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The distribution function of the hot electrons from a thin metallic film in a "heating" constant electric field E 
is obtained at a finite thermostat temperature T in the case when the temperature approximation [M. I. 
Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)l is not applicable. This function 
is used to calculate the phonon contribution to the resistivity increment 6pph '(E) that is nonlinear in the 
field. It turns out that 6pPb ' ( E )  agrees quite closely (within less than 1%) with the analogous quantity 
6Fp, '(E) calculated in thecited temperature approximation of Kaganov et 01. 

PACS numbers: 72.20.Pa, 72.15.Eb 

1. In our preceding paper' we obtained the distribu- only the only "external force'' that shapes the form of 
tion function of the electrons from a thin metallic f i lm n([). On the other hand if T- 0 this is no longer the 
in a constant and homogeneous electr ic  "heating" field ca se ,  since the form of n( t )  a s  E -  0 i s  shaped in the 
E fo r  the case when the conditions of the temperature zeroth approximation by the thermostat with a co r r e s -  
approximation of Kaganov, Lifshitz, and Tanatarovl a r e  ponding slowly decreasing exponential asymptotic be- 
not satisfied, and the lattice temperature is T = 0. The havior. 
initial kinetic equation corresponding to this problem, 
for  a distribution function that depends on the electron 
energy, was a nonlinear integro-differential equation 
without a smal l  parameter .  It i s  reduced here  by a 
number of transformations to a nonlinear differential 
equation of fourth o rde r  with nonlocal boundary condi- 
tions. An investigation of the lat ter  has made it possi- 

At the s ame  t ime i t  is physically obvious that turning 
on a thermostat  with T- 0 ,  while changing substantially 
the analytic character  of the exact  solution of the prob- 
l em,  cannot nevertheless a l t e r  n(5) substantially in the 
characterist ic  region of energy variation (determined 
in this limiting case  by the quantity T,>> T). 

ble to obtain the analytic form of the asymptotic distri- F o r  a numerical solution of our problem we had to use 
bution function n(5) a s  t - * ([ is the dimensionless methods different f rom those employed in Ref. 1 .  A 
energy of the electron r e c k o n ~ d  f rom the Fe rmi  level). brief description of these methods and the results  ob- 
It turned out that n(()ae~p(-s55'2), i .  e . ,  i t  decreases  tained through their  use (which duplicate, naturally the 
much more  rapidly than the function n,,([) with pure ex- results  of Ref. 1 in the case  y-* and a r e  thus indepen- 
ponential asymptotic form n,,(<)md' (5-*), which i s  dent check on the validity of the numerical solution 
characterist ic  of an  equilibrium distribution. Nonethe- obtained there) a r e  given below. In addition, we salcu- 
l e s s ,  a s  shown by a computer integration of this prob- late in the present  paper the field contribution 6 ~ ; h ( ~ )  to 
lem: the distribution function n(5) in the characterist ic  the phonon-induced resistivity of the metal, for  the 
energy variation region [ C 2 differed little from an purpose of estimating the extent to which the difference 
equilibrium Fe rmi  function with some effective field- we found between the distribution function and the "tem- 
dependent temperature T, . perature" Fe rmi  fungtion influence such a s  integral 

The present paper is a d i rec t  continuation of our pre-  
characterist ic  a s  b & i ( ~ ) .  We note also that we shall 
not dwell in grea ter  detail on the formulation of the 

ceding paper' (see footnote 5 there) ,  and generalized the problem, on the notation, and on.the derivation of the 
results  obtained there a t  T = O  to the case of an arbi-  kinetic equation, s ince everything with important bear- 
t r a ry  temperature of the thermostat. It i s  important ing on these questions is contained in Ref. 1 .  
here to note that this generalization does not mean 
merely that the calculation method of Ref. 1 i s  made 2.  We begin the analysis of our problem with a re-  
more complicated because of the appearance of the ad- mark  that the use in Ref. 1 of a nondimensional kinetic 
ditional parameter  T #  0. In fact ,  simple physical con- equation with respect  to T, is not convenient for  the 
siderations show that the case T=O, in the sense of the ca se  presently of interest  to us ,  that of an arbitrary r a -  
study of the asymptotic behavior of n([) a s  t-  *, i s  tio of T, and T ,  since i t  does not admit of a direct tran- 
special, wherein arbitrari ly smal l  T # 0 convert the sition to the limiting cases  of weak (E- 0, T = const) and 
asymptotic function obtained there  into the exponential " strong" (T- 0,  E = const) superheating. Therefore, 
eat, where a should depend on the parameter  y =T,/T." bearing in mind the desired analogy with the tempera- 
This is particularly obvious in the case  E -  0,  when the ture  approximation of Kaganov, Lifshitz, and Tanatar- 
asymptotic form of the distribution function is "im- ov? we make the kinetic equation (2) of Ref. 1 dimen- 
posed" by the thermostat, i. e. , n( t )  - d' ([ - "). The sionless with respect  to the quantity 0, defined by the 
special character  of the asymptotic form of n([) ob- relation 
tained in Ref. 1 a t  n = 0 is apparently connected physic- 

G J ~ = ? - + T ,  ,, 
ally with the fact  that a t  T = 0 any arbitrari ly smal l  (but 

(1) 

finite) electric field is "heating" in the sense that i t  is where T, is defined a s  in Ref. 1 [ ~ q .  (5)]. Thus, if 
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now ( - ( E  - &=)/@ and y s 8 / T ,  then the kinetic equation 
for n(5) takes the form 

0 

It is easily seen that in the limit a s  T- 0 (y- m) Eq. (2) 
goes over into Eq. (6) of Ref. 1. At E=O (y=l )  the 
left-hand side of (2) vanishes and the solution of (2) is, 
as i t  should be, an equilibrium Fermi distribution func- 
tion with a lattice temperature T. 

To calculate the field dependence of the phonon-in- 
duced resistivity of the hot electrons we obtain the cor- 
responding correction 3 from the second-approxima- 
tion equation (see Ref. 1): 

It is easy to show that in the right-hand side of this ex- 
pression the only term that contributes to the current 
is where ;lq is the electron-phonon collision op- 
erator linearized with respect to a small increment 
nw. Standard calculations of the increment of the pho- 
non contribution to the resistivity of the sample on ac- 
count of the electric field 6p;(E) (defined such that 
6 p;(E = 0) = 0) yield 

ray([) is the hot-electron distribution function obtained by 
numerical solution of Eq. (2). Here 

and p p a ( ~ )  is the temperature increment to the resistiv- 
ity in the equilibrium case a t  the temperature T. It 
can also be shown that the connection between y and d 
(9  is the power dissipated in a unit volume of the sam- 
ple) is 

where j, rnes ,  n is  the number of electrons per unit 
volume, e is the electron charge, and s is the speed of 
sound. 

Thus, in the general case, when the thermalization 
criterion v$<< use is not satisfied, i. e .  , when the elec- 
tron-phonon collisions predominate in the formation of 
the distribution function n([) of the hot electrons, the 
procedure of calculating the nonlinear in the field in- 
crement to the phonon contribution 6 p s ( ~ )  to the resis-  
tivity is  the following: the nonlinear integro-differential 
equation (2) a t  different values of the parameter y is 
used to obtain a single-parameter family of functions 
n,([). With the aid of Eq. (4) we calculate Q(y). The 
sought bppTh(E) a s  a function of T and y i s  given by Eq. 
(3), where y is connected with the physically observable 
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quantity 9 by relation (6) 

To find the function nr([) we must solve Eq. (2). In- 
troducing, a s  in Ref. 1 ,  the function 

we obtain for i t  the equation 

dzcp/d~-I,O-I.T= itcp=O, 

which must be solved in the internal 0 [ < m with the 
conditions q(0) = 0 and q(w) = -1. 

A direct numerical solution of (7) i s  difficult, and we 
used for  this purpose an establishing method. Consid- 
ering the solution of the nonstationary equation 

au(t,  b ) l a t = R u ( t ,  E) (8) 
with initial condition u(O,[) =%(5) and with boundary 
conditions ~ ( t ,  0) = 0, u(t, 03) = -1, we obtain next 5). 

It is  obvious from physical considerations that this 
value should coincide with the sought value of q([) re- 
gardless of the initial distribution function %([). The 
limiting value of u(t, 5 )  is naturally chosen to be the 
same a s  for the limiting distribution q([) =u(m, 5). The 
initial distribution was chosen to be z+,([) = -tanh(5/2), 
and Eq. (8) was replaced by an explicit difference 
scheme. 

To calculate Q(y) it was convenient to use a represen- 
tation that can be easily obtained with the aid of certain 
transformations from (4): 

- c. f 

~ ( r ) = - ~ z ' ( l + q ( x ) ) d x - 4 ~  [l+cp(E) 1dEj y3[I+cp(y)  Idy 
0 0 - t 

-12 j i Z [ l + c p ( f )  l d t  j y [ l + q ( y ) l d y .  (9 

We now discuss the calculation results. The quantity 
Q ( ~ )  turns out to be a monotonically increasing function 
of y (see Fig. I ) ,  such that ~ ( 1 )  = 8D5. In the analysis 
of the results we were primarily interested in the ex- 
tent to which the exact numerical values of ny([) and 
6pp\(Y) differed from the corresponding functions calcu- 
lated analytically in the temperature approximation. 
The latter corresponds to the choice ny({)-f(5/6), 
where f is the equilibrium Fermi function, e5 ' T5 + Tz, 
and ?, is defined by the relation T: =~,i;6,, so that 
(8/T)5 = 1 + (y5 - l)/D, (the tilde marks here results 
pertaining to the temperature approximation). Thus, 
taking (6) into account, 6 ( d ,  T) is that effective tem- 
perature which yields for the equilibrium Fermi func- 
tionf(S/6), substituted in the heat-balance equation of 
Ref. 2, the same dissipated power 9 a s  the true dis- 
tribution function n,([). 

The physical basis for this choice of 6 may be the 

r 
FIG. 1. Plot of I Q I against y. 
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FIG. 2. H o t  of the distribution nyQ) at y= 1, 1.5, and - (the 
solid lines, reading down); dashed-temperature approximation 
for y=-. 

consideration that f(5/8) is that limit to which ny([) 
must tend in the case of a "gradual" turning on of the 
interactions between the electrons and 9 is constant, 
s o  that in final analysis the thermalization condition 
voo>> is satisfied. Calculation of the field contribu- 
tion to the resistivity in the temperature approximation 
leads to the equation 

Comparison of (3) and (10) a s  functions of the para- 
meter y shows that the difference between them in the 
entire investigated interval 1.1 < y < 10 is less than 1%. 

Thus, for the considered simplest model of electrons 
with isotropic and quadratic dispersion law, and pho- 
nons with a Debye spectrum, in the absence of colli- 
sions between the electrons, the temperature approxi- 
mation describes an integral characteristic [that de- 
pends on the distribution function ny([)] such as  6ppTh(E) 
with very high accuracy. The possible cause of this 
accuracy, in our opinion, may be that both 9 and 6&3E) 

a re ,  in the model investigated by us, actually moments 
of the same order of the function nr([). Therefore, al- 
though the functions ny([) and f l [ / Q ( y ) ]  differ insignific- 
antly (but still noticeably, see Fig. 2) ,  the proximity of 
6z,h(E) to 6pg(E) can be of quite high order,  since @ 
= py by definition. This in turn leads to the assumption 
that if we consider in the temperature approximation 
defined above the physical responses corresponding to 
moments of ny(O of a different order than p,, then the 
difference between these responses and the "true" ones 
should be more noticeable. 

We remark also that by combining Eqs. (6) and (10) 
we see  that from the connection between the experimen- 
tally observed quantities3 6p,Th(~) and 9, the electron- 
phonon interaction constant1 a drops out in the temper- 
ature approximation. Namely, a linear connection ex- 
ists of the type 

6pDhT(E) =49/3joa. (1 1) 

In conclusion, the authors thank A .  A .  Motornaya for 
great help with the computer calculations. 

"we note, however that we were unable to obtain the exact 
form of a(y), primarily because of the nonlocality and non- 
linearity of the investigated equation. 
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We calculate the absorption coefficient of light in transitions between energy levels of small-scale fluctuations 
of impurities in weakly doped compensated semiconductors. The absorption spectrum is hydrogenlike. The 
shape of the absorption line corresponding to a transition from the ground state to the first excited state of the 
fluctuations is calculated. It is shown that the line width is due to deviation of the fluctuation shape from 
spherical. 

PACS numbers: 78.50.Ge 

The fa r  tail of the state density in doped semiconduc- tween the energy levels of a small-scale fluctuation. 
tors is determined by the small-scale fluctuations The frequency range of the investigated transitions lies 
whose potential coincides with the potential of the ef- in the fa r  infrared or  in the submillimeter region. 
fective point charge Z > 1.' Such a system has hydro- 
genlike energy levels. This paper discusses the pos- To observe the transition between the levels of such 
sibility of direct optical observation of transitions be- a small-scale fluctuations i t  is necessary that the state 
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