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A theory of the transverse magnetoresistance of a quasi-two-dimensional electron gas in a strong magnetic 
field is proposed for the case when the electron-phonon interaction is not weak. It is shown that under these 
conditions the picture of the carrier mobility can be conveniently described in terms of multiphonon 
transitions of localized electrons. The described approach yields equations in closed form for the transverse- 
conductivity tensor and makes it possible to investigate the character of its dependence on the temperature, 
on the magnetic field intensity, and on the electric-field frequency. 

PACS numbers: 72.15.Gd, 71.38. + i, 63.20.Kr 

The present paper is motivated in part by the recent 
interest in the electronic properties of quasi-two-di- 
mensional systems connected with the study of inversion 
layers in metal-insulator-semiconductor junctions, of 
electrons over the surfaces of liquid helium, of thin 
conducting films, and of a few other physical objects. 
To be sure, a considerable part of the cited articles is 
devoted to effects for which the interaction between 
electrons is responsible (in the presence o r  absence of 
a magnetic field). The realization of these effects, 
however, imposes rather stringent requirements on the 
electron depi ty ,  temperature, magnetic field, etc. , 
so that for most conditions (which we henceforth assume 
to be satisfied) the interaction between electrons can be 
ignored. In addition, the considered transverse con- 
ductivity of the electron gas in the case when both the 
magnetic field and the coupling of the carr iers  with the 
phonons a re  strong, is of independent interest, since 
the available calculations take the electron-phonon in- 
teraction into account only in the lowest (second) order 
of perturbation theory (see, e. g., the review of Kubo 
et al. 5). Corresponding to this approximation is a 
known mechanism, according to which the conductivity 
is determined by the diffusion of the cyclotron-orbit 
centers of the carr iers  on account of their collisions 
with thermal phonons. 

If the conductivity is governed significantly by multi- 
phonon processes, then there is no simple diffusion 
picture, and the calculation of terms of order higher 
than the second is made much more complicated by the 
presence of degenerate states that correspond to dif- 
ferent positions of the orbit centers and a re  labeled 
by a quantum number that depends on the gauge of the 
vector potential. 

I. HAMlLTONlAN OF SYSTEM. UNITARY- 
TRANSFORMATION METHOD 

We assume that the states of the conduction elec- 
trons transverse to the ( x ,  y) plane in which the elec- 
trons move a re  frozen a t  the lowest of the discrete 
levels due to spatial quantization. The single-elec- 
tron Hamiltonian of the system then takes in the Land- 
au gauge the form 

where po = ( e ~ ) - ' ' ~  is the magnetic length (R=c = 1); n, 
= aza, is the operator of the number of phonons of fre- 
quency wk; the effective mass of the electron m is as- 
sumed for simplicity to be isotropic. The quantities Vk 
differ from the corresponding matrix elements of the 
electron-phonon interaction of a three-dimensional sys- 
tem by factors that depend on the form of the wave func- 
tion of the film ground state. The chosen approxima- 
tion requires that the distance between the ground and 
first-excited film levels be much larger than the char- 
acteristic energies of the problem (temperature, cy- 
clotron frequency a, = (mpi)-I, frequency of the phonons 
most actively interacting with the electrons). If this 
condition is violated and several film levels participate 
in the conduction process, then the problem ceases to 
be purely two-dimensional (the possibiIity of this sit- 
uation justifies the term "quasi-two-dimensional" used 
in the article), but the corresponding generalizations 
of the calculations do not lead to fundamental difficul- 
ties. 

We apply to the Hamiltonian (1) the unitary trans- 
formation proposed in Ref. 6. For  the sake of clarity 
i t  is convenient to divide it into two successive stages: 

One of the possible methods of eliminating gauge- the f i rs t  is realized by the operator 
invariant quantities from the theory of electron-phonon 
systems in a magnetic field was proposed in Ref. 6 U,=exp {ipOVp.p,) (2) 

A d  used there to obtain the ground-state energy and and leads to the transfer of the centers of all the Landau 
the longitudinal effective mass of formations of the oscillators to the point y = 0. The second is repre- 
polaron type-magnetic condensons. It will be shown sented with the aid of 
below, in the calculation of the transverse conductivity 
in the quasi-two-dimensional situation, that this U, = exp { i z  (kl;+p:k.p.) n k )  

(3) 

method is also convenient and leads to a lucid and 
physically verified picture. and excludes entirely the operators p,  and x from the 
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Hamiltonian. As a result of these transformations we 
have 

where we have introduced the oscillator creation and an- 
nihilation operators 

c ~ = ~ - ' " ( p , p , + i p , - ~ y ) ,  C=Z-"' (p,pu-ipo-iy)  (5) 

and the unitary operators 

We note here that the use of rather general approxima- 
tions (certain variants of the self-consistent-field 
method, allowance for diagrams without crossings of 
the phonon lines, etc., dealt with in more detail in Ref. 
6) makes i t  possible to replace the operators S, by unit 
operators, but in the present article this replacement 
is used only in Sec. 111 in the analysis of a simple il- 
lustration of the proposed method. 

Most important in everything that follows is the op- 
erator 

where a ,= 2-'12po(k, + i k ~  . It is convenient to express 
r, in the form of a normal product for strong magnetic 
fields, when states of one o r  several Landau bands near 
the Fermi level take part in the electronic processes 
(we note that the transformations (2) and (3) do not in- 
termix states corresponding to different Landau levels). 
In this situation, the intensity of the electron-phonon 
coupling increases effectively with increasing field in- 
tensity on account of the f i rs t  factor in (7). It is easy 
to show that for an arbitrary function $(y) 

r k l b  ( Y )  =exp ('/2ipoZh.,k,) e x p  ( ik ,y )  .g (y+po'k,) , (8) 

i. e. ,  the interaction with the phonons causes random 
wandering of the electron: a step pik, is connected with 
a phonon whose wave vector is equal to k. Thus, we 
can reduce our problem with the aid of (2) and (3) to the 
problem of the motion of a single electron oscillator in 
a phonon field, but the coupling between them is es- 
sentially nonlinear, in contrast with systems of similar 
type with linear interaction, which have been investi- 
gated in detail. 7 9 8  

Before we proceed to a study of the kinetic proper- 
ties, we point out some "exact" relations for the elec- 
tron velocity v = i[r, HI, which follows essentially only 
from the form of H"'. Since the Hamiltonian (1) com- 
mutes with the projection of the total angular momen- 
tum 

and u,u,P,u;'u;'=~,, i t  follows that the absence of p, 
from H ' ~ '  means that the vector of the initial Hamil- 
tonian E(P> does not depend on P, and the mean values 
of v, in the states J I P x  are  

Since the system is isotropic in the ( x ,  y) plane, i t  is 
also obvious that i,= 0. If an external electric field 

of intensity E is applied along the y axis, we have as 
before i7: = 0, while i7: = vi,  where v i  = E/H is the Hall 
velocity in the absence of interaction with the phonons. 
In fact, for this system the dissipation mechanisms that 
determine i ts  kinetic behavior a re  usually connected 
either with violation of spatial homogeneity o r  with lim- 
itation of the phonon dragging by the electrons; both 
refute the choice of P, as the quantum number, mean- 
ing also deductions of the type (9). Nonetheless, i t  is 
useful to bear these deductions in mind. 

II. GENERAL EXPRESSIONS FOR THE 
CONDUCTIVITY. OPTICAL ANALOGY 

We calculate the conductivity by using a variant, pro- 
posed by  ax,' of the Kubo formula. If the electron 
subsystem is nondegenerate (let, for example, the num- 
ber of carr iers  in the conducting layer be much l ess  
than the degeneracy multiplicity of the Landau levels, 
i .e. ,  when s/2np;, where S is the a rea  of the layer), 
then the diagonal component of the conductivity tensor 
is 

and the Hall conductivity is 

oz , (v ,  T)= - i -  d t e x p ( - i v e t ) S p { ( p Z ( t ) -  p,-'y ( t ) )  [pa, y l } ,  (11) nez m f 
0 

where v, = V-i&(u is the frequency of the external elec- 
tromagnetic field, c - + 0), n is the carr ier  density in 
the layer, p(t) and y(t) a re  the operators in the Heisen- 
berg representation with the Hamiltonian H, p6 = ~-'e"", 
/3 = T-' ,  and 2 is the partition function. We note that 
the conductivity of a degenerate electron gas is also 
described by Eqs. (10) and ( l l ) ,  but in this case p6 
must be replaced by the operator p,-the Fermi func- 
tion of the Hamiltonian H, divided by the number of 
carr iers  in the layer. 

We use the known identity 

and transform the operators in (10) and (11) under the 
trace sign with the aid of (2) and (3); as a result we 
obtain 

e Z m  
6 

o , , ( v ,  T )  =x- J d t  e x p ( - i v . t )  J d h  ~ p { ~ r '  c y '  ( - i h ) c y '  ( t ) } ,  (13) 
m o  0 

where c, = c* i c, and the superscript (2) denotes that 
p6 and c,(r) are  determined by the transformed Hamil- 
tonian (4). 

Expressions (13) and (14) a re  quite convenient for 
calculations if the electron and vibrational subsystem 
in H ' ~ '  are  separated with good accuracy, for example 
with the aid of the adiabatic approximation. Inasmuch 
as in a strong magnetic field the conduction electrons 
of most crystals interact most actively with the ac- 
oustic lattice vibrations,%he electron subsystem is 
fast compared with the phonon subsystem if the in- 
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equality s/po <51, is satisfied, where s is the speed of 
sound (as a rule this inequality is well satisfied in 
fields 1 0 ~ - 1 0 ~  Oe). In addition, just as in the absence 
of a magnetic field, the adiabatic approximation is 
more reliable the stronger the electron-phonon coup- 
ling. A suitable object for the adiabatic situation may 
also be electrons over liquid ~ e ~ ,  which interact with 
the surface oscillations (ripplons); the characteristic 
frequency of the ripplons is of the order of eV, and 
the electron-ripplon interaction can be varied in a 
rather wide range by means of a clamping electric 
field. 

It is important to emphasize that the adiabatic po- 
tential surfaces corresponding to H"' are  not degen- 
erate, inasmuch as in the given configuration of the 
lattice Q, the electron spectrum is discrete and non- 
degenerate. We denote the spectrum of the system in 
the adiabatic approximation by EN, (,kl, where N is the 
number of the electronic state and {nJ is the se t  of the 
occupation numbers of the phonons corresponding to 
this state, and choosing the functions 

we obtain after simple transformations 

a=(N, {nk)), p,=Z-' rsp (-PE,), (I),.,=E,.-E,, 

where Reo,,(v, T) is also determined by (151, but in 
place of 1 (c.),,, 1 i t  contains the products (c3,,(c-) ,,, . 
The quantities Imo,,, as is well known, a re  connected 
with the dielectric properties of the system and will 
henceforth be disregarded; for the static conductivity 
we have Imcr,,(O, T) = 0 and Im(ory(O, T) + u d 0 ,  T) = 0. 

Sums of the form F,,(v, T) determine also the optical 
and nonradiative processes in local centers, and their 
investigation is the subject of an extensive litera- 
ture. lo*'' The main purpose of the present article is to 
indicate this optical analogy and to use the optical 
methods developed in those studies to investigate 
uua(v, TI - 

We note first, however, a number of characteristic 
properties that distinguish our problem from the optical 
problem. First ,  the formulas for the absorption and 
luminescence spectra contain in place of 1 (c+) ,,. 1 and 
(c+),,.(c-),,, the squares of the moduli of the matrix 
element of the dipole-moment operator of the optical 
electrons, and the formulas for the probability of non- 
radiative transitions contain the non-adiabaticity op- 
erator elements. Second, the optical and nonradiative 
transitions a re  usually assumed to take place between 
pairs of states with definite values of N and N', with 
N *N1, whereas in (16) i t  is necessary to take into ac- 
count, generally speaking, also terms with N =  N', and 
the summation is limited only by the temperature. 
Finally, the most important difference is connected 
with the form of H,,,. In the conductivity problem H::: 
depends according to (7) not only on y but also on p,. 
Certain consequences of this unusual fact will be dis- 

cussed in Sec. IV. In all other respects the analogy 
is complete, so  that to calculate (16) we can use a pic- 
ture extensively used in the optics of local centers, 
which leads to results that describe the experiment 
splendidly. According to this picture, the multiphonon 
processes a r e  due to three causes: the change of the 
positions of the equilibrium of the lattice operators in 
the electronic transition N -N1, the change of the pho- 
non frequencies in the transition, and finally, the Q, 
dependence of the matrix elements, which take in the 
conduction problem the form 

The last  cause constitutes violation of the Franck- 
Condon principle, a formulation of which can be the 
equality 

In optics, the most frequently used is the A approxima- 
tion-the case in which only the equilibrium positions 
change in the electronic transition. It is assumed that 
the phonon frequencies remain unchanged and the 
Franck-Condon principle is valid. It is precisely for 
this case (and only for it) that the calculation leads to 
the "mirror symmetry" of the light absorption and em- 
ission spectra, which is usually observed in experi- 
ment. The conductivity in the a approximation is the 
subject of the next section. 

Ill. THE A APPROXIMATION 

We discuss now the approximations that will be used 
henceforth. First ,  the operators S ,  in H"' will be re- 
placed by unit operators. The conditions for the re- 
placements were indicated in Sec. I; we add only that 
this approximation, while retaining the spatial hom- 
ogeneity, does not lead to violation of relations of the 
type (9), and can therefore not be an independent cause 
of dissipative processes. Next, since the magnetic 
field is assumed strong enough and the adiabatic ap- 
proximation is applicable, the operators r, can be ex- 
panded in powers of c and c* in the following manner: 

rk=fk0(~) +iak[k'(N)c+iak'c'jk'(N)+ . . . , (19) 

where fr' and f;" are  functions of the operator N =  c*c; 
their matrix elements a re  expressed in terms of La- 
guerre polynomials LY,(x): 

(fro)sx=exp (-'/zlaklZ)L~( lakl"), 

(jk').vN=(N+l)-"r esp ( -I /*  1 ar 12)LN' ( 1 ak 1') 
( a  distinction must be made between the operator N and 
the level number designated by the same letter). For 
the problem considered, the terms of the form 
f:(ni)c1c 1 > 1, with 1 > 1, contained in the expansion of 
rk, a r e  usually inessential. The approximation (19) 
results in the general case in a change of the phonon 
equilibrium positions and the frequencies, and also of 
a dependence of Mi,. on Q,. The A approximation cor- 
responds to allowance for only the f i rs t  term in the 
expansion (19). Indeed, if rk=f :(N), i. e., 

then in a state with a definite value of N the phonon eq- 
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uilibrium positions a re  shifted, with the magnitude of we obtain 
the shift depending on N; the frequencies of the phonons 
do not change a s  a result of the transition, and MiN, F., (v .  T )  = (2 e x )  (-BEN') ) -' 2 (N+ 1 )  exp (-BENo) 

N - 0  N-0  
= const. 

x { F , ~ , ~ + '  ( v ,  T) + e x p ( - ~ ~ F " ~  ) F Y . ~  - T) I (29) 
In the A approximation, the conductivity tensor can 

F,N. N+l 1  
be calculated exactly. For this purpose we express ( v ,  T )  = (- c 1 A?':". 1' (2zk + 4} 
(16) in the form - 

n y e r p  p (~:*l. - v) t~  exp {c I AP 18 I(& + 1 )  eiwkt + we-lmkt d t ;  
1 - 

F, , (v .  T)= - J e-"I c+cf' ( t ) }  d t ,  
2n - - (22) -- 

1 
(30) 

F:"' ' (v.  T) = ~ 0 . p  {- 1 A? N~ (4 + I ) }  where, in accord with the assumed approximation, H ' ~ '  
is given by (21). We carry  out next,-inder the trace 

x 1 exp [ i  - v) t ]  exp  {x 1 A:"' 1' [%elmkt + Gk + i )  e-imk']} d t ,  
sign in (22), a unitary transformation with the aid of -- - 
the operator (31) 

~ ~ = ~ ~ ~ { - z  fr"(NL(~kak-~k'&')  ( I )  k 1 . where p,"" and c'l*N are  the spectra, normalized to 
(23) unity, of the absorption and emission of light by local 

As a result of the transformation (23) the phonon oper- centers, due transitions between the levels and + 

ators a re  shifted and calculated in the A approximation. The simple 
connection between them is an expression of the law of 

Vk a,' -- U,ak' us-' = a,. - - f k o ( ~ ) ,  (24) mirror symmetry. Replacing the quantity iik+ 1 in (30) 
0 k by its equivalent eBuVik, introducing z = t - @ , and 

and the Hamiltonian takes the form transfering the integration contour to the real axis, we 

HIX:--Q,V - l V k l 2  obtain 
z T [ f k o ( ~ )  i 2  +z u k n k = ~ ! s ) + ~ p ; .  (25) 

F , , ~ ' ~ + ' ( V ,  T) = e s p ( - ~  ( ~ f r + ' . ~  - y )  ) F P + ' . ~  (v ,  T ) .  
The operator 

- ~ ~ [ f k . ( , ,  ] 2  

determines the polaron shift of the electronic levels. 
The Hi3' spectrum is 

IV I r  
E ."Q,N-C - I _ e x p ( - ~ a k ~ ' )  [ L ,  ( lak12)  l Z .  

W k  

(26) 

The differences of the levels {E!} 

constitute the frequencies of the purely electronic 
transitions for the pair (N, N'). 

The transformation of c, under the action of U, is 
conveniently carried out with the aid of the identities 

where g is an arbitrary function of the operator Nand 
I is the unit operator. 

Further calculation of (22) leads to expressions of 
the form 

where 
Vk I a k 1 2  

A kS'." = - [Lx~(1ak1z)-L~-(~~k!2)le~~ 
0 k 

is the difference between the matrix elements of the 
transformed phonon operators (24) of the electronic 
states Ai' and Ai; the trace is taken in the subspace of 
the eigenfunctions of the k-th oscillator. It can be 

If the electron density in the layer is less than 1/2npi 
and the temperature is low enough, PC$>> 1, then i t  
suffices to retain in (29) only the f i rs t  term, and the 
static conductivity, with allowance for (32), takes the 
form 

nez 
o,, (0, T )  = pn, - Fao'' (0, T )  . 

2m (33) 

Expressions of the type (30) were investigated in de- 
tail in many papers on optics,10v11 and simple formulas 
were obtained for  some special models. In the general 
case, the dependence of F ~ * ~ * ~  on the temperature, on 
the intensity of the magnetic field, and on the frequency 
of the electric field is determined by the details of the 
phonon spectrum and by the character and intensity of 
the electron-phonon interaction. 

We indicate, in concluding this section, that the 
temperature dependence of Fa and E', can be investiga- 
ted in the general case with the aid of an equation that 
they satisfy a s  functions of v and 2' and makes i t  pos- 
sible to trace the evolution of the form of E'(v, 7') with 
increasing temperature. l2  

IV. DISCUSSION OF RESULTS 

We compare f i rs t  the results of the preceding section 
with the expressions given in the literature for a,,, 
calculated in second order of perturbation theory and 
corresponding to the Titeica mechanism. According 
to Ref. 5 we have for a nondegenerate two-dimensional 
electron gas 

ne' - 
0., (0, TI = 8  5 SP (pam(t) )dt,  

-- 
shown that 

where i ( t )  is the Heisenberg operator of the projection 
( s p k e - @ " t )  -' ~ p ~ ( e - @ " k  exp(rkak-yk'ak')) = e x p { - I ~ k l ~ ( ~ k + ' / t ) ~  (28) of the velocitv of the center of a cvclotron orbit. For 
with the Bose function Gk. Taking (28) into account, collisions with phonons, 
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i .e . ,  in second order pa and f(t) a r e  determined by 
the Hamiltonian without interaction, so that we can 
obtain 

(36) 
If we replace k:' in (36) by k 2 2  = (k:  + k9/2 (this is 
justified because of the isotropy of the system in the 
( x ,  y) plane), then the obtained expression coincides ex- 
actly with the earl ier  one (33), expanded up to I ~ k /  '. 
In order for the expressions for a,, to contain k, and 
k ,  separately, and not only in a combination of the form 
k,, i t  is necessary to go outside the framework of the 
-r approximation, and include, for example, terms with 
f in the expansion (19); this is particularly important 
for the calculation of the Hall conductivity, where pro- 
ducts k&, a r e  involved and lead to u::(O, T)=  0. Strictly 
speaking, the comparison presented above is given for 
mutually exclusive approximations-the adiabatic ap- 
proximation (Sl,>G or  strong coupling) and the Titeica 
mechanism (weak coupling and 51, <G,  since U;:(O, T )  
is proportional to the density of the phonon spectrum at 
the frequency 9,). The agreement of the results means 
that the approach assumed in the article i s  valid also 
beyond the boundaries of the formal adiabatic-approx- 
imation scheme. 

We discuss briefly the contribution made to a,, by the 
processes due to the dependence of iblNN,t on Q,. This 
dependence is the only cause of transitions with par- 
ticipation of phonons for h1'=1Y. The terms (16) with 
N ' = N  may turn out to be significant, for example, in 
the limit of low temperatures, inasmuch a s  at g(S4)' 
-v) >> !(v <Id: l) we have F: '(v, T )  - exP{-$(Q~*' - v)), 
and Moo gives r ise  to a power-law dependence on the 
temperature, albeit with a new small parameter as a 
factor. Allowance for itl$N((Q,)) leads also to the ap- 
pearance of the quantities {k:}  in a,, and of the quanti- 
ties {k$,) in a,, as should be the case in accordance 
with a general formula of the type (34). Indeed, ( c * ) , ~ ~  
differs from zero only to the extent that H::: depends 
on p,, since the spectrum of H "' at fixed values of (jk 
is discrete and nondegenerate. On the other hand this 
dependence is determined by the commutators [r,, I,] 

= krp;I',. For similar reasons, the matrix element 
(c-INN is proportional to the quantities {k,), since [rd,] 
- k , .  The simplest linear approximation of .~I~,({Q,}) 
does not contribute to the conductivity, since it gives 
r ise  to processes of second order in {V,} that are  for- 
bidden by the energy conservation law. 

The role of the effect of the change of the phonon fre- 
quencies in electronic transitions iV - A '  i s  as  a rule 
inessential fo r  the values of n,,. 

We note in conclusion that the described method is 
convenient also if i t  i s  necessary to take into account 
several electronic levels corresponding to quantiza- 
tion across the film (quasi-two-dimensionality) . In 
this case the electronic states a r e  numbered addition- 
ally by the index of the film levels; in all other respects 
formulas of the type (15) a re  suitable, provided only 
that the transitions between the essential pairs of elec- 
tronic levels can be described in the adiabatic approx- 
imation. 

I take the opportunity to express sincere gratitude to 
Academician I. M. Lifshitz for a discussion of a number 
of results in the article. 
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