimensionality parameter for a surate, whereas the loss in the lattice elastic energy 
quasi-one-dimensional system i s  the transverse cou- is proportional to the number of atom in the filament 

636 Sov. Phys. JETP 51(3), March 1980 0038-5646/80/030636-08$02.40 O 1980 American Institute of Physics 636 


