
pected in research a t  low temperatures. The point is 
that for liquid-helium temperatures and below, account 
must be taken, in the formation of echo signals, of the 
influence of the dynamic frequency shift and of the non- 
linear effect due to the high intensity of the nuclear sig- 
nals in FeBOs, particularly in signals enriched with the 
magnetic isotope 5 7 ~ e .  The f i rs t  experiments perform- 
ed by us have indeed shown that parametric pumping 
takes place a t  T =4.2 K, but no parametric echo is ob- 
served. 

We wish to note in conclusion that the here-revealed 
possiblility of investigating magnetoelastic oscillations 
with the aid of nuclear echo may be quite useful for the 
determination of the magnetoelastic constants a s  well a s  
to study the above-threshold state in parametric excita- 
tion. 

The authors thank A. P. Paugurt for helpful discus- 
sions and for help with the experiments. 
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The action of electromagnetic radiation on the static hopping conductivity of disordered systems, due to the 
change of the hopping probability in the radiation field, is considered. The model of a weakly doped 
compensated semiconductor is used. Expressions are obtained for the relative change of the conductivity, with 
multiphoton processes taken into account. 

PACS numbers: 72.40. + w 

1. At sufficiently low temperatures the conductivity 
of certain disordered systems, such as doped com- 
pensated semiconductors, amorphous semiconductors, 
and others, is due to carr ier  transfer between loca- 
lized states (called hopping c o n d u c t i ~ n ~ ~ ~ )  (see also 
Refs. 3 and 4). In view of the random scatter of the 
scatter of the energies of the localized states, the 
transfers of carr iers  between them a re  inevitably ac- 
companied by absorption or emission of acoustic pho- 
nons. If, however, the system is the field of electro- 
magnetic radiation, then photons participate in the 
carr ier  transfer rather than phonons, and this produces 
a pho t~cur ren t .~  For a monochromatic wave, how- 
ever, owing to the indicated scatter of the localized- 
state energies, the contribution to  the conductivity 
from the hops in which only photons take part is small 
compared with the contribution of the hops stimulated 
simultaneously by photons and phonons. The influence 
of these processes on the static hopping conductivity in 

the region of relatively low frequencies of the radiation 
was investigated in Ref. 6, and the method proposed 
there makes it possible to take multiphoton processes 
into account. 

Hopping conduction was observed experimentally in 
extremely purified and compensated n-InSb.' A de- 
tailed exposition of the results of that study is con- 
tained in Ref. 8. The authors describe their own in- 
terpretation of the observed photoconductivity, but they 
use some phenomenological parameters (e.g., the time 
that the electron participates in the photocurrent, the 
light absorption coefficients) whose connection with the 
characteristics of the semiconductor has not been es- 
tablished. In Refs. 9 and 10 was investigated hopping 
photoconductivity of strongly doped uncompensated 
semiconductors, and also of amorphous semiconductors 
in the band-bending model. The photoconductivity con- 
sidered in Refs. 6, 9, and 10 is due to the change of the 
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probability of charge hopping between localized states 
under the influence of the radiation field (i.e., with 
change of the off-diagonal elements of the density ma- 
trix in the node representation). This action of the 
radiation was named dynamic by the authors. But the 
radiation leads also to a change of the population of the 
localized states, i.e ., to a change of the diagonal ele- 
ments of the density matrix. This ("heating") action 
of the radiation on the hopping conductivity was con- 
sidered in Ref. 11. 

The present paper is  devoted to  a consistent analysis 
of the action of electromagnetic radiation on the hopping 
conductivity of disordered systems, an action con- 
nected with photostimulated hops. The model of a dis- 
ordered system with hopping conductivity was chosen 
to  be that of weakly doped compensated semiconductors. 
In contrast to  our brief communication6 we develop in 
this paper an essentially more general approach, 
wherein the results can be extended to the region of 
high frequencies (exceeding the reciprocal time of 
flight of the electrons between the localized states with 
"atomic" velocity). In this frequency region the hop- 
ping conductivity can depend exponentially on the radia- 
tion frequency and exceed appreciably the photocon- 
ductivity at relatively low frequencies. In addition, a s  
shown below, for a correct determination of the magni- 
tude of the effect of hopping photoconductivity it is im- 
portant to  take into account the energy dependence of 
the electron-phonon interaction. 

2. We consider a weakly bound compensated semi- 
conductor (for the sake of argument, n-type) situated 
in the field of a monochromatic electromagnetic wave. 
The weak-doping condition is the inequality NuS<< 1, 
where N is the concentration of the localization centers 
(of the donor impurity), a =~(2mE,)- '~  is the distance 
over which the wave function of the electron falls off 
a t  the center, m is the effective mass of the electron, 
and Eo is the ionization energy of the center (Eo-c,, 
where cl is the bandconductivity activation energy). 
When the foregoing condition is satisfied, the wave 
functions of the electrons located in neighboring loca- 
lized states overlap weakly. Compensation (addition 
of an acceptor impurity) ensures free places on the 
donors, and also causes the energy scatter of the loca- 
lized states (of the electrons on the donors) to  exceed 
greatly, owing to the influence of the Coulomb field of 
the charged acceptors greatly exceeds the overlap in- 
tegral of the localized states. 

We confine ourselves to  those emission frequencies 

that exclude the electron ejection from the localized 
state into the region of delocalized states. For  deep 
centers and weakly doped o r  amorphous semiconductors 
this condition can be satisfied for emission frequencies 
down to 51 2 1015 sec-'. On the other hand weassume that 
the emission frequency greatly exceeds the frequency 
v, of the critical hops in the percolation paths (it is 
these hops which determine the static hopping con- 
ductivity): 

The quantity vh is connected with the hopping conductivity 
oo by the relation3 vh-oog:aT/8, where T is the sys- 
tem temperature (in energy units), exp(-5,) is the ex- 
ponential factor of the hopping conductivity, and e is the 
electron charge. For  example, for tc = 10, u, - lo4 
(51-cm)-', T -lo-'' erg,  and a-10-' cm the frequency 
is v, -5.106 sec-'. If the radiation wavelength exceeds 
the characteristic length N - ' ~  of the electron hops be- 
tween the centers, then the interaction of the radiation 
with the electrons can be taken into account in the dipole 
approximation, i.e., it can be treated a s  the action on 
the electrons by the homogeneous alternating electric 
field 

This calls for satisfaction of the condition 

where u is the total dielectric constant and c is the 
speed of light. 

3. We consider now the quasiclassical wave function 
of a bound electron situated in the alternating electric 
field (3) using the method proposed in Ref. 12. This 
wave function $(r, t )  is, apart from a pre-exponential 
factor, of the form1' 

where S(r, t) is the classical action calculated along a 
classical trajectory. By classical trajectory is meant 
one along which the quantities r and i satisfy the clas- 
sical equations of motion of the electron in the field of 
a center and in the external electric field (3). If the 
alternating electric field is weak enough, then the ac- 
tion in (5) can be calculated along the unperturbed tra- 
jectory, which is the trajectory along the radius for  a - 
state with zero angular momentum. We assume a 
short-range center potential V(r) = vb(r), and then the 
equations of motion for the indicated trajectories take 
the form 

(t ')  =iuar/r, r (t')  =r+iua (t-t') rlr, (6) 

where u, =(2EO/m)lh is the "atomic" velocity of the 
electron, and r =Id. At the instant of time t the elec- 
tron is a t  the point r, and the initial instant of "time" 
to (which is complex), a t  which the electron "started" 
from the center, is determined from the condition 
r(to) =O. Integration of the Lagrangian along the t ra-  
jectory (6) leads to the following value of the action: 

&r 
AS(r, t )  = - (a ,  sin Rt-in, cos a t ) ,  

R 

where 

a,-ch y-sh y/y, a,=sh y+ (1-ch y)/y,  

y(r) =51r/uo is the number of oscillations of the elec- 
trons in the alternating electric field during i ts  free 
flight with velocity uo over a distance r. Thus, the 
sought quasiclassical function of the bound electron in 
the external electric field (3) is 
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In the region Y << vo/Q we have 

e h  
iAS (r, t) = - 1 (r) cos at, 

2Q 

and in the region r > v,/Q 

The condition for weak perturbation of the trajectory 
by an  alternating electric field is the inequality 

The constructed wave functions will be assumed to 
be unperturbed relative to the interaction of the elec- 
trons with the acoustic phonons. The Hamiltonian of 
this interaction will be chosen in the usual form: 

where bd and b, a r e  the operators for the creation and 
annihilation of phonons with momentum fiq; w, =Sq is 
the speed of sound; Fa is  the matrix element of the 
electron-phonon interaction; in the case of deformation 
acoustic phonons Fa = E , ~ ( E / ~ M W , ) ~ ~ ,  where E, i s  a 
constant on the order of 1-10 eV, and M is the mass 
of the crystal-lattice atom. The non-orthogonality 
(overlap) of the wave functions of the neighboring loca- 
lized states #, and Jl j  can be taken into account by in- 
troducing into the Hamiltonian an effective tunneling 
operatof13 (see also Ref. 14), whose off-diagonal ma- 
trix elements Ti j  and T,, a r e  the integrals of the over- 
lap of these states. Using the electron wave functions 
(9) we obtain the following value of the overlap integral 
of the states i and j (with allowance for the time fac- 
tors ): 

Tij(t) =BE, exp {-~,,la)u,,(t), 

T,, =Ti,. Here r,, =ri - r,; r, and r, a r e  the coordinates 
of the centers i and j; E, and c j  a re  the state energies 
reckoned from the edge of the region of the delocalized 
states, ci  = E , =Eo, and P is  a coefficient of the order of 
unity. 

Taking into account the interaction of the electrons 
with the phonons in second-order perturbation theory, 
we obtain the following expression for the probability 
of the electron transition between states i and j per unit 
time in the presence of electromagnetic radiation: 

where 

The expression for I?,, is obtained from (11) by the 
permutation i -- j. Here cpo(r) is  the spatial part of the 
wave function of the localized state i, j; N(E) is the 
phonon Planck distribution function; B(E) is  the Heavi- 

side function; the summation is also over the negative 
phonon frequencies o,; this corresponds to allowance 
for processes with phonon emission; f ( c i S j )  is  the func- 
tion of the electron occupation of the state i, j. 

In the calculation of the integrals with respect to 
time in (11) it is convenient to  use the known relation 

- 
expiis sin y} = 2 I. ( x )  elev, 

a--- 

where J,(x)  i s  a Bessel function of order s. The ex- 
pression in the curly bracket in (11) then reduces to 

o. { in(si-sf') 
A. (r) = I., (z) I.-.- (iy)J., ,(z) J , , , - ,  ( i y ) o ~ p  ), (13) 

where 

e z r  shy e z r  ch 1-1 
x=- ( - I - - )  I=-(-- 

Q 1 Q Y 
sh 1) ; 

here y = y(r). If the emission frequency a,nd intensity 
a r e  low enough, s o  that y(r,,)<< 1 and le%'rijy/fia1 <<I, 
then the expression for  A h , , )  can be simplified: 

This is precisely the case considered in Ref. 6. The 
principal action of the electric field of the wave on the 
electron tunneling between two centers consists then 
in the formation of an  alternating potential difference 
between these centers. 

Expression ( l l ) ,  with (12) taken into account, is the 
sum of the probabilities of the humps of the electron 
between the centers i and j with absorption o r  emission 
of one phonon and s photons. A renormalization of the 
transition probability then takes place a lso  without ab- 
soretion o r  emission of photons (the term with s =O). 
As &iI - 0 the expression (11) goes over into the known 
expression for the probability of the hop'5 I?,,, which 
takes no account of the influence of the radiation field. 
Summing wer the phonon wave functions, we obtain 
from (11) and (12): 

Here a (&)  = 4 ~ P ~ ~ l ~ , I ~ b ~ 1 ~ ~ 1 2 , ~ ~ ~ , ~  and b is the lat- 
tice period. In the case of electron interaction with 
deformation acoustic phonons we have (E) - 1  &l[1 + (&/ 
E , ) ~ ] ~ .  At I & I  << c0~2RS/a  we have a (E) - 1  E I ;  this func- 
tion has a maximum at  I EI = E, and falls off rapidly 

- & + I  a t  I cI>&,. This means that the bound elec- 
trons interact most strongly with phonons having an 
energy E = E,. For shallow impurities in a semicon- 
ductor we have &,=0.5-15 K. 

4. We use now the expression derived for the proba- 
bility of electron hopping between centers to  calculate 
the macroscopic static conductivity of the system. It 
is known that the hopping conductivity of a disordered 
system is determined on the basis of the analcgy be- 
tween the conductivity of this system and the conduc- 
tivity of a network of greatly differing resistors R i j  
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which a r e  connected between the centers i and j a r e  di- 
rectly related to  the probability of the electron hopping 
between these centers2": 

R,,=2Tle'(I',j+I'ji). (16) 

The largest scatter in the values of R i j ,  just as of Ti,,  
is connected with the exponential dependence of the 
overlap integral on the distance between the centers. 
According to  percolation theory, the hopping conduc- 
tivity is determined by the principal resistances, or  by 
the critical hops in the percolation paths. If turning 
on the radiation alters the hopping probability little, in 
the sense of the condition 

In ( 1  r,,+rii/ 12r.311) aSe=2rcla.  (1'7) 

where r, is the length on the critical hops2' (we note 
that when condition (17) is satisfied the hopping proba- 
bilities can change by many orders of magnitude), then 
the conductivity o of the system acted upon by the radia- 
tion can be determined by a perturbation theory2 whose 
meaning is that the critical hops remain the same as 
before (only their probability changes), and to  calcu- 
late the probability it is necessary to  average (16) over 
these hops. In other words, 

where (. . .),denotes averaging over the critical hops. 
If the hopping probability changes little when the radia- 
tion is turned on, s o  that 

then expression (1 8) simplifies to 

Substituting (1 5) with the equilibrium distribution func- 
tions of the electrons and phonons in (1 9). we obtain 
the following expression for the relative change of the 
conductivity 

is the value of A,(r) averaged over the directions of 
the critical hops, and p(&) is the state density. 

We assume hereafter that p(&) = 1 /A =const, where A 
is the mean energy difference of the states between 
which the critical hops take place. In the Mott hopping 
conduction regime, A is equal to the hopping-conduc- 
tion activation energy &, = 1;,T >> T and the conduction is 
over states in an energy band of width A near the Fermi 
surface. In the constant-activation-energy regime 
A < b,T and the conduction is over states in an energy 
band of width A near the peak of the state density. In 
a weakly doped semiconductor we have in this case 
A - e 2 ~ 2 / 3 / n ~ - 1 h  where K=N,/N is the degree of com- 

pensation and NA is the acceptor density. 

We determine now the hopping conductivity in the 
field of an electromagnetic wave in two limiting cases. 

1. Low frequencies: fin << T 

The parameter for the critical hops is then y(rc)<<l. 
If, in addition, the electric field intensity is low enough 
(elr ,<< T), then, expanding (20) in powers of SZ and 
summing in (20) over s we obtain, taking (14) into ac- 
count and accurate to (R52/T)3 (Ref. 6) 

The main contribution to  the change of the conductivity 
is made in this case by hops with absorption and emis- 
sion of so =[eIy,/R SZ] +1 photons, where [x] is the in- 
tegral part of the number x. At sufficient intensity of 
the radiation, the number so can be quite large. We 
note also that in the indicated frequency range the 
change of the conductivity does not depend on the fre- 
quency. 

2. High frequencies: .fin > T 

We confine ourselves to relatively low radiation in- 
tensities, such that 

( e a r , / h Q )  e s p  (ScAS2/2E,) < I .  

We need then retain in (20) only the terms with s = O  
and *I. Expanding the functions A,, A,, and A_, in the 
small argument accurate to second order in I, we ob- 
tain from (20) the following expression for the relative 
change of the conductivity: 

In the case T<RSZ< A, the main contribution to the 
change of the conductivity is made by the critical hops 
between states whose energy difference lies in a band 
of width &, near the energy RS1. Then 

On the other hand if tiSZ >> A> T, then 

In this case phonons with energy of the order of RSZ a r e  
emitted spontaneously in the hops with photon absorp- 
tion, whereas in the absence of radiation there a r e  ab- 
sorbed in the hops phonons with energy of the order of 
A. If F(RS1) < 1, then a negative photoconductivity is 
produced by the radiation-induced decrease of the 
critical hops. This fact was already pointed out in Ref. 
6, a s  well as in Ref. 11. 

As seen from (22) and (23), the relative conductivity 
change AU/U, under the influence of the radiation has the 
following temperature dependence : 

a t  RSZ > A the negative photoconductivity does not depend 
on the temperature, while the positive one depends on 
the temperature like ~o/a ,C=e~/*.  These temperature 
dependences of the photoconductivity agree qualitatively 
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with the experimental data.' 

We present now numerical estimates of the sensi- 
tivity of the radiation detector on the basis of the con- 
sidered mechanism of hopping conductivity. The cur- 
rent-voltage sensitivity of a detector measuring S =l 
X l  cm to which a voltage U =1 V is applied is equal to 

where I is the intensity of the electromagnetic radia- 
tion incident on the detector. For radiation frequen- 
cies S2 5 10" sec-' a t  T =4 K and a t  a doping N -1014 

we have according to (22) R -1 V/W. The effect 
of higher-frequency radiation on the conductivity can 
be much stronger. Thus, for an n-InSb sample with 
parameters N = (1 - 2)x 1014 ~ m - ~ ,  K =0.85 and a t  
T =1.5 K(E' =1 MeV) (Ref. 8) we have according to  (23) 
R - lo3 V/W at  an emission wavelength A = 8 mm 
(En =0.15 meV), and R -lo4 V/W at  A=2 mm (En 
=0.62 meV). Account is taken in these estimates that 
the calculated value is C, = 7, and that the value of A 
determined from the plot of AU/U, against T (Ref. 8) 
is A =0.2 meV, These estimates agree in order of 
magnitude with the experimental values of the sensi- 
tivity.' 

As seen from (22) and (23), the relative change of the 
hopping conductivity under the influence of radiation 
is larger the smaller the "dark" conductivity (in the 
absence of radiation). Therefore the volt-watt sensi- 
tivity of a detector based on the considered effect is 
limited only by its permissible resistance. For ex- 
ample, for p-Ge (Ref. 16) with acceptor density NA 
=1.5x10L5 and compensation K =0.4 a t  T = 4  K 
(a, - loq)  (S2 - cm)", E ,  =0.01 eV; calculated values 
5,=21 and A =0.6 meV) we obtain R -lo6 V/W for emis- 
sion frequencies close to Eo/E, i.e., S2 =1013 sec-'. 
This means that the resistance of the sample can vary 
by several times even at an incident radiation intensity 

W/cmZ. 

One of the distinguishing features of hopping con- 
ductivity is its anomalously strong (exponential) de- 
pendence on the external magnetic field H (see Ref. 8). 
However, the relative conductivity change AU(H)/U,(H) 
can depend little on the magnetic field, since the length 
of the critical hops increases only in a strong magnetic 
field H(H > ~ ' ~ c l i / e a )  when the conductivity has a Mott 
temperature dependence. In the opposite case A ~ ( H ) /  
AU(O) -u,(H)/u,(O). It appears that a situation close to  
this i s  realized in Ref. 8. 

t o  a correction factor in the formulas for the relative 
change of the conductivity (20)-(23). This factor ranges 
from 2 a t  T<<A t o 1  a t  T>>A. 

We note that the effect can be larger a t  emission fre- 
quencies such that transitions a r e  possible not to the 
ground state of the neighboring center, but to excited 
states. This can lead to the appearance of peaks on the 
frequency dependence of (see Ref. 8). As to absorption 
of electromagnetic radiation, it takes place predomi- 
nantly on the "easiest" hops, whereas the value of the 
conductivity is determined by the "most difficult" hops 
in the percolation paths. In addition, if the emission 
frequency is high enough, then the main absorption may 
be due to  excitation of the centers themselves. 

We note in conclusion that experimental observation 
of hopping photoconductivity makes i t  possible to de- 
termine the most important parameters of the states 
over which the conduction is effected, a s  well a s  to use 
this effect t o  develop sensitive receivers for electro- 
magnetic radiation. 

''Here and below we assume ti= 1 in the intermediate calcula- 
tions. 

' ) ~ t  constant activation energy we have r, a N -  13, and a t  a Mott 
temperature dependence r, > i i ' I 3 .  Therefore t, >> 1 in all 
cases of weak doping. 

'N. F. Mott and E. A. Davis, Electronic Processes in Non- 
Crystalline MaFrials, Oxford, 1971, 

2 ~ .  I. Shklovskii and A. L. gfros, l?lektronnye svorstva leg- 
irovannykh poluprovodnikov (Electronic Properties of Doped 
Semiconductors), Nauka, 1979. 

3 ~ .  I. ~ h k l o v s ~ a n d  A. L. gfros, Usp. Fiz. Nauk 117. 401 
(1975) [Sov. Phys. Usp. 18, 845 (1975)l. 

4 ~ .  Botger and V. V. Briksin, Phys. Status Solidi B 78, Nos. 
1-2, 1976. 

5 ~ .  L. Bonch-Bruevich and V. K. Capek, Pis'ma Zh. Eksp. 
Teor. Fiz. 16, 109 (1972) [JETP Lett. 16, 75 (1972)l. 

%. V. V'yurkov and V. I. ~ ~ z h i r .  Fiz. Tekh. Poluprovodn. 
11, 1841 (1977) [Sov. Phys. ~emicond. 11. 1080 (1977)l. 

'E. M. Gershenzon. V. A. Il'in, L, B. Litvak-Gorskaya, and 
S. R. Filonovich, Pis'ma Zh. Eksp. Teor. Fiz. 26, 362 
(1977) [JETP Lett. 26, 243 (1977)). 

8 ~ .  M. Gershenzon, V. A. Il'in, L. B. Litvak-Gorskaya, and 
S. R. Filonovich, Zh. Eksp. Teor. Fiz. 76, 238 (1979) [Sov. 
Phys. JETP49. 121 (1979)l. 

9 ~ .  V. V*yurkov and V. I. ~ ~ z h d ,  Fiz. Tekh. Poluprovodn. 
12, 1331 (1978) [Sov. Phys. plhicond. 12, 787 (1978)l. 

'OV. V'yurkov and V. I. Ryzhif, Abstracts of Papers, 9th Conf. 
on Semiconductor Theory. Tbilisi. 1978. 

"1. P. Zvyagin, Phys. Status Solidi B 88, 149 (1978). 
"A. I. Baz', Ya. B. Zel'dovich, and A. I. Perelomov. Ras- 

The change of the hopping probability under the in- seyanie, reaktsii i raspady v nerelyativistskoi kvantovoi 

fluence of the radiation can lead also to a redistribu- mekhanike (Scattering, Reactions, and Decays in Nonrelativ- 
istic Quantum Mechanics). Nauka, 1971. 

tion of the electrons over the localized states, since 135. Bardeen, Phys. Rev. Lett. 6, 57 (1961). 
the probabilities r,, and of the hops a r e  generally 1 4 ~ .  0. Kane, Russ. Transl. in: Tunnel'nye yavleniya v 
speaking not equal for an equilibrium distribution f m c -  tverdykh telakh (Tunnel Phenomena in Solids), Mir, 1973, p. 
tion of the electrons. If the deviations of the distribu- 9. 

tion f u n c t i o n f ( ~ ~ , ~ )  from rquilibrium a r e  small, then 1 5 ~ .  Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). 

they can be easily determined from the stationarity 16H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960). 

condition I?,, Allowance for these deviations leads Translated by J. G. Adashko 

587 Sov. Phys. JETP 51(3), March 1980 V. V. V'yurkov and V. I. ~yzh; 


