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The behavior of a semiconductor with a narrow forbidden band in a strong magnetic field crossed with a 
periodic electric field (e.g., a laser field) is investigated theoretically. The two-band approximation equation 
employed is of the Dirac type. A method for solving this equation approximately is proposed. The 
quasienergy states are obtained. The spectrum of the quasienergies is investigated near the parametric 
resonance. The electron states that are identical with the stationary states in the valence band at the instant 
when the periodic field is turned on are found, using the quasienergy states as the basis system. The 
probabilities of one- and two-photon interband transitions are calculated. The two-photon transition 
probability is found to differ from zero and to have a finite value at only one definite frequency of the external 
field. The results are compared with the theoretical ones obtained by using other band models and with the 
available experimental data on two-photon magnetoabsorption in a PbTe crystal. 

PACS numbers: 78.50.Ge, 71.25.Rk 

The advent of powerful optical-radiation sources has narrow-band semiconductor in crossed fields. 
stimulated experimental and theoretical investigations 

The present paper is therefore devoted to atheoretical 
of semiconductors in strong electromagnetic fields. 

study of a semiconductor with a narrow forbidden band These investigations a re  carried out in many cases in 
in a constant magnetic field crossed with a periodic the presence of an external constant magnetic field that 
strong electric field. The two-band approximation equa- 

plays a major role in the study of the electronic states 
tion, just a s  in Ref. 12, i s  taken to be  the Dirac equa- 

in semiconductors. Semiconductor crystals with wide 
tion,13 whose solution is used to calculate the prob- forbidden bands (E, large compared with the intraband 
ability of the direct interband transitions. The analysis 

motion energy) in an alternating field i s  the subject of i s  within the framework of the general ideas of the 
Refs. 1-4. The influence of a constant magnetic field quasienergy method of describing periodic systems.14 
was taken into account in Refs. 5 and 6. An investigation, which in our opinion i s  of general 

The higher intensities of laser radiation and of the 
constant magnetic field, as  well a s  the increased in- 
terest  in the physics of narrow-band semiconductors, 
call for further development of the theory. The in- 
fluence of a strong alternating electric field on crystals 
with narrow forbidden band of width comparable with 
intr aband motion energy in external fields was first  
considered by ~ e l d y s h . ~  This question was later in- 
vestigated by others.'" - 

The interpretation of the experimental  result^'^ was 
hindered by the absence, until recently, of a consistent 
theory that takes into account the joint action of a strong 
constant magnetic field and of an alternating field on a 
narrow-band semiconductor. In particular, the theory 
of multiphoton magnetoabsorption in the independent- 
band has predicted the appearance of resonant 
maxima (oscillations) in parallel fields only for transi- 
tions with odd number of photons, whereas absorption 
maxima are  clearly observed in experiments on two- 
photon absorption in narrow-band semiconductors both 
in the case of parallel and in the case of crossed 

This contradiction was completely elimi- 
nated by the results  of Ref. 12, where a theory of mul- 
tiphoton magnetoabsorption in parallel fields was pro- 
posed in a two-band approximation based on the use of 
a two-band equation of the Dirac type. On the other 
hand, the interpretation of the experiments"'*" per- 
formed with crossed fields have not been clearly inter- 
preted to date, in view of the lack of a general theore- 
tical analysis of nonstationary electronic states in a 

interest, was made of the quasienergy states and of the 
spectrum of the quasienergies that appear in the course 
of the solution of a system of equations of the Mathieu 
type, which describe the time dependence of the non- 
stationary states. The presence of singularities (breaks) 
of two types, due to the action of the electric field, i s  
observed on the plots of the quasienergies against ex- 
ternal-field frequency. The breaks of one type are  
already known, 1-4,14 and occur in the values of the 
quasienergy. The breaks of the other type constitute 
external-frequency regions (at fixed quantum numbers 
of the electrons and at fixed other parameters of the 
problem), in which there a re  no real  values of the 
quasienergy. The breaks of the first  type occur near 
frequencies of odd-photon transitions (resonances), 
while those of the second type occur near frequencies of 
even-photon transitions. 

The dependence of the spectrum of the two-photon 
absorption on the frequency, obtained in the present 
paper, i s  substantially different compared with the 
conclusions of Refs. 5 and 6. On the basis of the an- 
alytically obtained probabilities of the one-and two- 
photon transitions we present an interpretation of the 
results  of Refs. 10 and 11. 

GENERAL ANALYSIS 

It i s  known that the equation of the two-band model of 
the effective-mass approximation for isotropic orbitally 
nondegenerate bands agrees  formally with the Dirac 
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equation, in which the speed of light c i s  replaced by the 
parameter s = (~ , /2m) ' " (~ ,  i s  the width of the forbidden 
band and m is the effective mass).15 In an external 
electromagnetic field the equation takes the form 

where a and yo a r e  Dirac matrices in the standard rep- 
resentation16 while + and A a re  the potentials of the 
external field. The appearance in (I)  of two parameters, 
c and s, rather than c alone a s  in the usual Dirac equa- 
tion, leads to difficulties in its solution; in particular, 
the known exact solutions of the Dirac's equations can- 
not be used when a constant magnetic field and a plane- 
wave field act simultaneously.17 

Next, neglecting the photon momentum, we assume 

This corresponds to a constant magnetic field directed 
along the z axis, and to an alternating electric field of 
frequency w directed along the x axis. 

Our task i s  to find approximate solutions of Eq. (1) 
in the case when the magnetic field at any instant of 
time i s  strong compared with the electric field, i.e., 
when magnetic quantization i s  preserved. In our model 
this requirement i s  equivalent to the condition 

c X o l s H ~ l .  
(3 

We change in the usual manner from Eq. (1) to the 
corresponding second-order equation1' whose solution 
JI  we seek in the form 

where 

For the function A we obtain the equation 

e 8 ,  
~ " ( ( ~ ) + 2 1 - a ~ ~ 1 1  c o s q ~ ' ( ~ ) +  

iio 

e x o  1 
- i - a ~ ~ q  iio ~ i n c p + ( ~ ) ~ [ i ' c o s ' ~ - -  2  ( i + a , , ~ q ) ' i u ~  ?rp 

ms' msz e h 8 ,  _ I 
+- hQ,d,-i-- (6) 

where 

Of course, since the variables do not separate, the 
function X depends also on the variable q. However, 
taking into account the terms - $2 and discarded in 
(6), we can show that ~ ( q )  - expi-cf?,q/sH 1. Because 
of condition (3), this dependence i s  weaker than that of 
the function @, - exp(-l/2 q2), and will henceforth be 
neglected. This enables us to obtain an equation for the 
function ~ ( ( 0 )  by averaging the coefficients in Eq. (6) 
over the functions a,. The terms linear in7 then vanish, 

and the terms q2 a r e  subsequently taken into account 
and their contribution i s  of the same order a s  the last 
term in the left-hand side of (6). We note that this 
method of taking the electric field into account ensures 
the correct  dependence on this field in the limiting re -  
sults a s  o- 0. After performing this averaging and dis- 
carding the terms - ( ~ l , / s H ) ~ ,  of the coefficients, we 
get 

We seek x ( ( P )  in the form 

where 

The coefficients a, and a, a re  so  far arbitrary. 

Substitution of (8) and (9) in (7) leads to the following 
system of equations for the functions v + ( ~ )  and V-(q) :  

u+"+[ai2-4p cos 2(~lv+-4iq cos cpv-=O, 

~ - " + [ a ~ ~ - 4 p  cos 2qlv--4iq cos qv+=O; 
(11) 

here 

a,,, (n, p , )  = (hm) -' [ (msz)z+(~sp,)a+2hOmsa 

-(bo) -'IE,,z(n, P.) 1, (12) 
1 e M o  ms' 

q = - - - ,  
4 ms (Am)' (13) 

Knowing the solutions \Ir (r, t) of the second-order 
equation we can obtain in the usual fashion also the so- 
lutions $(?-, t) of Eq. (1): 

The problem reduces thus to finding the approximate 
solutions of the system (11). 

QUASI ENERGY STATES 

We assume next that the dimensionless parameters 
p and q2 (which a re  taken to be of the same order) are  
small: p, qZ << 1, and obtain the solutions of the system 
( l l ) ,  which correspond to states with definite quasi- 
energy,14 i.e., solutions satisfying the condition 

X is the quasienergy in units of h. 

Equations (11) describe parametric resonance in a 
system consisting of an electron and photons. At small 
p and q2 the functions v +  and 71- a re  almost always close 
to the exponentials corresponding to stationary states 
in the magnetic field." The perturbation by the alter- 
nating electric field becomes large near the parametric- 
resonance points. An investigation of Eqs. (11) has 
shown that in our case this is  the region of frequencies 
close to those for which, a s  53, - 0, the following con- 
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ditions a re  satisfied: a, = -a2 + 1-region of one-pho- 
ton resonance, a, = 1; a, = 1-region of two-photon 
resonance; a, = -a2 + 3-region of three-photon reso- 
nance, a, = 2; a2 = 2-region of four-photon resonance, 
and so forth. 

We present the results of an investigation of the 
quasienergy states in the vicinity of the one- and two- 
photon resonances. 

We seek the solution of Eqs. (1) in these regions in 
the form of the expansions 

To obtain a solution near the one-photon resonance 
a, = 2; 4 = 2 accurate to terms of order q2 it suffices to 
take into account in (16) only the first  terms. The so- 
lution of the system of equations for A, and A, yields 
the quasienergies 

With deviation of the frequency w in the solution 
("I1), I:!')), corresponding to X, from resonance, we get 
IA;"I >> IA :')I, which corresponds to a state close to the 
stationary state of an electron with a positive energy 
IE,(n, p,)l. For X2 we have correspondingly IA:"~ 
>> J A r ' ( ,  and the solution (v12', TI?)) corresponds, with 
increasing distance from the resonance region, to a 
negative electron state with energy - IE2(n, p,)!. Near 
the resonance we have for both roots of (17) IA,( = lAII. 

It is easily seen that two other independent solutions 
of the system (11) a r e  (u:", ?I:')= (uil)*, -u!l)*) and 
(u:), u(:) = ($)*, -u(2'*), which correspond respectively 
to the quasienergies A,,, = -A,,,, and on deviation from 
the resonance they go over into stationary electron 
states with energies IE,(~,  p,)l and I-E,(~, P,]. 

For each of the four independent solutions of Eqs. (11) 
in the vicinity of the resonance we can obtain with the 
aid of (4), (9), and (14) the corresponding solutions $'k' 

of Eq. (I). The coefficients n, and n,, which have so far 
not been defined, will be taken to be n, = a, = 1/2. This 
choice i s  equivalent to stating that on going off reso- 
nance (or a s  O,- O), and with increasing width of the 
forbidden band, the +'*' with k = 1 and 2 a r e  transformed 
respectively into stationary states. These states a r e  
x::', with large upper components, which describe an 
electron with positive spin in the conduction band, and 
.Y,!;' with large lower components, describing an elec- 
tron with negative spin in the valence band. 

In the region of two-photon resonance defined by the 
condition cu, = 1 there is  resonant dipole coupling of non- 
interacting electron states having equal Landau quan- 
tum numbers and equal signs of the effective sp in  To 
solve (11) approximately i t  is  necessary here, generally 
speaking (if no additional relations between p and q2 a r e  
made), to take into account in the expansions (16) all the 
written-out terms. The solution of the system obtained 
for the coefficients A, for states a t  resonance yields 
quasi- energies 

This shows immediately the difference between the 
obtained situation and one-photon resonance. In fact, 
i t  follows from (20) that in the region of two-photon res- 
onance (a, close to unity) v vanishes a t  two values of 
a,(n,p): 

at" (n, p,) =I-p+'/,qe, 

( r )  a, (n, p.) =l+p-'olJqz.  

These equations, together with (12) and (13), deter- 
mines at fixed n and p, the two external-field frequency 
a t  which exact resonance takes place. If the external 
field frequency lies between w"'(n, 0,) and w "'(n, P,), 
then the quasienergy turns out to be imaginary. This 
must be taken to mean that in this narrow external- 
electric field frequency interval (at p, q2<< 1) our ap- 
proximate solution, given by Eqs. (4)-(14), i s  incorrect 
for the given n. Even if the conditions (3) a re  satisfied 
(as i s  assumed by us in all cases), the character of the 
motion is  determined not by the magnetic field (magnetic 
quantization), but by the electric field. 

We note that the mathematical treatment becomes 
much simpler, although all the qualitative conclusions 
remain unchanged if i t  i s  assumed that 0 >> q2.  In this 
case, near even-photon resonances, the terms - q in 
(11) can b e  neglected completely. In particular, a s  seen 
from (21), in the two-photon case the exact-resonance 
points a re  symmetrically arranged relative to the fre- 
quency corresponding to a, = 1. 

In the functions 7 1 ! " ~ ' ) ,  corresponding to the 
quasienergies (19) we have -A: ' .~ '-A~'*~)= 1 and 
Ailp2) -A:*')= 1 a s  a, - w and (I) - w'", respectively. 
The coefficients A,,,, always remain of the order of q .  
Just a s  above, we put in (10) a, =a2  = 1. With increasing 
distance from resonance (a ,  - 1 >>p, q2) the perturbation 
by the alternating field becomes small and the states 
+ (1.2) corresponding to (u?'~', u!~'~'), turn into stationary 

states with energies lE,(n,p,)( and - P,(n,p,)I. 

Two other linearly independent solutions of the sys- 
tem (11) a re  (v?', 711~') = (v"'*, and (11?', u!~') 
= (v"'*, -u(~)*). They correspond to the quasienergies 
X3.4 = -k1,2- 

Perfectly analogous results  are  obtained from an 
analysis of the two-photon resonance a, = 1 when the 
states a t  resonance have the unperturbed energies 
JE,(n,p,)( and -\E,(n, p,)I. The regions of the two- 
photon resonances with the same value of n differ in 
frequency by an amount on the order of the spacing be- 
tween neighboring Landau levels, i.e., much larger 
than the width of each line. 

Approximately the same conclusions result from a 
study of resonances in which a large number N of pho- 
tons participate, although the analytic treatment be- 
comes very cumbersome. At odd N there appears a 
forbidden gap with width on the order of q N  on the quasi- 
energy axis, and at even N there appears a "forbidden" 
gap of width -(qN, pNI2) on the a, axis, with X imaginary 
inside this gap. In the latter case the behavior of the 
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FIG. 1. Dependence of the quasienergy X (in units of Ew) on a , .  
The solid lines a r e  the quasienergies of states that go over in 
the limit a s  O,-- 0 into stationary states with energies 
* I El h, p,) I ; dashed-quasienergies of states that go over in 
the limit go- 0 into stationarystates with energies + 1 Ez(n .  
p,) I . The entire pattern is periodic along the )I axis with unity 
period. 

~ ( a , )  curve is s i m i l a r  to  that of the plot of the ampli- 
tude of a c lass ica l  osci l la tor  against  w,/a)  near  the 
boundaries of the parametr ic-resonance region. A plot 
of h against a, is shown in the figure. 

MAGNETO-OPTICAL AW3ORPTION 

The purpose of this  sect ion is to find the probabilities 
of the interband t ransi t ions due to  a n  intense alternating 
e lec t r ic  field turned on a t  the instant  of t ime  t = 0. We 
assume that before the field is turned on, a t  f < 0, the 
semiconductor w a s  in the ground state, i.e., a l l  the 
s t a t e s  of the valence band (negative s ta tes )  a r e  occupied, 
and the s ta tes  of the conduction band (positive s ta tes )  
a r e  free. 

After turning on the al ternat ing e lec t r ic  field, any 
one-electron wave function that sa t i s f ies  Eq. (1) can b e  
represented by an expansion in the quasienergy states14: 

~ ( r ,  t )  = br(n')$'k' (n ' ;  r, t ) ,  
b.n' 

where  the sum over  k denotes summation over  s t a t e s  
with given n, p,, and p,. 

We choose the coefficients h,(nt ) such that a t  t = 0 
the initial condition 

$(r, 0) =xd? (r, 0;  pspI), (23) 

i s  satisfied, where x$ ' (r ,  t;p,p,) i s  the s tat ionary s t a t e  
a t  O, = 0 fo r  the Landau level n, f o r  the s ign of the 
effective spin 1 = 1 , 2  and for  the sign of the energy s 
=i. In our  c a s e  s in (23) should correspond to a neg- 
ative state. 

On the other  hand, f o r  the function that  sat isf ies  the 
condition (23) we can  wr i te  

where  a - (n, I ,  s) is the aggregate of the quantum num- 
b e r s  of the s tat ionary s ta te  in  the magnetic field. 

T h e  probability of transition, under the influence of 
the e lec t r ic  field, f r o m  the s ta te  a into the s ta te  a' is 
determined by the s q u a r e  of the modulus of the coef- 
f ic ient  c: 

The  total probability of exciting a n  electron into the 
conduction band is obtained af ter  summing over  the 
s tates:  

T o  obtain in practice, in  the resonance regions, a 
function $(r ,  t)  satisfying the condition (23) a t  p,fs: 0 
(singularity o r  maximum of the s ta te  density), accura te  
t o  t e r m s  /I and q2, it  w a s  sufficient to take account in 
expansion (22) only the t e r m s  with quantum number 
n' = n ,  i.e., take only the four described solutions of the 
D i r a c  equation (1) a t  a given frequency w. The  function 
$ ( r ,  f )  t akes  in  th i s  c a s e  a genera l  fo rm specified b y  
Eqs.  (4 ) ,  (91, and (14), but contains in place of the func- 
t ions v, (g) ,  corresponding to some quasienergy s tate ,  
a l inear  combination V , ( q )  of a l l  four independent quasi- 
energy  solutions of the sys tem (11) in  the specified 
frequency region; th i s  combination i s  determined b y  the 
initial condition (23). 

The  coefficients c(a, 0'; t )  differ f rom zero,  general ly  
speaking, f o r  any pair  of s ta t ionary s t a t e s  cr and a'. 
However, if this pair  i s  perfectly a rb i t ra ry ,  then the 
coefficient c(n, a') yields fo r  I*, (t), in the vicinity of the 
resonance of in te res t  to  us, a value that  osci l la tes  a t  
with frequencies  that a r e  multiples of w. Only for  s o m e  
definite p a i r s  of s ta tes  near  the given resonance will the 
coefficients c b e  such that w ( l )  contains in  addition to  
t e r m s  that  osci l la te  o r  vanish a s  t -* a l s o  a p a r t  that 
is proportional to the time in the l imi t  as t -*. In this  
c a s e  we can  speak of a definite probability of a t ransi-  
tion with absorption of a definite number of photons 
(corresponding to the given resonance). 

In the one-photon resonance-frequency region the 
t ransi t ions allowed in the indicated s e n s e  a r e  those 
between positive and negative s t a t e s  a t  An = 0 and with 
reorientat ion of the effective spin. F o r  both t ransi t ions 
a(n, 2, -) -@'(n, 1, + ) and a(n, 1, -) -ol(n, 2, + )  the de- 
sc r ibed  procedure yields, accurate  t o  t e r m s  a q 2  

4qZ(D+'/,ho)' sin2 tcp 
Ic(o, a'; t) 12=---- , cp=at 

ho (ms2+'/,ha) 5' 

where  q and 1' a r e  determined by  (13) and (17), and 

Changing in (26) to  integration with r e s p e c t  to  the 
var iab le  [, we obtain 

(29 
H e r e  

p(n)  = p l P z l ( p l + p ~ ) ,  pi, z ( n )  -s-'[ (ms2)s+2f i~msZ(n+i l z f  'l,x) I", (30) 

E ,  is the roo t  of the expression under the radical  sign 
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in the last factor of (29): p, and q2, we find that a t  p < 2q2 there a r e  absorbed two 
photons of frequency 

En= [ ' / , [ a ,  (n ,  0) +a2(n,  0 )  - 1 ] ~ + 4 q ~ ] " .  (31) 

If we can assume in the expression for € that 
11 - w, - cy21 >> 49, then a s  t we have sin2([ p)/g2 - awS(?) and for the number of transitions per unit 
volume and unit time we get a t  sufficiently small (1 
-al(n, 0) - a2(n, 011 

(32) 
It is seen that the singularity a t  the frequency of the 

one-photon transition has the usual square-root char- 
acter observed in magneto-optics. In the limit of a wide 
forbidden band and not too strong a magnetic field we 
have (hs/a,)'<< ms2, 2ms2 =Ew,  and (32) goes over into 
the well known result of perturbation theory. 

In the two-photon resonance region a, = 1 the time- 
independent transition probability occurs for two tran- 
sitions 

We note that in contrast to the one-photon transitions, 
the initial and final states do not interact resonantly 
here, although, accurate to terms (cg<,/sH)', the con- 
dition a,(n) + a2(n + 1) = 2 i s  satisfied. 

In the general expression (26) i t  is convenient to 
change near resonance from integration with respect 
top,  to integration with respect to the variable v defined 
in (20). This change yields 

v l c (a, 0'; t) I2dv 
X 

[ (1-4/2qa+~pl)~+((1-4/~qi) / lpl+1)v' -~2(~)~"1 ' 

where 

p=-p+2q2, 
A ( n )  = ( h a ) - ' [  (ms2)'+2hQms'(n+l) ]"=E, (n ) /ho ,  (3 5) 

o,(w)> 0 is the root of the expression under the radical 
sign in the last factor of the right-hand side of (35). 

For the two transitions of (33), calculation yields 
near the exact-resonance points w'" and a'" defined 
in (21) 

hs ' ( n + l )  sin'vcp 
I ' 2 '  ( )  (msz+f im) .  t 1 + 0 ( p , q 2 )  I .  (36) 

The second term in the square brackets of (36) denotes 
the terms a p  and q2 (both independent of time and oscil- 
lating at frequencies 2w, 4~1, .  . . , ). These terms a re  
different near the points w'" and w"'. 

As t - we have (c(o, o'; t)12 - 6(v)t and can readily 
see that a t  an arbitrary frequency w of the external 
field the integral in (34) vanishes. Obviously, the a 
nonzero but finite probability of the two-photon tran- 
sition is obtained only a t  a field frequency such that 
v,(w) = 0. This frequency i s  defined by the condition 

A (a) =l-rlsq2+ I $ I. (37) 
Hence, using the explicit forms of the parameters P,  

(38) 
and a t  p > 2q2, two photons of frequencf) 

(39) 
Thus the frequencies of the photons drawn by the 

semiconductor from the field differ only by small in- 
crements from the frequency that might be expected 
from perturbation theory. The main conclusion of our 
analysis is, first, that, the probability of a two-photon 
transition in a magnetic field differs from zero a t  only 
one definite frequency; second, the irregularity pro- 
duced in the spectrum by the two-photon transition is  
notof the singularity o r  steptype, but i s  anarrow maxi- 
mum of finite height. This somewhat unusual frequency 
dependence i s  due, of course, to the peculiarities of the 
quasienergy spectrum in the vicinity of the two-photon 
resonance. 

According to (34)-(36) the total number of the two- 
photon transitions per unit volume and per unit time 
is 

where w is specified by (38) o r  (39), depending on 
whether the quantity under the absolute-value sign is 
positive o r  negative. 

We present a few estimates. We put E, = 2ms2 = 0.2 
eV, m =  0.01 m,, H = lo5  oe, go = lo4 ~ / c m .  For the pa- 
rameters  used above we get cg0/sH = 0.075, p 
= 1.25. m 4 ( n  = O), q = 6.6 lW3. The two-photon ab- 
sorption coefficient i s  

where no(w) i s  the refractive index of the semiconductor 
in the considered frequency region. 

We have not considered magnetoabsorption of more 
than two photons. A study of the structure of the quasi- 
energy spectrum, however, allows us to propose that 
the results  of the present paper for one-photon ab- 
sorption a re  qualitatively valid also in the case of any 
odd number of photons, while the results for two-photon 
absorption remain qualitatively in force for transitions 
with absorption of any even number of photons. This 
agrees with the general conclusions of a number of 
papers, where other models a re  used, both in the pres- 
ence and in the absence of a magnetic field.2-6v8,12 

We examine now, on the basis of the expression (40), 
obtained for the probability of two-photon absorption, 
the experimental results  of Refs. 10 and 11. There they 
obtained the dependence of the photoconductivity on the 
magnetic field in the narrow-band semiconductor PbTe 
illuminated by laser light of wavelength X, = 10.6 pm and 

552 Sov. Phys. JETP 51(3), March 1980 A. G. Zhilich and B. S. Monozon 552 



X2=9.6 km, at go* JIHIIC,. It i s  noted, first, that the 
indicated dependence has clearly pronounced maxima 
a t  definite values of the magnetic field; second, the 
positions of the maxima do not change when the field 
orientation is  changed to ZollEIllc4. Both circumstances 
can be explained on the basis of expressions (35) and 
(38)-(40). In fact, i t  follows from these formulas that 
the probability of the two-photon transition, and con- 
sequently also the photoconductivity, if the condition 
(38) or (39) i s  satisfied, has maxima that agree, accurate 
to the small quantities -$:, with the corresponding con- 
dition in parallel fields.'* 

To make expressions (35)-(40) applicable to optical 
anisotropic crystals, it i s  necessary to redefine in these 
expressions the magnetic field and the effective mass in 
accord with the rules cited in Refs. 15. In the case of 
the PbTe crystal, which has equal-energy surfaces in 
the form of an ellipsoid of revolution around threefold 
axes, with effective masses w,, = 0.25w0, m, = 0.028m0 
and E,= 0.19 eV, we can calculate, following the above 
redefinitions, the magnetic fields H that satisfy the 
conditions (38), (39), and (35). Since the resonance 
conditions for parallel and crossed fields a r e  practically 
the same, the values of the resonant magnetic fields 
turn out to be the same a s  in the case of parallel fields.'' 
The agreement between the resonance conditions at dif- 
ferent field geometries i s  due to the fact that in parallel 
fields the two-photon transitions proceed with selection 
rules An = 0 without a change of the spin state, whereas 
in crossed fields they proceed with selection rules 
1 An1 = 1 and with reorientation of the effective spin. 

Equation (40), according to which cc Hz, explains 
also the experimentally observed, especially in Ref. 
10, decrease of the intensity of the absorption peaks 
with decreasing magnetic field H. This seems to ex- 
plain also the failure to observe in the experiment the 
theoretically predicted peak corresponding to the 
smallest of the magnetic-field values. 

The two-photon transition probability obtained in the 
isolated band model (wide forbidden band) i s  

From a comparison of (4) and (42) we see that they 
yield substantially different frequency dependences of 
the absorption spectrum. 

It follows from (42) that absorption in a wide-band 
semiconductor should correspond to a square-root 
singularity, whereas the two-band model leads to finite 
minima Also different a re  the dependences of the tran- 
sition probabilities (42) and (40) on the electric and 
magnetic fields. Whereas in the wide-band semicon- 
ductor 7~~ H21:, according to (42), in a narrow-band 
semiconductor, a s  seen from (40), the dependence is 
more complicated and is determined by the ratio of the 

fields and by the width of the forbidden band. 

It follows from the foregoing that the results of the 
present paper can be used both to study the general 
properties of quasienergy states in narrow-band semi- 
conductors, and to interpret the magneto-optical ex- 
perimental data. 

In conclusion, the authors thank Yu. N. Demkov and 
P. A. Braun for helpful discussions. 

')As W -  0, Eqs. (11) yield. accurate to terms (C%'~/SH)~. the 
correct energy eigenvalues of the exactly solvable problem of 
the motion of a n  electron in constant cross  fields. 

"If p = 2g2, then it f s necessary to take into account from the 
very outset the terms of higher order in the parameters p and 
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