
FIG. 2. H o t  of the distribution nyQ) at y= 1, 1.5, and - (the 
solid lines, reading down); dashed-temperature approximation 
for y=-. 

consideration that f(5/8) is that limit to which ny([) 
must tend in the case of a "gradual" turning on of the 
interactions between the electrons and 9 is constant, 
s o  that in final analysis the thermalization condition 
voo>> is satisfied. Calculation of the field contribu- 
tion to the resistivity in the temperature approximation 
leads to the equation 

Comparison of (3) and (10) a s  functions of the para- 
meter y shows that the difference between them in the 
entire investigated interval 1.1 < y < 10 is less than 1%. 

Thus, for the considered simplest model of electrons 
with isotropic and quadratic dispersion law, and pho- 
nons with a Debye spectrum, in the absence of colli- 
sions between the electrons, the temperature approxi- 
mation describes an integral characteristic [that de- 
pends on the distribution function ny([)] such as  6ppTh(E) 
with very high accuracy. The possible cause of this 
accuracy, in our opinion, may be that both 9 and 6&3E) 

a re ,  in the model investigated by us, actually moments 
of the same order of the function nr([). Therefore, al- 
though the functions ny([) and f l [ / Q ( y ) ]  differ insignific- 
antly (but still noticeably, see Fig. 2) ,  the proximity of 
6z,h(E) to 6pg(E) can be of quite high order,  since @ 
= py by definition. This in turn leads to the assumption 
that if we consider in the temperature approximation 
defined above the physical responses corresponding to 
moments of ny(O of a different order than p,, then the 
difference between these responses and the "true" ones 
should be more noticeable. 

We remark also that by combining Eqs. (6) and (10) 
we see  that from the connection between the experimen- 
tally observed quantities3 6p,Th(~) and 9, the electron- 
phonon interaction constant1 a drops out in the temper- 
ature approximation. Namely, a linear connection ex- 
ists of the type 

6pDhT(E) =49/3joa. (1 1) 

In conclusion, the authors thank A .  A .  Motornaya for 
great help with the computer calculations. 

"we note, however that we were unable to obtain the exact 
form of a(y), primarily because of the nonlocality and non- 
linearity of the investigated equation. 
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Infrared absorption of light by small-scale fluctuations in 
compensated semiconductors 

I. P. Ipatova, A. Yu. Maslov, and A. V. Subashiev 
A. F. Ioffe Physicotechniral Institute. USSR Academy of Sciences 
(Submitted 30 August 1979) 
Zh. Eksp. Teor. Fiz. 78, 1228-1236 (March 1980) 

We calculate the absorption coefficient of light in transitions between energy levels of small-scale fluctuations 
of impurities in weakly doped compensated semiconductors. The absorption spectrum is hydrogenlike. The 
shape of the absorption line corresponding to a transition from the ground state to the first excited state of the 
fluctuations is calculated. It is shown that the line width is due to deviation of the fluctuation shape from 
spherical. 

PACS numbers: 78.50.Ge 

The fa r  tail of the state density in doped semiconduc- tween the energy levels of a small-scale fluctuation. 
tors is determined by the small-scale fluctuations The frequency range of the investigated transitions lies 
whose potential coincides with the potential of the ef- in the fa r  infrared or  in the submillimeter region. 
fective point charge Z > 1.' Such a system has hydro- 
genlike energy levels. This paper discusses the pos- To observe the transition between the levels of such 
sibility of direct optical observation of transitions be- a small-scale fluctuations i t  is necessary that the state 

619 Sov. Phys. JETP 51(3), March 1980 0038-5646/80/030679 05$02.40 O 1980 American Institute of Physics 619 



density near the Fermi level be determined precisely 
by these small-scale fluctuations. This situation is re- 
alized in weakly doped and strongly compensated semi- 
conductors with a correlated arrangement of the im- 
purities. The correlation is due to repulsion between 
the impurities at the temperature at which the sample 
is prepared.' In this case the radius of the large-scale 
fluctuations is limited by the ion screening radius r, 
= ( x  ~ ~ / 8 r ~ e ~ ) ' / '  where To is the diffusion-quenching 
temperature. 

As shown in Ref. 1 (p.342), a t  energies higher than 
Ecl, where 

E,,=(E,'T,)'" (Nas)'"L''l(T,), 

[where D(To) is a logarithmic function of the tempera- 
ture], the large-scale fluctuations turn out to be sup- 
pressed and the state density is determined by the 
small-scale fluctuations. Here Eo is the energy of the 
ground state of the isolated impurity, a is the Bohr 
radius, and N i s  the total concentration of the impuri- 
ties. 

The upper limit of the region of the existence of the 
small-scale fluctuations is determined by the repulsion 
of the donors from one another and i s  equal to  

Ec,=TaL (To). (2) 

In the region of concentrations that satisfy the inequal- 
ity To> Eo(Na3), the condition Ecl < Ec2 is satisfied and 
there exists an energy interval in which the state den- 
sity is determined by the small-scale fluctuations. 

The degree of compensation k needed for the Fermi 
level to lie in the same interval Ecl < p : Ec, can be ob- 
tained from the condition that the number of occupied 
states below the Fermi level be equal to  the total num- 
ber of the electrons (see Ref. 1, p. 373). In the case of 
a weakly doped semiconductor this condition yields 

1-k=(Na"-'(pIE0)"'(L(p))-" exp {- (p/E0)"'L(p)}. (3) 

It is shown here that the frequency dependence of the 
absorption coefficient of the electromagnetic radiation 
is determined by the shape distribution of the small- 
scale fluctuations having close values of the charge. 
The absorption line width is small compared with the 
level spacing. Accordingly, the absorption spectrum 
has a hydrogenlike structure. The shape of the absorp- 
tion line corresponding to  the 1s -- 2p transition is close 
to Gaussian near the line center and is asymmetric on 
the line wings. 

1. CONNECTION BETWEEN ABSORPTION 
COEFFICIENT AND THE LEVEL-PAIR 
DISTRIBUTION FUNCTION 

The coefficient of light absorption due to electron 
transitions from the ground state to the f i rs t  excited 
state, within the limits of one small-scale fluctuation, 
is connected with the real  part of the electric conduc- 
tivity of the crystal by the relation 

where 

Here ( E,(J(E,) is the matrix element of the current 
density; n, (E) is the probability of occupation of an 
electron level with energy E; p(El, E,) is the distribu- 
tion function of the pair of levels between which the op- 
tical transition takes place. The problem reduces thus 
to a determination of the function p(El, E,), which can 
be obtained by using the optimal-fluctuation method.' 

The energy spectrum of the small-scale fluctuation is 
similar to  the spectrum of a multiply charged atom,' 
with the ground state for this fluctuation determined by 
the spherically symmetrical optimal fluctuation. For a 
spherical fluctuation the first  excited state to which an 
optical transition from the ground state is possible is 
ap-type threefold degenerate state. In the calculation 
of the absorption line shape, however, account must be 
taken of the possible deviations of the shape of the fluc- 
tuation from spherical, which leads to a splitting of the 
degenerate levels of the excited state. 

In the theory of disordered systems it i s  necessary 
to  take into account in the calculation of the state den- 
sity, with exponential accuracy, only the contribution of 
the ground states of the fluctuation wells. In the calcu- 
lation of the absorption coefficient i t  is necessary to 
consider the fluctuations that lead to a maximum split- 
ting of the level of the excited state from i ts  position in 
the sperical well. Since it i s  not known beforehand 
which of the three degenerate levels i s  most strongly 
detached, i t  is necessary, in the calculation of the op- 
timal fluctuation, to consider the entire triplet of ex- 
cited levels. 

2. CALCULATION OF THE OPTIMAL-FLUCTUATION 
FORMULA 

According to Ref. 3, the probability of formation of a 
fluctuation characterized by a specified deviation of the 
impurity concentration from the mean value f (r) = N(r) 
- N  i s  

W { f )  =exp [ -52 if) I .  (6)  

where the change in the entropy a, due to the onset of 
the fluctuation f ,  is equal to  

9 (f} = - 

In the energy region of interest to us the state density 
is determined by the position of the ground-state level 
in small-scale fluctuations that a re  spherically sym- 
metric in shape and a r e  characterized by a total charge 
2. To find the level-pair distribution function that de- 
termines the light-absorption coefficient according to 
(5) i t  is necessary to consider, besides the ground 
state, also the excited states of the fluctuation well in 
which the optical transition is allowed. At a given dis- 
tance between the ground and excited states, equal to 
the light-quantum energy, the shape of the optimal 
fluctuation can differ significantly from spherical. In 
this case the procedure of finding the optimal fluctua- 
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According t o  (14)-(16) the difference between the 
shape of the optical fluctuation and a sphere is deter- 
mined by the angular dependence of the quantity xt)(r). 
The asymmetry of the fluctuation depends on the ratio 
of the parameters a, and a',). In the calculation of (15) 
and (16) we shall employ, a s  usual, the assumption that 
the optimal fluctuation falls off very rapidly at short 
distances 

tion is the following. 

The positions of the ground and excited levels of the 
fluctuation well a r e  determined by the Schrodinger 
equation 

where w C V C ~ )  i s  the potential energy of the electron in 
the well produced by the fluctuation f .  In the linear 
screening approximation the potential V Cf} is equal to 

an assumption that will be justified later on. Substitu- 
ting (10) in (15) and (16) and calculating the correspond- 
ing integrals, we have 

ale2 2 
x i = T ~ i [ ~ - T r 2 p ~ ] ,  (1 8) To solve Eq. (8) we use a variational method and choose 

hydrogenlike trial  functions that satisfy the orthogonal- 
ity condition i l l  

x:l)(*) = -- 4 
e2 1 + - P . ( c ~ s f i ) r ~ g , ~  

x 2 1  1.5 1 
y,=cos 6, y,, ,=2-''"e*'vsin 6 .  (10) 

Here pl and p, are  the variational parameters deter- 
mined from the condition that the energy eigenfunctions 
A, and ) of Eq. (8) be minimal. The level correspond- 
ing to the first  excited state i s  split in the field of the 
nonspherical fluctuation. The optimal fluctuation should 
minimize the functional 0 Cf} of (7) under two condi- 
tions: 

n, (f) =-E,,  (11) 
A*{f )=-Et, (12) 

where P,(x) = ( 3 2  - 1)/2 is the second Legendre polyno- 
mial, and x1(r) varies a s  a function of r over distances 
x = ((rle2p~/n)-1/2. If this characteristic length is to re- 
main less  than l/&, we must assume 

t , = a l e Z ~ , / x ~ l .  (22) 

Substituting (18)-(21) in (14) and using (22), we get 
where El and E, a r e  fixed positions of the levels of the 
ground and excited states. 

It i s  not clear beforehand, however, which of the 
values corresponds to the largest fluctuation prob- 
ability. It i s  therefore necessary to  consider the trip- 
let of excited levels simultaneously, and substitute in 
(12) that value of A';" which corresponds to the highest 
probability W from (6). 

where 

( 1 1  ez PI 
t. = [al +a:) +a:'' I--, 

x 2 

and the paramter y characterizes the asymmetry of the 
fluctuation shape and is equal to 

The optimal fluctuationf(r) i s  determined from the 
condition of vanishing of the variation 

The fluctuation size, which characterizes the shape 
asymmetry, must also satisfy the condition (17). This 
imposes the following limitations on the range of vari- 
ation of the parameter y: 

where a, and (Y'," are  indeterminate Lagrange multi- 
pliers that a re  subsequently determined from (11) and 
(12). 

3. DISTRIBUTION FUNCTION OF LEVEL PAIRS Varying (7) and (8) with account taken of (9) and sub- 
stituting the resultant expressions in (13), we obtain an 
equation for the optimal fluctuation 

We calculate now the energy of the ground state from 
Eq. (B), using for the potential VCf}  the expression (9) 
in which f is replaced by the optimal value off from 
(23). We have 

where 
ez exp {- I I-r'l /re} 

~ ~ ( r ) = a , - ~ d ~ r ' l ~ ~ ( l r ' l ) l ~  x lr-r'l where Z is the charge of the optimal fluctuation, equal 
to  

exp{- lr-r'l/r.} 
1 r-r' 1 

X2ii 

Z = dJr f (r) = N e f ~ + f ~  x" 
(l+y) (2-27)'" ' 

We must thus calculate the functions X, and X';". The 
level-pair distribution function is then obtained by sub- 
stituting f ( r )  in Eq. (7). 

The variational parameter Pl is determined from the 
condition aEl/a& = 0. It equals, when (22) i s  taken into 
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account, the reciprocal of the Bohr radius of a hydro- 
genlike point atom with charge 2: 

b,=Z/a .  

Substituting (29)  in (27)  we get 

The energy of the excited state is calculated by an an- 
alogous procedure. For each wave function of the ex- 
cited state (10)  we obtain from the Schrodinger equation 
( 8 )  the values of A? and the variational parameter p,. 
At our accuracy we have 

and 

At fixed y ,  the fluctuation, in accord with ( 2 2 ) ,  is an 
allipsoid of revolution, prolate at y > 0  and oblate at 
y  < 0  along the z axis. In such a fluctuation the level of 
the first  excited state is split in accord with (32)  and 
(33).  At y > 0  the level A'," shifts downward by double 
the upward shift of the levels A?)  and hi3) relative to the 
positions of the levels for a spherical fluctuation. At 
y  : O  the sign of the shift of a l l  three levels is reversed. 
The largest contribution to the probability ( 6 )  of interest 
to us is made by the level A:'), whose shift is maximal. 
It is therefore necessary in fact to substitute in the con- 
dition (11)  precisely A',". The equation 

ZE, 3 
- h : l ' = ~ z = T [ l + -  7  

20ti ( l + y )  (1-21) I 
together with (30)  interrelates the parameters t,, t,, 
and y. The third relation between them i s  determined 
by the condition that the probability ( 6 )  be a maximum. 
To calculate the probability we substitute in (6 )  the ex- 
pressions (22)  and (29) .  We obtain 

E  Ih 3 t ,  31" 
D ( f )  = (2) [l,+"- 1 + -- + 

2 r ,  ( 1  ( I )  I (34 )  

From the condition that the maximum condition for the 
probability (34)  we have 

The system ( 2 9 ) ,  (32 ' )  and (35)  can be solved in the 
cases of weak and strong anisotropy of the shape of the 
fluctuation. In the case of weak anisotropy it  is possible 
to expand in these equations in terms of the parameter 
y  :: 1  and retain the terms proportional to yZ.  We then 
obtain 

where 

AE?=E2-'/,E,, 

and L(E) is defined in ( 1 ) .  

The probability distribution for the position of the 

level E, a t  fixed El has a Gaussian form. The width of 
the distribution turns out to be 

The characteristic energy AE, that determines the ex- 
ponential fall-off of the state density near the level El 
i s ,  according to Ref. 1 ,  

Therefore the width of the distribution of the excited 
state in terms of the parameter 

is larger than the value of AE, determined by the 
ground state. It must be borne in mind, however, that 
the large numerical factor in (38)  causes the width of 
the distribution of the excited level actually to be lar- 
ger  than AE, only at very large values of E l .  

In the case of strong anisotropy, the behavior of the 
function ( E l ,  E,) from (34)  turns out to  be different at 
AE,> 0 ( ~ - - ~ / 2 )  and AE, <O(y-  - 1) .  In these two cases, 

According to (41)  and ( 4 2 ) ,  the distribution of the ex- 
cited states turns out to be asymmetric at large AE,. 
We note that just as in the region of small AE, the dis- 
tribution of the excited levels depends on the position 
El of the ground state in the fluctuation. 

4. DISCUSSION OF RESULTS 

Substituting (36)  in ( 4 )  we get 

X [ n , ( E , ) - n l ( E z )  lexp ' - - L ( E i ) + -  3 40- : I z  L Z ( E , )  11 

Using the expression for the wave functions ( l o ) ,  we 
can calculate the matrix element ( E , ( j  IE,) , which, nat- 
urally, has no exponential dependence on the energy. 
In our calculations, performed with exponential accur- 
acy, i t  can be regarded a s  constant. We then have at 
T = O  

It is seen from (44)  that a t  the frequency Ew,,= 3/4E1 
corresponding to  the transition between the ground and 
excited states of the spherical fluctuation, the absorp- 
tion coefficient is maximal. If the quantity (AE;)'/' 
from (38)  is larger than AE, from ( 3 9 ) ,  then the quan- 
tity that decreases rapidly in the integral (44)  is the 
first  factor, which takes into account the fall-off of the 
state density. Then 
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At AE, >  AX)"^ and at frequencies lower than w,, the 
line shape is also described by (45). For  frequencies 
higher than w,, the drastically varying quantity is the 
last exponential factor in ( 4 4 ) ,  which takes into account 
the broadening due to  the deviation of the shape of the 
fluctuation from spherical. The absorption line shape 
duplicates in this case the variation of the state density 

In a region far  from the center of the absorption line, 
a t  E,> 1/4E1(w< w,,) we have 

and a t  w > w,, 

t r a  connected with transitions inside the small-scale 
fluctuations i t  is necessary to satisfy a large number of 
rather stringent conditions. The formulas obtained a r e  
valid when the depth of the ground-state level is much 
l ess  than the width of the forbidden band E, . On the 
other hand, the small-scale fluctuations of the multiply 
charged atom type determine the state density f a r  
enough from the edge of the forbidden band. It follows 
from (3) that a t  Na3 = 0.1 and T, /E,  = 10 the Fermi level 
passes through an energy interval in which the state 
density is controlled by the small-scale fluctuations a t  
a degree of compensation 1 - k <lo-'.  The concentration 
of the small-scale fluctuations, which determines the 
absorption coefficient, is then of the order of ( 1  - k)N 
~ 1 0 - ~ N .  Since the coefficient of light absorption by the 
fluctuation wells is close to the absorption coefficient of 
shallow impurities having the same concentration, ob- 
servation of this spectrum calls for measurement ap- 
paratus of high sensitivity. In semiconductors whose 
donor activation energy lies in the submillimeter band, 
such measurements a re  feasible by using submillimeter 
t e~hnology .~  

The authors than A. L. ~ f r o s  for helpful discussions. 
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For experimental observation of the absorption spec- Translated by J.  G. Adashko 

Dynamic characteristics of EPR signals of saturating 
systems 

1. Z. Rutkovskl and G. G. Fedoruk 
Research Institute for Applied Physics Pmblems of the Belorussian State Universiv 
(Submitted 12 September 1979) 
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An EPR investigation of the dynamics of the saturation of spin systems has revealed that, in contrast to the 
Torrey model, the frequency of the oscillations of the absorption signal does not depend on the detuning from 
resonance, and that there are no oscillations of the dispersion signals. The results are explained by taking into 
account the nonequilibrium awustic waves excited in the sample by the radio-frequency field. 

PACS numbers: 76.30. - v, 72.50. + b, 43.35.Q~ 

Direct investigations of the dynamics of saturation of transition process, frequently called Torrey oscilla- 
spin systems a r e  carried out by observing, in time tions or  transient nutations, can then be 
scale, the establishment of their quasistationary state This effect is connected with the nutational motion of 
under the influence of radio-frequency radiation after a the magnetic-moment vector, which manifests itself in 
jumplike establishment of resonance conditions. A oscillations of the dispersion ( X I )  and absorption ( x u )  
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