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The distribution of the potential of a static point charge in an insulator is investigated, near a contact with a 
metal, in a plane passing through the point of localization of the charge and parallel to the interface. Account 
is taken of the nonlocality of the screening in the metal and in the insulator. The potential is determined by 
two terms. The first is due to the behavior of the dielectric function of the metal at small wave vectors. It 
decreases monotonically with the distance R from the charge. The second is connected with the singularities 
of this function on the real axis and is the surface analog of Friedel oscillations. The amplitude of the latter 
decreases exponentially with the distance a from the charge to the surface of the metal. In the case of the 
Kohn singularity for a spherical Fermi surface the oscillations have at R >20 and R >(2k,)-I the asymptotic 
form -R -3cos Zk, R exp( - 4kp),  so that their contribution is negligibly small even at a 2 IA. The 
principal and monotonic term in the region of large R is of the form &/R -3[L ,+a /~*(a ) ]~ ,  where L , is the 
characteristic] depth of penetration of the static field in the metal, and &*(a) is determined by the dielectric 
properties of the medium in contact with the metal, with 1 = E *(O) I &  *(a)<& *(w) = E. This expression goes 
over into the result 2 a 2 1 ~ R 3  of classical electrostatics only far from the interface, at L , < a / ~ * a )  and e 
*P(a)-&. Thus, the penetration of the field into the metal leads to a potential that is much higher than the 
classical one and to an anomalous dependence of the dielectric constant E of the medium in contact with the 
metal. 

PACS numbers: 73.40.Ns, 73.40.Bf, 41.10.Dq 

1. INTRODUCTION with spatial dispersion of the dielectric constant. To 
make the results  compact, we confine ourselves to an 

This paper i s  devoted to an analysis of the potential analysis of the distribution of the potential in a plane 
of the field produced by a point charge in an insulator passing through the point of localization and parallel to 
near i t s  interface with a metal. Account i s  taken of both this interface (see Fig. 1). 
the nonlocality of the screening of the field in the in- In the general case the linear response of the con- 
sulator, and of the penetration of the field into the met- tacts, owing to violation of the translational invariance 
al. This potential can be used to analyze the Coulomb in the direction, is characterized by a single dielec- 
interaction of charges in a semiconductor a t  i ts  junction 

tric function E,e(z, zl ;  R): 
with a metal, of the structure of the adsorption layers 
of charged adsorbed atoms on a metal-vacuum bound- 

D, (2, R)  =- f dz' ~ R ' E = @  (z,zl; R-R') Vpa) (z ' ,  R ' ) .  
ary, of the kinetics of elementary processes on the (2.1) 

surface of a metal, of the statistical mechanics of the For qualitative investigations, however, one frequently 
adsorption of ions on an electrode from an electrolyte uses assumptions that express E,~(z ,  z'; R) in terms of 
solution, and others. the bulk dielectric functions of the contacting 

The electrostatic potential produced by a point charge 
on the surface of a metal bordering on a vacuum was 
analyzed in a number of papers.'-5 In the first  group 
of papers'-3 are  used the approximations of the linear 
response and of the Hartree self-consistent field for the 
description of the induced space charge in the metal. 
The papers of the other type4p5 a re  based on the model 
of the specular reflection of the conduction electrons 
from the surface of the metal6-', within the framework 
of which the electrostatic potential can be expressed 
in terms of the bulk dielectric function of the metal 
&,,(k). Explicit expressions for the potential a re  ob- 
tained by substituting various models for &,,(k) (for 
example, approximations corresponding to different 
shapes of the Fermi surface were used in Ref. 4). An 
advantage of this procedure i s  that i t  makes i t  possible 
to obtain in a unified manner the results for different 
models of the metal. This is precisely the approach 
that will be used in the present paper. 

&,(z - 2 ' ;  R) and cz(z - z'; R) (we note that in this case, 
in particular, the defect properties of the media near 
the contact a r e  neglected). The most widely used model 
i s  that of specular reflection of the polarization waves 
from the interface6-': a t  z, z' >O we have 

P..(z, z t ;  R )  =e,(:' (z-z'; R ) - ~ : f '  (z+zf; R), 

a t  z, z' < O  the analogous relations contain the com- 
ponents &,bb, while in all  the remaining cases 
E,*(z, 2'; R)= 0. 

We take the cosine Fourier transforms of the func- 

2. FORMULATION OF PROBLEM AND CALCULATION 
METHODS 

We consider the potential produced by a single point 
static charge near a plane boundary between two media 

FIG. 1. 
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tions @ ( z ,  R), D, (2, R), ff = x ,  V :  xz  1-kz//4kpa l+k/2kp 
k Z ~ ,  ( k )  = - + IZ+xZ In 

2 4kl2kp Il-kI2kaI ' (3.1) 
1 

@ (k , ,  I i )  = - j dz cos k,z j dRe-"% ( z ,  R )  
2x 

and the analogous sine transform for D,(z, R). At k, 
>O the integration with respect to z is from 0 to *, and 
a t  k,<O from -* to 0. As a result, Eq. (2.1) with al- 
lowance for (2.2) takes the form 

D, (k,,  K )  =-ik,~:: (k , ,  K )  @ ( k ~ ,  K ) ,  a=z, Y; 

~ , ( k , ,  K )  =k,eli' (k , ,  K )  @ (k*,  K ) .  (2.3) 

where j = l  at  k,<O and j = 2  at  k,>O. 

Using (2.3), the Poisson equation 

div D=4n6(z-a) 6 ( R )  

and the boundary conditions at z = 0, we obtain an ex- 
pression for the potential 

a t  z > 0  and 

a t  z <0, where 

2 " cos k,z 
~ ( ~ , ~ ) = - - j d k , ~ .  

~ z ( k )  
I )  

The integral Ll(z, K) is obtained from (2.6) by the sub- 
stitution In these formulas, k2 = k:+ K', and the 
bulk dielectric functions of the media c,(k) a r e  defined 
by the relations 

In the present paper we use a potential in the form 
@,(a, R) 2 @,(R) (profile in the plane z = a, passing 
through the inducing charge) a s  a function of the di- 
electric properties of the metal q ( k )  and of the insulator 
~~(12).  To make the physical picture clear, we consider 
initially (Sec. 3) in pure form the penetration of the field 
into the metal. In the next following section (4) we an- 

where k, is the Fermi momentum, x-' i s  the Thomas- 
Fermi screening length. We put in these sections 
c2(k)= E.  

To analyze the form of do@) (the charge is located 
on the interface) i t  i s  convenient to replace Jo(KR) in 
(2.4) R~@,''(KR) and to deform the contour of the inte- 
gration in the complex K plane. It is shown in the Ap- 
pendix that at R >> (2kF)-' the value of 3,(R) is deter- 
mined by the contributions from the vicinities of the 
points K = 0 and K = 2kF, so  that 

xz cos 2 k ~ R  
Q c 2 )  ( R )  = 

8 k a ~ ( 1 + ~ z / 8 k p Z ) z [  1+2kpeL, (2kp) 1' R3 
. 

Here L, = Ll(O, O), Ll(2kF) = Ll(O, 2kF) [see (2.6)l. 

For a metal-vacuum boundary ( E  = 1)  the distribution 
of the potential @,(R) was analyzed and vari- 
ous asymptotic expressions were obtained for the region 
R >> (2kF)". It follows from (3.2)-(3.4) that the correct  
result  i s  that of Kravtsov.* At E = 1 our relations agree 
with the results of the numerical calculation of Gabo- 
vich et In the Thomas-Fermi approximation there 
is no oscillating contribution a"', s o  that @,(R) =2c2/ 
u2R3 in agreement with Ref. 10. 

According to (3.2), the potential a t  R >> (212,)-' i s  equal 
to the sum of a monotonically decreasing contribution 
and an oscillating contribution, which a r e  of the same 
order of magnitude a t  E =ol (typical values a re  
x - k, - L, 2 L1(2k,) - 0.5 A). Replacement of the vacuum 
by an insulator with E >> 1 alters the result drastically: 
@"'a: 1/c2, so  that at large E there is essentially no 
oscillating contribution 

In the region of large R, the monotonic component of 
the potential has according to (3.3b) an anomalous de- 
pendence on the dielectric constant of the medium in 
contact with the metal, @"'(R) 5, whereas in the vol- 
ume of the dielectric the potential is  proportional to 
1/c. In the intermediate region (3.3a), which exists 
a t  E >> 1, the potential 3 "' is double the potential in the 
volume of the dielectric. 

alyze the dependence on the distance a to the surface. The unique behavior of the @"'(K)  contribution (which 
This i s  followed by an analysis (Sec. 5) of the influence predominates at >> is a direct of the 
of the spatial dispersion of the dielectric ~~(12). A num- distribution of the induced electron density in the 
ber of conclusions a re  drawn concerning the behavior To explain this, we consider the simplest Thomas- 
of the potential without specifying concretely the model F~~~~ model. The distribution of the electron density 
of the contacting media (Set. 5). In See- 6 we consider differs strongly from the profiles at the junctions of an 
an example of a concrete appproximation for c,(k), impermeable metal and an insulator and a metal- 
demonstrating the model-dependent results. vacuum junction: in the former case the dimension of 

the electron cloud on the surface of the metal i s  R ,  
3. FIELD OF POINT CHARGE AT A JUNCTION OF A EX-', and for the latter systems Re = a = 0 and Re 
METAL (IN THE LINDHARD MODEL) WITH A x-'. This strong increases of Re is  due to the fact 
LOCAL INSULATOR that the role of the perturbing potential, which induces 

In Secs. 3 and 4 we describe the metal by using the the electron density on the metal, i s  played by the po- 

dielectric function of a degenerate electron gas in the tential of the point charge located on the vacuum- 

Hartree approximation. For a spherical Fermi surface interface: 

it is  given by the Lindhard formula ( D = ~ ! ( E + ~ ) R = z / E R .  
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This yields for the induced electron density an upper 
bound estimated a t  u2@ - u2/sR. Consequently a sphere 
of radius x-' contains a charge ( U ~ / C , ) X - ~ -  l/s, i.e., a 
small fraction of the summary counter charge (-I), s o  
that we certainly have Re-.> x-'. To estimate Re, we take 
into account the fact that the thickness of the electron 
cloud in the interior of the metal i s  equal to u-', and 
that the total charge is -1; 

Thus, the electron density on the metal takes the form 
of a flat disk of thickness x-' and radius ~ , - sx - '>>  x-'. 

The form of the potential in (3.3) i s  brought about by 
superposition of the fields of the point charge and of the 
disk of counter charges. For points inside the disk (at 
R <<Re) the field of the latter i s  homogeneous and has 
little effect on the potential a(R). Therefore @(R) is  
identical with the potential of the point-charge on the 
boundary between the vacuum (in place of the metal) 
and the insulator, i.e., -2/&R [see (3.3a)l. At large 
R(>> Re) the potential i s  in fact produced by the point 
charge and by a uniformly charged circle of radius 
Re- EX-', lying in the vacuum-insulator interface plane. 
It i s  easy to show that the potential of the last system 
is  (R) - s x - ~ / R ~ ,  which coincides with (3.3b). 

4. INTERACTION OF POINT CHARGES IN  A PLANE 
PARALLEL TO THE SEPARATION BOUNDARY 

We analyze now the dependence of the potential 
@,(a, R)=@,(R) on the distance a between the charge 
and the separation boundary within the framework of 
the same model of contacting media. The expression 
for the potential *,(R) (2.4) - (2.6) can be rewritten in 
the form 

where @ ,(K) = @ ( z  = 0, K). The first  two terms correspond 
here to a potential in a system consisting of an im- 
permeable metal and an insulator. The integral in (4.1) 
i s  analyzed in analogy with the data in the Appendix. As 
a result we have 

where 

x2 exp (-4k,a) @dZ' ( R )  = 
8k,'( 1+x2/8knZ) '[ 1+2kFeLI (2kF) 1' 

(4.3) 

cos (2kFR-V2 arctg(2alR) ) 
X 

R3 (l+4a21RZ)'/* 
(4.4) 

In the region R >> 2a Eqs. (4.3) and (4.4) take the 
simpler form 

@a1' ( R )  =Z/ER at (2ka)-I, 2 a < H a ~ L , ,  (4.5a) 

ad'' ( R )  =2(a+&L,)'/&R3 at 2a, ELLKR;  (4.5b) 

a):'' ( R )  s @ ' ~ '  ( R )  exp (-4kaa) 

Here +','(R) i s  defined by (3.4). The oscillating term 
@ F ) ( R )  decreases very drastically (a exp(-4k,rl)) with 
increasing distance from the charge to the surface. The 
quantity @:"(R) depends ona relatively weakly, especially 
a t  E >> 1. Thus, the oscillating contribution to Gl(R) does 
not manifest itself in fact a t  azk;,' even for a metal- 
vacuum junction. 

At R >> 20 >> cL, we obtain for the potential the tra- 
ditional expression @"(R) - 2n2/ER3, i.e., the potential 
of a dipole made up by a charge and i ts  image in an 
ideal metal. However, the effects of penetration of the 
field into the metal can be neglected only under the con- 
dition a >> EL,,  which is satisfied in the case of dielec- 
t r i c s  with large values of E only far from the junction. 

The factor exp(-4kFn) in @i2'(Z?) s t ems  from the Fou- 
r i e r  components of the potential with wave vectors 
K= 2kF, which decrease like e-2Ka. The @&"(R) term is  
due to the contribution a t  K - 0, since no exponential 
i s  produced here. 

5. CONSEQUENCES OF SPATIAL DISPERSION OF 
THE DIELECTRIC CONSTANT OF THE MEDIUM IN  
CONTACT WITH THE METAL 

The description used in the preceding section for the 
medium in contact with the metal, using only the di- 
electric constant &, i s  in the general case insufficient 
in the analysis of the potential in the considered scales, 
We present below a generalization of the results  in the 
case when the medium in contact with the metal i s  . 

characterized by a dielectric function &,(k).' This 
makes it possible, in particular, the limits of applica- 
bility of the local-screening approximation c , (k )  = E. 

We note beforehand one important result. The inter- 
action of the charges in the interior of an insulator with 
spatial dispersion of the dielectric constant goes over 
a t  sufficiently large distances into the usual Coulomb 
interaction with the macroscopic & = &,(k = 0): 5 = 

[if &,(h) has no singularities on the r ea l  k axis]. It will 
be  shown below that the interaction of the charges in 
such a medium neart  he contact with the conductor i s  
determined by the spatial dispersion of &,(k) even a t  
arbitrari ly large distances between the charges. Thus, 
in the general case the local-dielectric approximation 
i s  not valid even a s  R+m. 

We investigate f i rs t  this asymptotic form using Eqs. 
(2.4)-(2.6) for aq(R). Jus t  a s  above, thepower-law 
terms of the expansion of @,(R ) a r e  determined a s  R 
dm by the behavior of the integrand of (2.5) in the vi- 
cinity of K = 0, and also of i ts  singularities on the real 
K axis. 

We examine the behavior of the integrals (2.6), a s  
well a s  of the integral 
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in the vicinity of the point K = 0. Since there a r e  no passing through the point K = K,. 
mobile carr iers  in the insulator we have ~ ( k )  - ~ ~ ( 0 )  The contribution @:"(R) a s  R--a can be calculated = E, k--0. Therefore L(0, K)EK-', K--0, whereas by using (5.7): 
Ll(O,K) and M(a,K) a r e  bounded as K-0: 

here 

. - 

The quantity @,(a, K) in (2.4), which can be repre- 
sented with the aid of (5.1) in the form 

This result generalizes (3.3b) and (4.5b). The length L, 
characterizes the properties of the electron subsystem 
in the metal and i s  determined primarily by the screen- 
ing length x'l. The dispersion law &,(k) determines the 
character of the dependence of the "effective dielectric 
constant" of the insulator &,(a) (5.5). In particular, if 
a is  much less than all the reciprocal characteristic 
scales of the function &,(k) [the function c2(k - l /a)  
=I], then &,(a) = 1. At sufficiently large a we have 
&,(k - l / a )  = E and &,(a) = E. Thus, &*(a) varies from 1 
to E with increasing distance of the charge from the 
boundary. 

tends to a constant value a s  K+O. To calculate the We now discuss the contribution @62' (~) ,  connected 
integral with respect to K a s  R+w in (2.4) i t  is  nec- with the singularities of the functions E, (k) on the real  
essary  to determine the correction linear in K to axis a t  k* 0. We assume that they a r e  all connected 
@,(a, 0). We assume that the integrals with cl(k). Then 

"dk 1 ' - sinZ ka 1 1 ' [ I  I d k 7 1 ~ ~ l  
converge, a s  is  certainly the case for normal metals and the jump of @ is due to the jump 
with spherical Fermi surface and for a large class of 2 "  dk 2 dk 1 
insulators. Then a s  K-0 the correction terms from {L , l (o>K)} j=  {TJ  k E , ( k )  ( k 2 - K 2 ) t , s }  ,=-;J k ( k 2 - K z ) r , z { m } ,  . 
L,(O, K) and M ( a ,  k) do not exceed con st*^^. Therefore L PI 

(5.13) 

@.(a, K )  = @.(a, 0 )  -KE (5.7) Recognizing that a s  R - m  the main contribution to 
X + o  (5.10) is made by K =K,, we have 

Just a s  in the preceding sections, a s  R--* it is con- 
@:'' (R )  = - - L2 (a,  K,) 

venient to replace J,(KR) by Re H;)(KR) and deform the : &K,e,'(K,) [L.(O, l i ) + L z ( O .  K,) I" 
contour (Fig. 2). With exponential accuracy we can con- 
fine ourselves to contributions from the vicinity of x -  1 RE! [e'"ln Jdoe-@'(E, ( K , + ~ B ) } ]  , 

R 
(5.14) 

K = O(@rl(R)) and from the non-analyticity points K* a 

= {A,, . . . , K , )  of the function @,(a, K)(@t2)(R)). Then [ R  max {K,)  I+-. 

@.(R) =@."' ( R )  +@.''I ( R ) ,  

where 

4 "  @do ( R )  =- -1 dt tKo ( tR)  Im @.(a, i t ) ,  

We consider the particular case when there i s  only 
(5.8) one singularity ~ , ( k )  on the real  axis a t  the point k = k*, 

in the form 

(5.9) 
e , ( k ) = A ( k ) + B ( k )  (k-k')  In Ik-k'l, 

0 with A(k) and B(k) regular and not equal to zero a t  k 
0."' ( R )  =2 Re J d~ KH:" ( K R )  {@.(a, K ) l j ;  (5.10) = k*. It follows then from (5.14) that 

I ( K r l  

cos k'R 
(D?(R)=- 

4B (k')  LZ (a,  k') 
{~(k)},  is  the difference between the values of the func- R" k ' ~ , = ( k - )  [ L ,  (0 ,  k') i L ( 0 ,  k') l Z  
tions on the two functions on the two sides of the cut 

In the Lindhard model (3.1) 

WJ 
ka=2kF, B(k')  =x2/16kF3, E L  (k') =I+ X ~ I ~ ~ C , ~ .  

For the case of a local insulator (&,(k)=c?nst)), Eq. (5.16) 
goes over into (4.4). Inasmuch a s  k* -4  A-', for a metal, 
i t  i s  obvious that i t  i s  impossible to neglect the spatial 
dispersion of the insulator, i.e., to put c,(k- k*) = ~ ~ ( 0 )  

0 = E. For rough estimates a t  k*a 5 1 we can assume that 

L(0 ,  k') - [k . e z (k ' )  I-', L(a,  k ' ) - [k 'e , (k ' )  I- '  e \ p  ( -k'a) .  
FIG. 2. Deformed integration contour on the complex K plane 
for the case of one non-analyticity point K* of the function Thus, a t  small distances u from the surface of the 
Ei(k). The cut passes through the point K=K*. metal, allowance for the &,(k)  dependence leads to an 
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increase of @ q ' ( ~ )  compared with (4.4). 

According to (5.16) and (2.6), the dependence of 
@:"(R) on a i s  determined by the analytic properties 
of [k2c,(k)l-'. In the general case, besides the contri- 
bution from the pole k,= -ik*(k=O), i t  i s  necessary to 
take into account also the singularity l/c,(k). If al l  lie 
on the imaginary axis, then they correspond to pure 
imaginary values of k,, with Ik,l >k*. In this case, at  
large a the principal contribution is  made by the pole 
a t  k,= -ik* and L(a, k*)=exp(-k*a)/&k*. If the sin- 
gularities present a r e  not on the imaginary axis but 
correspond to the condition Ik I<< k*,  then the corre- 
sponding values of the variable k, lie near k*, so  that 
we again have L(o, k*) - exp(-k*a). If we disregard the 
exotic case when the dielectric function of the medium 
in contact with the metal &,(k) has singularities near the 
rea l  axis (with Im k < k*), then the following important 
conclusion of Sec. 4 remains in force: at  k*n > l  we have 
@:"(R) - exp(-2k*a), i.e., the oscillating term decreases 
very rapidly with increasing a. 

6. EFFECTS OF SPATIAL DISPERSION OF THE 
MEDIUM AT INTERMEDIATE DISTANCES 

EXAMPLE: BEHAVIOR OF THE POTENTIAL FOR THE 
SINGLE-POLE MODEL 

The relations obtained in the preceding section a r e  
valid only at  sufficiently large R. The behavior of a t  
smaller R depends on the form of c,(k). By way of 
illustration, we present the results  of the calculation 
of @ (R) (case o = 0) for the "single-pole" model of &,(k) 
(Ref. 13): 

which is  analogous in form to the known14 Inkson ap- 
proximation that describes the smooth transition from 
c,(O) = & to &,(m)= c*; A-' i s  the characteristic wave vec- 
tor of the transition. If ~ , > l ,  then the spatial dis- 
persion of c,(&) i s  neglected within the framework of 
this model a t  large k, where the transition from E, 

to 1 should take place. For a metal we use again ex- 
pression (3.1 ). 

We consider f irst  the case of relatively short length 
11: ii<< c,L,. At sufficiently large R(>> EL,) we have 

0"' ( R )  = ~ E L , ' / R ~ .  

At smaller values of R(EL, >>R>> Ll), 

In particular, at  EL, >z R >> Aln(&/&,) we have 

(D"' ( R )  = ~ I E R  (6.4) 

in accordance with (3.3a). At E >> E ,  and L, << R << A, 

0'" ( R )  %Z/&.R, (6.5) 

and consequently the form of @"'(R) i s  different from the 
result of Sec. 3 only a t  R 5 A, while in the case R << A 

the insulator can be regarded approximately a s  local, 
but with a smaller  value of &(&,I. 

In the opposite case, when A>>c,L,, expression (6.2) 
i s  valid at  R >> (&/&,)A. At smaller R(&,L, << R << (&/ 
&,)A) we have 

In particular, a t  (&/&,)A>> R>> ~ l n ( c / & , )  

@(') ( R )  = ~ E . ~ L , ~ / E A ~ R ,  (6.7) 

and a t  'I>> R >> c,L, we have 

a('' ( R )  =ZC.L,~IR~.  (6.8) 

Finally, a t  st i l l  shorter  distances (L << R << c,Ll) we 
again obtain Eq. (6.5). 

The expression for @"'(R), according to (5.16), 
retains the form (3.4) with 2&kFL,(2kF) replaced by 
L,(K= 2 k F ) / L 2 ( ~  = 2kF). At A>> k-,' we have L,(2kF) 
= (2kFc,)-'. Thus, allowance for the spatial dispersion 
of e,(k) in the insulator leads to a vanishing of the pa- 
rameter c from the expression for the oscillating con- 
tribution @"'(R). 

7. CONCLUSION 

The general conclusion of this paper i s  the strong 
increase of the interaction of the charges near the 
separation boundary because of the penetration of the 
field into the metal, and becomes' even more substan- 
tial when the spatial dispersion of the dielectric con- 
stant of the medium in contact with the metal i s  taken 
into account. Comparing, for example, the long-dis- 
tance asymptotic form (5.11) with the classical-electro- 
statics formula @:'(R)= 2a2/cf?, we see  that 

Such an appreciable increase of the potential com- 
pared with the value predicted by the classical theory 
is in qualitative agreement with the available data15'16 
on the attraction constants of the adsorption isotherm17 
for alkali and halide ions in solution on the surface of 
a number of metallic electrodes. 

An attempt to satisfy the experimental data on the 
basis of the formula of classical electrostatics leads 
to patently overestimated values of the parameter 
a(>>l A,  even if the macroscopic values of E for the 
solvent a r e  not used). When the equations of the present 
paper a r e  used, the agreement with the experiment i s  
reache! a t  the physically more reasonable values a 
- 1 - 2 A .  

The available data do not lead to a direct correlation 
between the interaction and the macroscopic dielectric 
constant of the solvent. This may indicate that it is 
important to take into account the spatial dispersion of 
the solvent f o r  the realized ion-ion and ion-boundary 
distances. For an adequate interpretation of the data 
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that characterize the interaction of the ions adsorbed 
from solution, i t  i s  necessary to take into account also 
the Debye screening of the potential by the electrolyte 
p l a sma  
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APPENDIX 

Investigation of the integrand (P,(K) In (2.4) at a = z = 0 

According to (2.5) and (2.6) we have a t  &,(k) = & 

'/ ,(Do(K) = ( [ L ,  (0 ,  K )  1-'+KE}-', 

(A. 1) 

where kZc1(k) is defined in (3.1). The singularities of 
@,(k) a r e  determined by the singularities of &,(k), i.e., 
K = 0 and K =  2k,. As K--0 we have Ll(O, K)-const 
z L,, so  that 

At K =2k, i t  i s  convenient to change over in the in- 
tegral of (A.l) from k, to k = (K2 + k:)''' and to integrate 
by parts  twice, after f i r s t  breaking up the integral into 
two: 0 < k < 2k, and 2k, < k. Then 

At K < 2kp the integral i s  understood here in the sense 
of the principal value. For the Lindhard model (3.1) 
a t  K < 2k, the integrand in (A.3) has a singularity: 

1 1  1 "  --- v ( K )  + W ( k ,  K ) ,  
( k + K ) " . ( l ( * . , c * r )  1 = K E G  

xZ 
V ( K )  =- 

8kF2(x2/2+4kp2) ( K + 2 k ~ ) "  ' 

The functioi W(k, K) i s  integrable a t  k = 2k,. Calcula- 
tion yields 

dk 0 ,  K<Zkp 
(k-K)'" (k-2kr) ={ n/(K-2kr)",  K>Zkr ' 

Therefore a t  K = 2k, we have 

1  d 1 dL ( O K )  
-----= const+u(l) 
K dK K d K  

0 ,  K<2kF. ' 2V (2kF) / (P-2kF) ', K > 2 4  ' 

where R(K) i s  a n  analytic function a t  K =2k,. 

Thus, the analytic continuation of each of the func- 
tions L,(O, K) and @ , ( K )  into the complex plane from the 
segments 0 < K < 2k, and 2k, < K leads to different an- 
alytic functions. 

Replacing in the integral (2.4) the function J,(KR) by  
Re H:'(KR) and deforming the integration contour in 
accordance with Fig. 2, we find that a t  R >> (2k,)-' the 
main contribution to the potential @,(R)(a = z = 0) is made 
by  the vicinities of the points K = 0 and K = 2k,. Using 
the relations 

and also the formulas (A.2) obtained for  @,(K) a t  K 
SO and 

4 x Z [ 1 + 2 k s e L : ( ~ = )  I-' 6(K-2kr)  (K-2k , ) s  
'"') Rl - 

3k,'h (x2/2+4k9') 2 

+ r e g u b  part, at K%2kF 

we obtain the asymptotic expressions for  the potential 
(3.2)-(3.4). 

 he function c z ( k )  can correspond to different models of 
screening in the medium, which determine the form and the 
scales of variation of this function. If cz O) corresponds to 
the electron polarizability in the crystals, the scale of the 
spatial dispersion is determined by the characteristic length 
of the overlap of the Bloch functions in neighboring allowed 
bands." In a polar liquid, the nonlocality of screening is due 
primarily to spatail correlation of the orientations of the di- 
poles, and the scale of the dispersion is  determined by the 
radius of the short-range orientational order of the dip~les.'~ 
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