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The cross section for the binding of electrons and holes into excitons is calculated for the case when the 
energy relaxation is due to the interaction with acoustic phonons. It is shown that the binding cross section 
exceeds the cross section for the capture of the carriers by attracting Coulomb centers and has a different 
temperature dependence. A comparison is made with the available experimental data. 
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1. INTRODUCTION 

The binding of electrons and holes into excitons in in- 
teractions with acoustic phonons can be naturally anal- 
yzed in analogy with the capture of carriers by attract- 
ing Coulomb The electron and hole a r e  
bound via highly excited states of the exciton, and then 
the bound pair loses energy by emitting acoustic pho- 
nons and diffuses in energy space into the region of 
negative values of the total energy. The electron-hole 
pair can be regarded a s  practically bound into an exci- 
ton if its total energy is negative and higher in abso- 
lute value than kT (T is the lattice temperature), inas- 
much a s  in this case the probability of the thermal dis- 
integration of the exciton is exponentially small. The 
pair binding i s  thus determined, just a s  capture of a 
carrier by a center, by the rate of energy-diffusion. 
However, a direct application of Pitaevskii's method: 
used in Refs. 1 and 2 to analyze capture by a center, is 
impossible in this case because there is no finite clas- 
sical diffusion coefficient in the space of the total ener- 
gy of the two particles. In fact, the "dynamic-friction 
coefficient7~ B(E) in the space of the total energy E of 
the two particles i s  defined a s  

- " 

where ~ , , c ~ , p , , p ~  a r e  the kinetic energies and state 
densities of the two'particles, u ( r )  = -e2/nr is the Coul- 
omb energy of their interaction, and n is the dielectric 
constant. We assume for simplicity that only the first 
particle interacts with the phonons [T,(&,) is the time 
of its energy relaxation. The ratio E, /T,(E,)] is the aver- 
age change of energy of the first particle (meaning also 
of the entire system) per unit time on account of acous- 
tic-phonon emission. 

Recognizing that 

we can easily calculate the integrals with respect to c, 
and c2 and reduce (1) to the form 

The integral in (2) diverges at short distances. (The 
characteristic length I ,  in terms of which the time of 
energy relaxation on the phonons is expressed depends 
neither on the energy nor on the temperature: 

where p,, and Ed are  the density of the crystal and the 

deformation-potential constant.) To understand the 
physical cause of this difficulty, we consider an elec- 
tron-hole pair with total energy E( I E  I - kT). At this 
total energy the pair has states with arbitrarily large 
particle kinetic energies c, and c,. These states cor- 
respond to small distances between the electron and the 
hole, so that the large negative potential energy of the 
particle is almost offset by the large positive kinetic 
energy. These states a re  the most favorable for the 
energy losses, since the rate of energy transfer 
depends only on the particle kinetic energy and increa- 
ses  rapidly (like c3h) with increase of the latter. The 
divergence in (2) indicates that i t  i s  precisely these 
states which play the principal role in the energy relax- 
ation of the pair. 

It is clear that the treatment of energy relaxation of 
diffusion in the total-energy space i s  meaningful when 
the pair distribution function depends only on its total 
energy, i.e., when all the. other variables that charac- 
terize the state of the pair vary in the course of colli- 
sion with the phonons much more rapidly than the total 
energy, and equipartition among them is established. 
At a low total energy and large kinetic energy of the 
particles (i.e., at  short distances) this i s  not the case- 
the rate of exchange between the energies of the gravity 
center and the internal energy of the pair becomes less 
than the rate of loss of the total energy. In fact, if the 
first particle emits o r  absorbs a phonon with momen- 
tum q, then the total energy of the pair changes by an 
amount AE =sq (where s i s  the speed of sound). A re- 
distribution between the internal energy and the energy 
of the center of gravity then takes place, and these 
energies change by an amount Ac =pZq/bl, where A1 i s  
the total mass of the pair and p2 is the momentum of 
the second particle?) The total-energy relaxation will 
be slower than the exchange between the internal and the 
translational energies of the pair if ~ T / A E  >> c , / ~ c .  
This inequality compares the number of collisions after 
which the total energy changes by kT (the scale of the 
distribution function) with the number of collisions after 
which the energy c, of the center of gravity changes by 
an amount on the order of E, itself. Substituting AE and 
Ac in this inequality and putting cc- (u ( and p, - (2m2 I U  I)'/', we obtain an estimate of the distances 
at which equipartition still occurs with respect to all  the 
variables except the energy E: 

If we compare this inequality with the restriction im- 
posed by quantum mechanics 
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(E, is the Bohr energy of the exciton), we see that at  
low temperatures the limitation (3) is more stringent 
than (4). Consequently the reasoning that leads to (2) i s  
inapplicable even in the classical region. 

Thus, the entire temperature scale can be divided into 
three regions. At high temperatures, when 

the most stringent is the inequality (4). It can be as- 
sumed in this case that the pair distribution function de- 
pends only on the total energy at all  internal-motion 
energies (it will be shown below that this is actually the 
case). The process of binding into an exciton can be 
regarded a s  a continuous descent in the total-energy 
space. The principal role in the energy relaxation, 
however, i s  played by distances on the order of the 
Bohr radius, and therefore the quantum description of 
the pair motion must be used in the calculation of the 
energy losses. C 

In the low-temperature region 

the pair distribution function i s  a function of the total 
energy only at the distances bounded by the inequality 
(3), which in this case is stronger than (4). The princi- 
pal role is played by distances that are  still in the clas- 
sical region but a re  such that the rate of relaxation 
of the total energy becomes comparable with the rate 
of exchange between the internal and translational ener- 
gies of the exciton. 

Finally, if the temperature is very low, 

then, a s  seen from (4), the mixing of the internal and 
translational energies does not manage to take place at 
all (even at distances such that lu I .=, kT). If the light 
particle interacts mainly with the phonons (m, < m,), 
the binding into an exciton i s  completely analogous in 
this case to capture by an attracting Coulomb center. 
We can use for the cross section formula (5) of our re- 
view: with In replaced by ?%,. 

The presence of scattering by the impurities increa- 
ses  the effectiveness of the mixing with respect to all 
the variables except the energy, and at sufficiently high 
frequency of the impurity collisions it may turn out that 
the exciton distribution function is a function of the total 
energy at all distances even at low temperature, when 
the inequality (5) does not hold. 

2. ESTIMATE OF THE BINDING CROSS SECTION 

We obtain in this section the binding cross section in 
the temperature intervals (5) and (6), accurate to nu- 
merical factors. For this purpose we express the bind- 
ing cross section in terms of the dynamic friction co- 
efficient B(E) in the space of the total energy of the 
particle pair, and estimate B(E) by using expression 
(2), in which the integration region is limited by the 
inequalities (4) and (3). 

The flux j in the total-energy space of the electron- 
hole pair is determined in the Fokker-Planck approxi- 
mation by the expression (the sign of j i s  chosen such 
that j > 0 on going towards lower energy) 

where E is the total energy of the pair and includes the 
kinetic energies of both particles and the potential ener- 
gy of their Coulomb interaction, and f(E) i s  the distri- 
bution function. The flux j is connected with the effec- 
tive cross section a for binding into an exciton by the 
formula 

here n and p are  respectively the densities of the elec- 
trons and holes, ( v )= (8k~ /np ) ' /~  is the average relative 
velocity of the electron and hole ( p  is the reduced 
mass). The flux i s  calculated per unit volume. The 
normalization volume is assumed to be unity hereafter. 

To calculate the flux j we employ the usual procedure 
(see Refs. 1-3). The solution of (8) at E < 0 i s  of the 
form 

Z 

f ( E )  = ( j l k T )  exp ( - E l k T )  exp ( E f / k T )  B-' ( E l )  dE' . 
-- 

(10) 

This solution must be joined at E = 0 with the Boltzmann 
distribution at positive energies: 

In the determination of the normalization constant A we 
have neglected the Coulomb interaction of the electrons 
and holes.') Joining the results and using (9), we ob- 
tain the effective cross section for binding into an ex- 
citon in the form 

To estimate B(E) we use Eq. (2), in which the region of 
integration is cut off by the inequality r >  Y,. The value 
of Y, must be chosen in accord with inequalities (3) and 
(4). In both cases the integral (2) is determined by the 
value of u(r) at the lower limit, where lu(r,) I>> kT, so 
that the quantity E under the integral sign can be neg- 
lected (since the significant values a r e  I E  I -s kT). Then 
B does not depend on the energy E and i s  proportional 
to Y;'/~. Taking for Y, the limiting values correspond- 
ing to inequalities (3) and (4), we write down the bind- 
ing cross section in the form 

where q and q 1  a r e  numerical factors of the order of 
unity. They a r e  calculated for various mass ratios in 
Secs. 3 and 4 in the rigorous solution of the problem. 
The numerical factor 4n/3 in (13) and (14) is chosen to 
facilitate the comparison with the expression for the 
cross section for carrier capture by an attracting 
Coulomb center1*' 
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3. CLASSICAL DIFFUSION IN  TWO-DIMENSIONAL 
ENERGY SPACE 

This section is devoted to the solution of the problem 
of pair binding in the low-temperature interval (6), 
when the motion of the particles in the essential bind- 
ing-energy region can be treated classically. The in- 
tegrals of motion for  a pair coupled by Coulomb inter- 
action a r e  the interval angular momentum, the momen- 
tum of the center of gravity, and the internal (or total) 
energy. Since the problem is isotropic, we can assume 
that the distribution function does not depend on the di- 
rection of the center-of-gravity momentum and of the 
direction of the internal angular momentum. It is thus 
necessary to consider the change of three variables: 
the center-of-gravity energy, the internal angular mo- 
mentum, and the total energy. 

The problem simplifies if the electron and hole mas- 
ses  differ greatly. We assume for the sake of argu- 
ment that only the light particle (m, << m,) interacts with 
the phonons. Then the angular momentum changes 
greatly in a single collision, but the center-of-gravity 
energy changes only in proportion to the mass  ratio m,/ 
m,. Since the collisions a r e  quasielastic, the total en- 
ergy also varies little. This allows u s  to assume that 
the distribution function depends only on two variables, 
E, and E ,  and the kinetic equation in terms of both var- 
iables can be written in the Fokker-Planck approxima- 
tion: 

The expressions for the flux components in two-di- 
mensional energy space a r e  of the form3' 

(The fluxes a r e  so defined that they a r e  positive in the 
direction of decreasing energies E and s,.) The diffu- 
sion coefficients a r e  connected with the mean squared 
losses of the total energy and of the mass-center ener- 
gy by the formulas 

The expression for B(&,,E) differs from the expression 
given by Eq. (1) for B(E) only in that the particlemo- 
menta p, and p, should be connected by the condition that 
fixes the mass-center energy prior to the collision, (p, 
+&)2/2hf =c,. It is thus possible to insert under the in- 
tegral sign in (1) the factor 

where 8 is the angle between the momenta p, and p,. 
Calculating the corresponding integrals and recognizing 
that m, << m,, we get 

To calculate the coefficient D we recognize that A&, 
=p, -q/M, where q is the momentum of the phonon 
emitted or  absorbed by the first  particle. Therefore 

2e.m: 
(AeJ2=- 

M2sa 
(AE)  a cosa 8, 

where 0 is the angle between p, and q. Averaging and 
again putting m, << m,, we get 

We present also the formula for the two-dimensional 
state density: 

Formulas (19), (21), and (22) pertain to the states of 
bound electron-hole pairs (excitons). It was assumed 
in their derivation that E, - E > 0. 

To find the distribution function f(c,, E )  under station- 
ary  conditions we must solve Eq. (16) with zero left- 
hand side: 

2 k ~  8 e," a f  a - + - 2 -  
3m,s2 a € ,  E,-E a € ,  aE E,-E 

and with boundary conditions 

The boundary condition on the line E =&, means that 
the highly excited states of the excitons a r e  a t  equili- 
brium with the free carr iers ,  which have a Boltzmann 
distribution [cf. (ll)]. 

We introduce the dimensionless variables 

As  will be shown later, for our analysis the important 
values of x and y a r e  of the order of unity. We can 
therefore neglect E in the denominators of (23) corn- 
pared with &,, assuming the condition ms2 << kT to be 
satisfied. Equation (23) then takes the form 

In the limit a s  m,s2/kT -0  the line E = c, changes into 
the line y =O,x> 0, so  that we can use a s  the boundary 
conditions for (26) 

The last condition is the consequence of the finite value 
of the derivative 8f/8cc a t  s, =O. 

The solution of the problem (26), (27) is 

It can be verified by direct substitution that the function 
(28) satisfies Eq. (26). The integrand in (28) has in the 
complex t plane a pole t =i/2 and branch points t = d / 2 .  
At y = O  and x >  0 we can close the integration contour in 
(28) in the upper half-plane and verify that the corres- 
ponding boundary condition is satisfied. At y =0, x > 0 
the integration contour in the expression that follows 
from (28) for af/8y can be closed in the lower half- 
plane and i t  can be verified that the latter of the bound- 
ary  conditions (27) is satisfied. 
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With the aid of the function (28) we can calculate the 
total exciton flux in the region of negative energies E: - 

j= JjEd&., (29) 
0 

where j, is defined in (17). We note that the flux j does 
not depend on the Value of E. It is convenient to calcu- 
late the flux through the zero level of the total energy 
(E =O). Using (17), (19), and (25) we can write the ex- 
pression for j in the form 

Using (28), we obtain j = ~ @ [ 2 ( k ~ ) ~ / 3 m , s ~ P ' ~ .  Substi- 
tuting the values of B, and A [Eqs. (19) and ( l l ) ]  and 
taking into account the connection between j and the 
cross section u [Eq. (9)], we obtain an expression for 
the cross  section for binding into an exciton (m, << m,): 

Expression (30) coincides with (13) at4' 17=(8/3.rr)1h (m,  
<< m,). 

To conclude this section, we discuss the form of the 
hot-exciton distribution function. Expression (28) for 
the exciton distribution function can be easily converted 
to a real form: 

ex/' cos {I/, y (2'- I )  '"1 
n 

dz, XKO. (32) 

We recall that x and y a r e  connected with the total ener- 
gy E and with energy of the center of gravity c, by for- 
mulas (25). Expression (31) and (32) [just a s  (28)] a r e  
valid a t  E << E,, i. e ., at  x << y2(kT/6m2s2). It is assumed 
here that the ratio kT/m,s2 is large. 

We consider first  the behavior of the distribution 
function a t  y <<l, i.e., a t  &,<< (kT)2/6m2s2. Then 

f (x, y) =Ae-", x>O, 

xco. 

It is seen that in this case f depends only on the total 
energy, i.e., equipartition over the states takes place 
a t  a given total energy. 

At y ;2 1 the distribution function becomes dependent 
on E ,  and decreases with increasing y.  For y >> 1 and 
y > 2 we have [it is convenient to start  out with Eq. (28)] 

The region in which (34) is valid exists only under the 
condition ( ~ , S ~ E , ) ~ / ~  >> kT. In the opposite case the 
condition y >> 1 cannot be satisfied if i t  is recognized 
that E,< EB (at E s kT). In this case equipartition over 
the states takes place a t  a given total energy in the en- 
t ire range of allowed values of &,. The classical ap- 
proach, however, is not valid here, since binding ener- 
gies of the order of E, become significant. This case 

will be considered in Sec. 4. 

We present, finally, the form of the distribution func- 
tion in the energy of the center of gravity for excitons 
with fixed binding energy E = C, - E. This distribution, 
which follows from (33), is shown schematically in the 
figure. I t  is seen that the hotter the exciton the deeper 
the level on which i t  is located. The distribution func- 
tion in E ,  has a maximum at  E ,  = E ,  so long as E ,  < (kT)2/ 
6m2s2. 

4. QUANTUM CALCULATION OF THE DYNAMIC 
FRICTION COEFFICIENT 

In the high-temperature interval (5) the distribution 
function of the electron-hole pair depends only on the 
total energy. This was demonstrated in Sec. 1 on the 
basis of the classical picture of the energy relaxation. 
In the interval (5), however, an  important role is played 
by distances of the order of the Bohr radius, so  that a 
quantum calculation is essential. 

We determine first  the condition for  equipartition of 
the energy of the center of gravity in the quantum limit. 
We write down the quantum expression for the probabil- 
ity w,,, of the transition between the states with princi- 
pal quantum numbers n and n r ,  averaged over the initial 
degenerate state and summed over the final one a t  a 
given mass-center energy C, =p2,/2M: 

Here q is the momentum of the emitted phonon, E ,  is the 
internal energy, 1 c, l 2  =ELq/2pos is the square of the 
modulus of the matrix element of the interaction of the 
f i rs t  particle with the acoustic phonons, and LY, is the 
number of phonons with momentum q. We have neglec- 
ted in (35) the phonon energy in the argument of the 
function, 

I I ( n ,  I ,  m I exp ( i s q r  ) 1 nr~'m' ) 1'.  (36) 

The summation in (36) can be carried out by changing 
to the momentum representation4: 

I,,, ( u )  = j d 3 p t d 3 p 2 ~ ,  ( P I ,  pa) G,.   PI+^, Pz+u) 3 

8n' sin np 
2 %+I]-z[n2f i2+l  I-'- G . ( P ~ ,  sinq ' 

Substituting Nu= kT/sq >> 1 in (35) and integrating over 

I I * 
hi cr 

FIG. 1. Schematic form of the distribution (33) at fixed exciton 
binding energy ci = I&- E (explanation in text). 

629 Sw. Phys. JETP 51(3), March 1980 Avakumov et aL 629 



the angles, we get 

where 

We a r e  interested in the transition probability a t  low 
total energy (E - kT) and large internal energy ( lc, I - c, 
-EB). If m, and m, a r e  of the same order,  then w,,.- v; 
if m, >> m,, then u << 1 and I,&) - u2 (n f nr) [this is 
easiest to see from Eq. (36)] and w,,. - ~(rn,/m,)~. Fi- 
nally, if m, << m,, then u >> 1, a s  seen from (37), I,,. - u-8 and w,.- ~(m, /m,)~.  The quantity w,,, gives the 

frequency of the energy exchange between the inner 
motion of the exciton and the motion of i t s  center of 
gravity. We compare now this quantity with the rate 
of energy loss, which can be obtained by substituting 
under the integral sign in (35) the energy lost in the 
emission of the phonon sq, replacing the factor 2N,+ 1 
by unity and summing over n r  <n. We then obtain 

The criterion fo r  the equipartition i s  the condition 
k/(k~w,,)<< 1. It is seen that if m, and m, a r e  of the 
same order, then this criterion coincides with inequal- 
ity (5) obtained from classical mechanics. If the mas- 
s e s  differ greatly, then the main contribution to the 
sum in (40) is made by transition without a change of 
the internal state (n =nr). If m, >> m,, then I,,. - 1 and 
the obtained equipartition criterion is again the inequal- 
ity (5). On the other hand if m, << m, then we obtain in 
lieu of (5) a more stringent condition5): an additional 
factor m,/m, must be inserted in the right-hand side of 
the inequality (5). 

We write down now the quantum expression for the 
dynamic-friction coefficient: 

B ( E )  =2z nZJ p, (e , )deb(E-6 , -en )$ ,  (41) 

where I? is defined by (40) (the factor 2 takes into ac- 
count the spin degeneracy6)). Since E - kT, and the 
main contribution to the sum (40) is made by the lower 
levels of the exciton, we can put E = O  in (41). Substi- 
tuting (41) in (12), we obtain Eq. (14) and an explicit 
expression for the numerical factor r: 

If m,<< m,, then we can take I,,. in (42) outside the 
integral sign at u=O. It is seen from (36) that Inn,(0) 
=6,.n2. From (42) we then obtain qr=ns/8  (we use the 
fact that Ep-' = 9/6).  We note that in this case the en- 
ergy relaxation takes place mainly for transitions with- 
in one quantum state of the exciton. (The contribution 
made to the energy relaxation by the hot excitons in the 

ground state is 60%) This does not mean that the tran- 
sitions between the quantum states a r e  insignificant 
and that the relaxation processes take place indepen- 
dently in individual states. When the inequality (5) is 
satisfied the situation is just the reverse,  but the ener- 
gy is lost just to transitions within one and the same 
state. Although the transitions between levels a r e  l e s s  
probable than transitions within a level, the fact that 
the energy loss takes place in small batches, AE 
- ( ~ , r n , s ~ Y / ~ ,  complete intermixing of the quantum 
states can take place within the time required for the 
energy to change by kT. 

We consider now the opposite limiting case m, >> m, 
(the light particle interacts with the phonons). Then the 
region of integration in (42) shifts a t  n z n p  into the re- 
gion of large u, therefore the corresponding terms in 
the sum a r e  small. On the other hand, in terms the 
sum with n =np - n can be integrated from zero to infin- 
ity. We have thus 

31;( rn; )1/2 J 
= , = - - u31., ( u )  cia. 

16 rn 

Calculation of the first  two t e rms  yields 71; = (fi/4) 
(m,/m,)'/" q; = ( 6 / 3 2 )  x (mz/ml)1/2, s o  that q r =  0.3+12 
(m,/ml)1/2. The contribution of the ground state in this 
case is -80%. 

5. EFFECT OF SCATTERING BY IMPURITIES 

A s  already noted in the Introduction, if the scattering 
by the impurities is the predominant momentum-relax- 
ation mechanism, then a situation can ar ise  wherein 
the distribution function, a t  binding energies up to c, 
=E,, depends only on the total energy, even a t  low 
temperatures. At E >  0 the distribution function is the 
B o l t z m a ~  function (11). In states with higher binding 
energies c, the exciton emits strong phonons with ener- 
gy - ( ~ ~ m s ~ ) ' / ~ .  At low temperatures [the criterion (6)] 
this energy loss suffices for the exciton to go over, in 
a single emission act, into a state with negative total 
energy JE I > kT, from which backward ejection is un- 
likely. 

Under these conditions the exciton flux from the re- 
gion of positive energies into bound states can be writ- 
ten in the form 

j -  j d3rj d e , j  de, j d e i ' - 4 e - E 1 k r p ~ ( e t ) p r ( e t ) ~ ( e : ,  el ' ) ,  

where c, and c, a r e  the kinetic energies of the particles 
prior to the phonon emission, ct is the kinetic energy 
of the first  particle after the phonon emission, E =cl 
+ cz+ ~ ( r ) ,  u(r) = -e2/ur, and w(c,, c;) is the probability 
of the transition with emission of a phonon by the first  
particle (see, e.g., Ref. 2). The integration in (43) is 
over the region defined by the inequalities E > 0 and 
Er = c;+ E,+ U(Y) < 0. The integral (43) diverges loga- 
rithmically a t  small r. The reason fo r  this divergence 
is that the classical analysis is not valid a t  distances 
smaller than the Bohr radius. The divergence can 
therefore be eliminated by restricting the integration by 
the condition r >  rmi. =e2/uE,. Since direct captures 
can take place only from states such that ( 8 c , m , ~ ~ ) ' ~  
> kT, the energy c, must be high enough, i. e., the par- 
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ticles must travel close enough to one another. Then 
E, - Iu('Y) I ,  and when account is taken of the foregoing 
inequality we get r < r,, = (8e2/x) [m,~~/ (kT)~] .  Calcu- 
lating the integral (43) subject to the indicated limita- 
tions of the integration region, we obtain with logarith- 
mic accuracy 

2n nps kT ez 8E.m,sZ 
j=---(-) ln-. 

3 1, m,sa xkT (kT) 
(44) 

From this we get, according to (9), for the binding 
cross section in the case of strong impurity scattering 

This expression is valid if the argument of the loga- 
rithm is large, i.e., if the criterion (6) is satisfied. 
Comparison of formulas (45) and (50) shows that the 
impurity scattering increases somewhat the binding 
cross section. 

6. COMPARISON WlTH OTHER CALCULATIONS 
AND WlTH EXPERIMENT 

The first to consider the binding of an electron and a 
hole into an exciton was Linnik? He calculated the 
probability of the transition of a free electron-hole pair 
into the ground state of an exciton with emission of one 
acoustic phonon. In such a process, owing to the al- 
most elastic interaction with the phonon, the total ener- 
gy of the electron-hole pair remains practically un- 
changed, so that the produced exciton is hot. The kin- 
etic energy of i ts center of gravity is equal to the sum 
of the binding energies of the exciton and the initial en- 
ergy of the pair. The transition into such a state does 
not yet constitute binding, since the hot electron can be 
easily ionized in one collision with the phonon. 

Barrau et  al.6 calculated numerically the probability 
of pair binding into an exciton, using two methods. The 
first consisted of solving the balance equations, in 
which account i s  taken of the transitions between the 
states of the continuous spectrum of the exciton and the 
four lowest quantum states, a s  well a s  transitions be- 
tween these two four states. It is assumed here that in 
each state the excitons have a Maxwellian mass-center 
energy distribution, i.e., that the transition between 
the quantum states is slower than the thermalization in 
a given state. Barrau et al? suggest that this calcula- 
tion i s  valid at low temperatures. At low temperatures, 
however, transitions from the continuous spectrum go 
mainly to highly excited states of the exciton, and not 
to low-lying ones, and the mixing between these highly 
excited states is faster than thermalization in each of 
them. The second method, which Barrau et ~ 2 . ~  regard 
a s  valid for calculations at high temperatures, uses 
the Lax semiclassical approach.' The sticking-probab- 
ility approximation assumed in Ref. 6 means that, to 
become bound into an exciton, the electron and the hole 
must give up to the lattice an energy not less than kT 
in one collision with the phonon. In fact, however, 
at high temperatures the pair descends continuously 
in the total-energy space. In addition, at temperatures 
kT > (ms2~,)1h it is important that the principal energy 
losses take place in hot-exciton states with total energy 
-kT and with a binding energy corresponding of the 

lowest quantum states (see Sec. 4). 

We mention also a paper by Nolle; who estimated 
numerically the probability of pair binding into an ex- 
citon for Si and CdTe. 

We know of only one experimental studyg devoted to a 
direct investigation of the cross section of the binding 
of an electron and a hole into an exciton. The value ob- 
tained for the binding coefficient is u(v) =0.9 ~ 1 0 - ~ T "  
cm3/sec (where T is in degrees Kelvin), in the temper- 
ature interval 4-13 K. 

In this temperature interval the binding of electrons 
and holes into excitons is due to classical diffusion in 
energy space [low-temperature interval of type (5)]. 
The numerical coefficients in Eq. (5) cannot be used 
directly for silicon, because the masses of the elec- 
trons and holes, a s  well a s  the effectivness of their 
interaction with the phonons, a re  comparable. Suppos- 
ing, however, that the binding into exciton is due to the 
interaction of the holes with phonons, then Eq. (13) 
yields o(v) = 5 . 10-3T-2 cm3/sec and the same result is 
obtained from (13) if it is assumed that the principal 
role is played by the electrons. 

Thus, the theory leads to a correct temperature de- 
pendence, but overestimates the binding coefficient. 
We note that the constants of the deformation potential, 
which enter in the characteristic length 1, [see Eq. (13)], 
were taken by us from data on the acoustic mobility of 
the free holes and electrons (see Ref. 2). It i s  possible 
that the discrepancy in the values of the theoretical and 
experimental binding coefficients a r e  due to the fact that 
the interaction of the free electrons (holes) with the 
phonons differs from the interaction of the carriers 
bound into an exciton." 

The authors thank G. E. Pikus for helpful discussions. 

"The change of the energy of the center of gravity is AE, 
= [(pi+ h)2 - (pi+ &+ q ? ] / 2 ~ ,  and when the first particle col- 
lides with the phonon i t s  momentum only rotates and hardly 
changes in magnitude, @i+ q)2 = p12. Therefore A & ~ = & ~ / M .  

 his neglect is valid if the condition n(e2/%kckT)' << 1 is satis- 
fied. 

 he cross terms can be shown to be of higher order of small- 
ness. 

4 ' ~ t  can be shown analogously that at mi >> m2 we have r)= ( 3 d  
32)'12 and the distribution function retains the same form, 
but now y2 =&cmi2s2 /mZ(k~)2 .  

 his difference is due to the fact that in  the quasiclassical 
region, where &,- E,,, <<EB. the momentum q of the emitted 
phonon is of the order of p i ,  so that the energy is sq - (misZ&)"2. On the other hand, in the region where the dis- 
tances between the levels a r e  of the order of EB, the phonon 
momentum is of the order of the momentum pl+pz of the cen- 
t e r  of gravity, and the energy of the obtained phonon is of the 
order of ( M S ~ E ) ' ~ ~  (& is the energy of the mass center). At 
mi 2 mz these energies are  of the same order, but at mi << mz 
they differ substantially. 

6 ' ~ h e  result for the binding cross section is, of course, inde- 
pendent of whether the electron has a spin or  not. However, 
since we include the spin factor of two in the state density, 
i t  must be taken into account also in the quantum formula 
(41). 
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Velocity dependence of the density of the normal 
component, and hydrodynamics of superfluid flow at high 
velocities 
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It is shown that the dependence of the densities of the normal and superfluid components of helium I1 on 
their relative flow velocity gives rise to a velocity dependence of the type of the equation to which the 
hydrodynamics of the superfluid flow reduces. As a result, hyperbolicity regions enclosed in the ellipticity 
region of the equation for the velocity potential (similar to "supersonic zones in subsonic flow") can arise in 
nonuniform flow around comers and roughnesses. The critical velocity of the transition from the elliptic type 
to the hyperbolic type is determined and its temperature dependence is calculated. 

PACS numbers: 67.40.Bz, 67.40.Hf 

We discuss in this article the circumstances that 
reveal certain singularities of supersonic-flow hydro- 
dynamics, which escape attention when an analogy is 
drawn with the flow of an ideal classical incompress- 
ible liquid. For  example, it must be assumed that when 
a superfluid flows around sharp corners o r  convexities 
on a solid surface there exist in the vicinities of the 
latter regions where the continuity equation changes 
from elliptic to hyperbolic. These regions a re  similar 
to  the supersonic inclusions in superfluid flow, which 
a re  know from gasdynamics (see, e.g., Refs. 1 and 2), 
and whose presence is accompanied usually by forma- 
tion of discontinuity surfaces (shock waves3). It seems 
to us that these circumstances a r e  of importance for 
the hydrodynamics of helium I1 in general, and when 
vortex formation is considered in particular. Their 
physical basis is the dependence of the density of the 
normal component on the relative velocity of the com- 
ponents, as determined by Khalatnik~v.~ 

1. To demonstrate the hydrodynamically important 
consequences of the velocity dependence of the compo- 
nents of helium II, we confine ourselves to the relativ- 
ly simple case of stationary isothermal flow of the su- 
perfluid component while the normal component is at 
res t  (v,= 0) and in the absence of an external-force 
field. The system of equations of two-velocity hydro- 
dynamics4n5 reduces in this case to the equations that 
specify the potential character and the continuity of the 

flow: 

rot v.=o, (1) 

div j,=O, (2) 

where j,= p,v,. The continuity equation for the entropy 
is satisfied identically. The continuity equation for the 
momentum and the equation of motion of the superfluid 
component yield one and the same equation, which de- 
termines the pressure gradient1'. 

grad P=-p, grad ('l,~,'). (3) 

The system of hydrodynamic equations is supplemented 
by the dependence of p, on v,, the concrete form of 
which is immaterial for the time being (see Sec. 4 
below). 

2. Equation (2) can be transformed in the following 
manner: 

p. div v.+v, grad p,=O, ( 2 4  

o r  
dps 

PO div v.+ -v,grad dw. ws=O, 

where v, = I v, ( and dp,/dv, = a&/a v, + (ap,/a P) (dp/dv,), 
and according to  (3) we have dp/dv, = -p,v,. It follows 
from the last two equations that the solutions of the 
Laplace equation that holds for an incompressible fluid 
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