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Exact expressions for the conductivity of a plate are obtained for an arbitrary character of the electron 
reflection from its surface and under conditions when volume collisions of the electrons can be neglected. The 
static skin effect and oscillations of the conductivity in a strong magnetic field are considered on the basis of 
these expressions. The analysis leads to some conclusions that differ from those of the well-known theory for 
the static skin effect. [Azbel' and Peschanskii, Sov. Phys. JETP 17, 451 (1963); 22, 399 (1966); 28, 1045 
(1969).] It turns out that the value of the current in the near-surface layer is not determined by the degree of 
diiwness of the surface scattering, but mainly by recombination upon reflection. In a magnetic field inclined 
to the plate surface, skinning of the dissipative current component occurs not only in compensated, but also in 
noncompensated metals. It is shown that the electron mean free path in the near-surface layer is much smaller 
than the bulk value, provided that the surface scattering satisfies a condition formulated in the paper, that the 
scattering be relaxational in character. If this condition is not satisfied or if the relaxation is the result of a 
large number of collisions with the surface, the conductivity of the plate exhibits a considerable anisotropy. 
The found dependence of the plate resistance on the angle of inclination of the magnetic field to the plate 
surface can be used, in particular, to determine the surface recombination probability. The behavior of the 
conductivity and the nature of the skin effect for purely specular electron reflection are discussed. It is shown 
that if the surface is described by any scattering indicatrix which depends smoothly on the incident and 
reflected electron momenta, the Sondheimer oscillations take about the same form as in d i i s e  scattering. For 
the case of scattering containing a specular component, some new nonperiodic conductivity oscillations in a 
magnetic field inclined to the plate surface are found. Generally, speaking, the amplitudes of these oscillations 
are greater than the amplitude of the Sondheimer oscillations, which are defined by the limiting points of the 
Fermi surface. 

PACS numbers: 73.25. + i 

INTRODUCTION 

The effect of the crowding out of a direct current to- 
wards the surface of a plate in a strong magnetic field 
(the static skin effect) was predicted by ~ z b e l ' . '  The 
theory of the electric conductivity of a thin plate, taking 
this effect into account, was constructed by Azbel' and 
~ e s c h a n s k i i . ~ ' ~  A new method of calculation of the elec- 
tric conductivity of a thin plate is proposed in the pre- 
sent work. This method, in the case in which the vol- 
ume collisions a r e  unimportant (d<< 91, d is the plate 
thickness, I is thevolume f ree  path length, 9 the angle 
between the direction of the magnetic field and the sur- 
face of the plate) leads to an exact expression for the 
conductivity of the plate, averaged over the thickness, 
for an arbitrary character of the electron reflection 
from i ts  surface. This makes i t  possible, f irst ,  to re-  
move a number of obscurities in the principles of the 
theory of the static skin effect and, second, to obtain a 
detailed description of this and other s ize  effects. 

It is known4 that in a strong magnetic field (r<< I, r is 
the mean radius of the electron orbit) in the case of 
closed electron orbits, the transverse components of the 
conductivity of the bulk sample a r e  small in comparison 
with their value oo at  H =  0: the transverse conductivity 
o, = o , ( r / ~ ) ~  i s  due to diffusion of the centers of the or- 
bits as a result of infrequent volume collisions, and the 
displacement per collision is of the order r c c ~ - ' .  In a 
layer of the same thickness -r, close to the surface of 
the sample, the centers of the orbits a r e  displaced more 
frequently because of collisions with the surface: falling 
into this layer, the electron inevitably experiences a 
collision within a time of the order of r/v,. This is in 

fact the reason for the static skin effect; the density of 
near-surface current significantly exceeds the volume 
current; i t  is also possible that the current flowing a- 
long the plate concentrates essentially a t  the surface. 
However, i t  must be kept in mind that in a plate of a 
non-compensated metal (n, #n,;n,, n, a r e  respectively 
the densities of electrons and holes) in a magnetic field 
that is parallel to the surface, large Hall currents de- 
velop; this leads to a high volume current density: j,,, 
= ooE. Therefore, at  9 = 0, the skin effect is possible 
only in compensated metals. 

As is asserted in the work of ~ e s c h a n s k c  and ~ z b e l ' , ~  
the value of the skin effect differs substantially for the 
cases of specular and diffuse renection from the 
surface. The physical meaning of this difference, ac- 
cording to Lifshitz et a1 .,4 consists of the following. In 
specular scattering and a t  9 = 0, the electrons from the 
near-surface layer move along periodic trajectories in 
the direction of the electric field (see Fig. l a )  until they 
no longer experience volume collisions; therefore, the 
effective f r ee  path length in the near surface layer I , , ,  
a 1 and the conductivity o,,,, = oo, while the contribution 
of this layer to the conductivity, averaged over the thick- 
ness of the plate, is ~ , , ~ ~ ~ = o ~ r / d .  Thus, the skin effect 

5- 
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FIG. 1. 
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in this case leads to a linear field dependence of the 
average resistivity p, a H in the case of plate thickness 
d<< 12/r and n,  =nh. In diffuse reflection, the electron 
forgets the result of the action of the electric field and 
therefore E,,,~r in the near-surface layer. (In other 
words, the diffuse scattering leads to relaxation in the 
absence of specular scattering.) Thus, s,,,, = oor2/ld 
and, consequently, the skin effect in diffuse scattering 
does not change the dependence of the mean resistance 
on H. 

It is asserted in the present work that the indicated 
difference between the cases of specular and diffuse re- 
flection does not occur. In support of this, we advance 
the following qualitative considerations. It is not diffi- 
cult to understand (see Fig. lb)  that a t  9 = 0 diffuse 
scattering, just as specular, leads to infinite motion 
along the surface with mean velocity of the order of v,. 
Although the value of the reflection angle is  random, 
the electron is displaced by a distance of the order of r 
on the same side of the x axis between successive colli- 
sions with the surface, while the departure of the elec- 
tron from the surface is impossible without volume col- 
lisions. If an electric field is turned on in the x direc- 
tion, the energy of the electron increases without limit 
in the absence of volume collisions1'; therefore, <,,= 1 
in the near-surface layer.2' If the magnetic field is not 
parallel to the surface, then the electron leaves the 
surface after an average of 3" collisions with it. Such 
a mechanism of departure from the near-surface layer 
is more probable a t  3 > r/l and in this case, ~,,,=r/9. 

It is obvious from the considerations just advanced 
that an arbitrary internal surface scattering does not 
lead to relaxation. The situation changes, however, if 
the scattering by the surface i s  accompanied by recom- 
bination-transitions of quasiparticles between the elec- 
tron and hole groups of the Fermi surface. It is not 
difficult to understand the latter by noting that the tran- 
sition from an electron to a hole orbit changes the dir- 
ection of motion of the quasiparticle along the surface. 
The general condition for relaxation surface scattering 
i s  established in Sec. 3b of the present work. In order 
that I,,,= r a t  8 << 1, it is at least necessary that n,  =nh. 

We now give a brief account of the sections of the work 
and the basic results. The complete se t  of equations of 
the problem i s  se t  forth in Sec. 1 and an exact solution 
is found for the distribution function under the condition 
that volume collisions can be neglected. Exact conven- 
iently analyzed formulas a re  obtained in Sec. 2 for the 
mean conductivity of the plate 8, expressed in terms of 
the value of the displacements of the electron in the path 
between two successive collisions with the surface. 
These exact expressions contain, in particular, the con- 
tribution of trajectories beginning and ending on the 
same surface, not taken into account earlier,' This 
contribution turns out to be very significant. Specific 
questions of the electrical conductivity of the plate in an 
oblique field a re  considered in parts A and B of Sec. 2 
on the basis of the expressions that have been obtained. 
In part  A, the mean conductivity in general form is di- 
vided into "surface" and "volume" parts. This enables 
us to draw the conclusion that, in the absence of volume 

collisions, every dissipative component of the current 
lies entirely in the skin layer, regardless of the rela- 
tion between ne and nh. (It i s  maintained in Ref. 2 that 
the skin effect takes place in an oblique field only a t  n, 
=nh.) In part B ,  the behavior of the conductivity a t  
sarnll angles of inclination of the field is studied: 1 >>3 
>>d/l. The dependence of the conductivity tensor on 9 is 
f i rs t  established here; fo r  a number of cases, simple 
accurate results a r e  obtained. It i s  shown that we can 
extract definite information on the character of the sur- 
face scattering from the form of the s ( 9 )  dependence. 
The result s,,m 9" obtained by direct calculation con- 
firms the qualitative conclusion drawn above on the non- 
relaxational character of the surface scattering at n, 
+nh.  In part B ,  the oscillatory dependence of the con- 
ductivity on the magnetic field is considered. It is shown 
that in the case of an arbitrary surface scattering indic- 
atrix that depends smoothly on the angles of incidence 
and reflection, the oscillations of the conductivity do not 
differ qualitatively from the conductivity oscillations in 
purely diffuse scattering (this conclusion contradicts the 
results of Ref. 6). It is also shown that if the surface 
scattering contains a significant admixture of specular 
scattering, and 9 =?r/2, the oscillations of the conduc- 
tivity have a complicated nonperiodic character, and 
their amplitude is proportional to ( ~ / d ) ~  and, generally 
speaking, greater than the amplitude of the Sondheimer 
oscillations. (It is known that, in correspondence with 
quantum considerations scattering by the surface nec- 
essarily contains a definite, generally not small, specu- 
lar  scattering component; see ,  for example, Ref. 7.) 

The conductivity of a plate is considered in Sec. 3 for 
the range of angles 9 << d/l , when account of volume col- 
lisions is necessary. The results  of Sec. 3 a r e  applica- 
ble also to thick, d > 1, plates. In Sec. 3a, expressions 
a r e  obtained for the mean conductivity, and the charac- 
ter of the skin effect is discussed under the assumption 
that the surface scattering establishes complete equilib- 
rium not too slowly. The opposite situation is consider- 
ed in Sec. 3b. Here, from analysis of the solvability of 
the equation for the mean path, general surface-scatter- 
ing conditions of a relaxational character a re  establish- 
ed; in particular, a t  3 << r/l, they determine the condi- 
tions of linear growth of the resistance. Interpolation 
formulas (44), (45) and (48) for the mean resistance of 
a plate, which a re  convenient for comparison with ex- 
periment, a r e  cited in Sec. 3; these apply to a broad 
range of angles 9 .  

The conductivity of the plate under conditions of pure- 
ly specular scattering by the surface i s  discussed in a 
brief final section The exact value of the conductivity 
in the absence of volume collisions i s  found. The re- 
sults  a re  given of a semi-qualitative analysis of the 
mean conductivity and of the character of the skin ef- 
fect in the presence of volume collisions that lead to 
recombinations. It i s  interesting that skinning is en- 
hanced for a thin plate at ne =nh with decrease in the an- 
gle 9 from values 9 >d/t  to 9 <d/t, not only due to the 
increase in the surface current, but also due to the 
strong decrease in the volume current. 

The orbits of the electrons in a magnetic field a r e  as- 
sumed to be  closed throughout. 
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1. BASIC EQUATIONS the s e t  (I), (2) can be written in the form 

As is known, the complete se t  of equations for the 
electron distribution function in a metallic plate consists 
of the kinetic equation 

a ax 2 + uL - + jX=eEv, 
a t  a t  (1) 

the condition of electrical neutrality 

and the boundary conditions, which, in the case of an 
arbitrary character of the scattering of the electrons by 
the surface, have the form 

In Eqs. (1)-(3), the electron distribution function is 
represented in the form f =fo - xafo/ae (fo is the equil- 
ibrium distribution function); t is the time of motion of 
the electron along the orbit in a magnetic field; v is the 
velocity of the electron, the 5 axis is directed perpen- 
dicular to the plate (see Fig. 2); D is the operator of vol- 
ume collisions of the electrons; the electric field inten- 
sity in the plate is E=E,, + EL([), Ell =const is the com- 
ponent of the field in the plane of the plate, dS, is the 
element o r  a rea  of the Fermi surface; the matrix (in- 
dicatrix) of the surface scattering is Q(p, p') = O  a t  
v,(p)vt@') > 0, the scattering of both surfaces of the 
plate is assumed to be identical: Q(p, p') =Q (-p, - p l ) ;  
the upper sign in (3) holds a t  v,(p) < 0, the lower, a t  
v,@) > 0. 

The scattering matrix satisfies the following relations: 

Q ( P ,  P') =Q(-P', - P )  =Q(P', P I ,  (4) 
j Q ( P ,  P I )  ~ P = I .  (5) 

The first  of these is the well-known reciprocity rela- 
tion, the second expresses the conservation of the num- 
ber of particles in the scattering. 

It is obvious that the volume collisions a r e  unimport- 
ant if the relaxation due to surface scattering is achiev- 
ed for all electrons before a collision takes place in the 
volume. The corresponding condition in the case of 
strong magnetic fields r << d can be written in the form 

d/CI+Nrtl: (6) 
Here d /9  is the path traversed by the electron in the 
motion between the plate surfaces, and N is the number 
of collisions with the surface necessary to establish 
complete equilibrium in the electron system (for exam- 
ple, N =OO in the case of purely specular scattering). 

If we neglect the term Dx in (I), the exact solution of 

FIG. 2. Two types of trajectories (1, 2 )  of electrons i n  a plate. 

The quantity n p ,  5) has the following sense: this is the 
average path traversed by the electron in the infinite in- 
terval of time up to the moment a t  which i t  appears a t  
the given point of phase space (we have in mind averag- 
ing over all possible realizations of the reflection of the 
electron by the surface), r,(p, r )  and p,(p, r )  a re  the co- 
ordinate and momentum of the given electron a t  the mo- 
ment of i ts  s t a r t  from the surface after the last colli- 
sion with i t  (we note that the quantity r - r, does not de- 
pend on the coordinates x and 17, their relative position 
is clear from Fig. 2); fa(&) is the mean path for an 
electron starting from the surface. 

The boundary condition (3) leads to the following inte- 
gral equation for the mean path: 

: ( P I - -  IQ(P,,P~):(P~)~P~+A~(P),  
is ( ~ $ 1    PI - A ~ ( P ) .  

(8) 

Here we have introduced the quantity f(p)-the mean 
path for an electron reaching the surface with momen- 
tum pEp,@) is the momentum of this electron a t  the mo- 
ment of the next start  from the surface]; A r b )  i s  the 
path traversed by this electron from the moment of 
start. 

For  further consideration, i t  is convenient to intro- 
duce also the Green's function L(p, p'), which satisfies 
the equation 

here the 6 function is defined in the following fashion: 

j 6 (P -PO)  f ( p ) d p = f  ( P O ) .  

It is seen from a comparison of Eqs. (9) and (8) that the 
quantity f is connected with L by the following relation 
[it is also necessary to take i t  into account that hr(-p) 
= -hr(p)]: 

 PI = j L ( P ,  p') A r ( p l ) d p ' .  (10) 

The quantity L(p, p') also satisfies the following equa- 
tion : 

which we can verify by noting that identical iteration 
series follow for L from (9) and (11). 

We also write out two relations for L that will be use- 
ful later. These can easily be obtained by integrating 
(9) over dp, in the region where v,(p,)> 0, and (11) over 
dp' in the region where v,(p') < 0, taking into account 
(4), (5) and also the relations dp, =dp and L (p, -pl) 
=-L(p, -pl) =L(-p,pl): 

j L  ( P ,  p f )dp t - - - ' I ,  sign v t ( p s ' ) ,  (12) 

S L  ( P ,  PO dp't =-I / ,  sign (PI ; (13) 

the arrows here and below mean that the integration is 
carried out over those p which correspond to trajector- 
ies that terminate on the upper surface o r  on the lower 
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surface (i.e., vt(p) > 0 and vt@,) > 0; these a re  trajec- 
tories of type 2 in Fig. 2). 

For the simplest form of scattering in which Q(p , p') 
=const at ve(p)v,(pl) < 0 and therefore N = 1 (complete 
equilibrium is achieved as  a result of a single collision 
with the surface), Eq. (9) can easily be solved: 

We define as diffuse the scattering that establishes 
equilibrium between each of the isolated groups of car- 
r iers  within a single collision, but without transitions 
between them: Q(pa, p,) =constaSa,; a and b a re  the num- 
bers of the groups. We emphasize the extreme impor- 
tant (for what follows) difference of the scatterings with 
N = 1 and diffuse scattering in the presence of several 
groups of carriers3': for diffuse scattering, N =-. For 
the quantity L,(pa, p;) in the case of diffuse scattering, 
Eq. (14) is valid, in which we must replace Jdfi). by 
Jdpat and add Gab as  a common factor. 

In the next section, we consider the conductivity of a 
plate under the conditions in which the surface scatter- 
ing establishes the equilibrium not too slowly: NY << l 
and 9>>d/l; therefore we can neglect the volume colli- 
sions [see (6)l. 

2. RESISTANCE OF A PLATE IN A MAGNETIC FIELD 
THAT IS OBLIQUE TO ITS SURFACE 

Using Eqs. (7) and (8), we obtain the exact expres- 
sions for the tensor ŝ  of the electrical conductivity of 
the plate: 

ym=d-t f2. I=(E ) d ~ ~ = = ~ = p ~ ~ ~ r i ;  a, B=Z, 11, 
-a12 

j(5) = e U ~ v ) ) .  

We first  note that in the calculation of the mean conduc- 
tivity it is not convenient to use the expression (15) di- 
rectly, substituting the distribution function (7) in it. 
First, these for.aulas contain redundant information- 
the dependence of the current density on 5. Second, the 
expressions for j(5) contain terms that a re  oscillatory 
in 5 and whose contribution of which to s is substantial- 
ly cancelled. 

In order to avoid these difficulties, we carry  out the 
integration over 5 in (15) in general form. It is conven- 
ient here to choose the origin of the coordinates for 
each electron trajectory at the center of the trajectory; 
in the initial set, this point has the coordinate r,, such 
that 4,- = 0, and the component perpendicular to H of 
the new coordinate of the electron R =r - r,, is con- 
nected with its momentum by the relation 

and the origin for p is chosen at the center of inversion 
of the Brillouin zone. The coordinate origin r, does 
not depend on the time of motion along the orbit, a s  can 
be shown by differentiating (16) with respect to t and 
comparing i t  with the equation of motion fi = (e/c)[vx HI. 
The new coordinate of the electron R can be expressed 
in the following way in terms of R, and 5: 

here we have introduced the vector dl1 5, Id 1 =d;i, k 
= x ,  77, 5. Substituting (7) in (15) and using (16) and (17), 
we obtain, in the new coordinates, 

where elkt is a unitary antisymmetric tensor, and re- 
peated subscripts indicate summation. In the calcula- 
tion of the quantity {v,Rg)) we have used the identities 

We now transform in (18) from integration over the 
momentum of the electron at the instant when i t  reaches 
the point with coordinate 5 to integration over the mo- 
mentum of this same electron a t  the instant of its start  
from the surface of the plate [the connection between the 
corresponding differentials has the form Ive(p) Idp 
= Ive(~s) Idp,l: 

since several points on the trajectory correspond, gen- 
erally speaking, to fixed 5 and summation is carried out 
over all these points. 

Changing in (19) the integration variable d t  = Ivt(p) ldt 
and taking i t  into account that 

(PI d t - A b  (pf) - Rm (pf) -R&) 
to 

(pf is the momentum of the electron a t  the moment tf of 
reaching the surface), we obtain 

L - .  

This is in fact the desired exact expression for the mean 
conductivity; here s  ̂ is represented in the form of a sum 
over all trajectories that terminate in the upper surface 
of the plate (the coefficient 2 takes into account the con- 
tribution to the same quantity from the trajectories that 
terminate on the lower surface). 

In order to make the expression for the conductivity 
more convenient and graphic, we separate the symmet- 
r i c  ss and the antisymmetric sa (relative to the magne- 
tic field) parts of (20): 

s=sa+sQ, S~( -H)=~^' (H) ,  >(-H)=-?(H), 

and also separate the parts in the electron coordinate R 
that depend in different fashion on H: 

R=X*T at b=ztd/2, T=GH/ (dH), 
X=DR,; 

the vector X( I X  I = r K') is parallel to the surface of 
the plate. It is necessary to take into account in the 
transformations the fact that replacement of H by -H is 
equivalent to reversal  of the time, and therefore to the 
exchange q = R f ,  while the quantity f [see (lo)] is re- 
placed by 
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Using the relations (12) and (13), we obtain 

0)  
Sap = ( X c . x f ~ - X c ~ X f . )  

can? + f J A ( p ,  p') A X .  ( p )  AX* ( p r )  dp dp' ?* -a if-'. 
~ P F  

P ( P ,  P') = ' / a [ L ( p ,  p')+L(pJ7 P )  + ~ ( P + P ' )  I T  
A ( P ,  p l ) = ' l r [ L ( p ,  P')-L(P', P )  I. 

We note that the expression (21), which contains the 
product of the displacements AXuAX8, has an explicit 
physical meaning-it shows the well-known connection 
between the dissipative part of the conductivity and the 
diffusion of the carr iers  a t  E = 0. In formulas (21) and 
(22), the orders of the quantities a t  9 - 1 are  shown, as  
well a s  the smooth dependences on H at r << d [the change 
in the quantity L @ ,  p') with changing H does not affect 
the smooth $(H) dependence; this is proved in part C, 
see formula (32)]. As is seen from (22), the principal 
part of the conductivity s^"'aH4 does not depend on the 
character of the scattering by the surface (at N =1, a 
similar expression for s^"' was obtained in Ref. 2). 

For the scattering with N =1, we get from (14), (21) 
and (22): 

Formulas (23) and (24) do not coincide with the expres- 
sions for the mean conductivity in the case of scattering 
with N = 1, given in Ref. 2. The fact is that the approxi- 
mate method employed in Ref. 2 does not make i t  possi- 
ble to determine with the necessary accuracy the con- 
tribution of regions of order r near the plate surface. 
In particular, the contribution of trajectories of type 1 
in Fig. 2 is neglected; the integration over states p cor- 
responding to these trajectories is denoted in (23) and 
(24) by the syrnbol +. As will be seen below, precisely 
these regions determine the dissipative part of the con- 
ductivity and s ' ~ ' .  

It is obvious that in the case of diffuse scattering each 
group of carr iers  makes an independent contribution to 
the conductivity, which is determined for each group by 
the formulas (23) and (24). 

We now proceed to the analysis of the physical con- 
sequences of the expressions for the conductivity ob- 
tained above. 

A. Static skin effect 

Although the method developed above makes i t  possi- 
ble to determine only the conductivity averaged over the 
thickness of the plate, i t  is not difficult to understand 
which of the trajectories make a "surface" contribution 
to ŝ  from (21), (22) (i.e., a r e  connected with currents 
concentrated a t  distances r close to the surface), and 
which make a "volume" contribution. We turn for this 
purpose to (20). I t  is evident first  that the surface con- 

tribution is connected with trajectories of type 1 (Fig. 
2), while the term bu8 has a volume origin [see Eq. (1811. 
It can be thought that trajectories of type 2 make a vol- 
ume contribution to (20); however, this is not entirely 
valid. 

As is seen from (19), each trajectory of type 2 adds to 
the current density, a contribution whose dependence on 
5 is determined by the factor 

i.e., i t  is a periodic function of 5 with a period 

(generally speaking, the periodicity is destroyed a t  dis- 
tances of the order r from the surface, where the num- 
ber of points with fixed 4 on the trajectory changes as a 
function of 5). We divide the quantity A(t)  into two 
parts: A(() =z +A,,,(5), such that 

" 
It is not difficult to understand that the surface contri- 
bution to the conductivity is connected with the quantity 
A,,,, since the oscillations introduced by trajectories 
with different P, have different periods to, and cancel 
one another a t  distances greater than r from the sur- 
k c e ;  on the other hand, the contribution proportional to 
A is purely volume. Taking it into account that JAG 
a d ,  and JA,,& is a periodic function of d, both these 
contributions a re  easily separated in (20): 

the first  term on the right side is of volume origin (T, 
ad) ,  and the second is of surface origin (AX, is a per- 
iodic function of d with a period to). 

If we now trace the contributions of different origin in 
the derivation of (21), (22) from (20), i t  is easy to es- 
tablish the fact that the mean conductivity divides into 
volume and surface parts in the following way: 

- .  
S = s,,.+ S,",, S,,,' s(", Ŝ,, = 2 f P). (25) 

Thus, the entire part of the conductivity that is depen- 
dent on the surface scattering is of the surface type. In 
particular, all the dissipative current that flows in the 
direction of the electric field lies entirely in the skin 
layer. We emphasize that such a skin effect exists in- 
dependent of the relation between the numbers of elec- 
trons and holes. If n,=nh, however, then the non-dis- 
sipative, Hall part of the current also flows entirely in 
the skin layer. 

We note that under the usual experimental conditions, 
when the specified quantity is not the electric field but 
the current flowing over the plate I=  J jdt ,  the current 
density distribution a t  n, +nh takes in the following form: 
volume current flows mainly in the direction of I; in the 
perpendicular direction, a current of density 1/d flows 
over the surface, and is cancelled by a volume current 
of opposite sign and of density 1r/d2. We note also that 
i t  is easy to realize conditions under which the direction 
of the electric field is specified; for example, one can 
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interconnect the opposite ends of the plate (directly or  
with the help of low-resistance conductors). 

B. Conductivity -t small angles 

In this part, we determine the electric conductivity 
tensor and i ts  dependence on 9 in the region of angles of 
inclination of the field d/l<< 9 << N". Firs t  of all we 
note the following circumstance: at a<< N", any sur- 
face scattering is in some sense equivalent to scattering 
with N = 1. Speaking more precisely, the function 
L(p, p') in the lowest approximation in 9 has the form 
(14). This is not difficult to understand from physical 
considerations: a t  small 9 the electron collides with 
one surface of the plate repeatedly, before going to the 
other and, a s  a result of these collisions, equilibrium 
manages to be established in the system of electrons ly- 
ing near a given surface. 

For a formal justification of the assertion just made, 
we must represent the integral operator in (11) in the 
following form: 

j Q ( p l , ,  p ' ) L ( p ,  P ~ ) ~ P , = ? ~ L + Q , L ,  

(here we have made use of the fact that L(p, -p') 
= L (p, pi) and assume vt(p') < 0 for definiteness), sep- 
arate out the smooth function 

L ( P ,  P') = L ( P ,  P')  - ' /2[6 (P-P')  -6 (p+pf)'1 

and apply the methcd of successive approximations in 
the small term g i ~  tc equation (11). This term takes 
into account the transition between the surfaces. The 
equation of lowest approximation Z'O' = C$J 'O' has the 
solution x'O'(p, p') =C (p) signvt(pl), the quantity C(p) 
should be determined from the condition of solvability of 
the equation of the next approximation-this leads to the 
result (14) for L'". 

Analysis shows that the assertion just made is valid 
also with account of the fact that the surface scattering 
contains a certain fraction of specular scattering: 

Q  ( p ,  p') =Q,,(P, p') +a ( P )  6 (P'-P') (27) 
[Q,, is  a smooth function of its variables, &(p) =&(p), 
p+* =PI, p$ =p,,], while a t  sufficiently small angles of re- 
flection the scattering is predominantly specular: 1 - a! 
(PI c[v,(p)I2. 

The expression (14) for L(p, p') leads to formulas (23) 
and (24) for the conductivity. However, we note that at 
n,=nh of the conductivity in the calculation i t  is impos- 
sible to limit oneself to the principal approximation 
for the quantity L(p,pl). This is due to the fact that 
(AX,)+ - 0 at 9- 0 and therefore the components of the 
conductivity s, and s, from (23) and (24) do not contain 
terms proportional to 9". In order to simplify the con- 
sideration of the next approximation and the calculation 
of the corresponding increment AsaB to the conductivity 
(23), (24) a t  n,=nh, we assume that the recombination 
in the surface scattering is much less probable than 
transitions within groups. Then we get 

ecn. ( l ) h t ( ~ ~ , j . - ( l ) . t ( ~ ~ ( l > h  
As,, = - 

dH ( l ) ( l ) t  ( N e c i ) ,  

where N, is the number of collisions necessary for es- 
tablishment of equilibrium between electrons and holes 
(if N=1 ,  thenN,=l, As,,=O also): 

( N , - I ) - ~  = J Q ( P , ,  ph)dp ,  d p , / ( l ) .  

From (23), (24) and (28), we find the following a tn ,  
+n, by direct calculation, with account of the inequali- 
t ies 9<< 1 and r < < d :  

and at  n, =n,, 
- e2nr2 ( Neqb v+v~+ (Nq-l)  (f +C) ) , 

P F ~  cp-cp i+  (Neq-f) (f-C) d.6. 

In these formulas, the tensor of mean conductivity is 
written down in the x ,  17 axes; S,,, and Smin are  the ex- 
tremal cross  sectional areas of the Fermi surface p, 
= const, and the summation is carried out over all ex- 
tremal cross  sections; in the calculation, use is made 
of 

a t  9=O;n - ( ~ = / h ) ~ ;  the quantities a, b, C,g, (p, (pi, 7 are  
smooth functions of the direction of H relative to the 
crystallographic axes; a ,  b, C ,g=  1; Icp 1 ,  1 ~ 1 1 ,  21. 

The functions 7, p,  pi = 0 if the direction of H corre- 
sponds to certain elements symmetry of the crystal; f 
= O  requires the same symmetry elements, which en- 
sure  the vanishing of $%, and p&,. (Gb and pb a re  the 
conductivity and resistivity tensors of the bulk sample); 
for (pi, (p2 = O  this is generally not sufficient (in any 
case, (p = (pi =f=0 for spherical Fermi surfaces). The 
given difference from the bulk sample is explained by 
the fact that the symmetry of a sample with a surface in 
a magnetic field is lower than the unbounded case even 
a t  small a #  0; the terms pipl and (N,- l )C in (30) a re  
connected with trajectories of type 2 of Fig. 2, for which 
this violation of symmetry is extremely important. 

We note that the dependences u, a 9-' a t  n, #nh and U, 
a 3' a t  n, =nh a re  in complete accord with the state- 
ments made in the Introduction on the effective length of 
the free path in the near-surface layer. Since complete 
equilibrium can be established a t  9 <<N" near each sur- 
face (including intergroup equilibrium), i t  follows that 
I.,, - YN, at  n, =nh and I,,,- r/9 a t  n,+nh. 

If the transitions between groups a r e  difficult (N, 
>>N,,,N,, is the number of collisions which establish 
equilibrium inside the group) then a different situation 
is possible: Ni,<< 9" << N,, intragroup equilibrium is 
established but not intergroup equilibrium. Here I,,, 
=r/9, the scattering can be regarded as diffuse, and a t  
n,=nh a result is obtained that is essentially different 
from that of (30): 

Y 

where i is the number of the group, and the extremal 
cross  sections a re  summed over the extrema of the i-th 
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group. Thus, one can extract information on the char- 
acter of the scattering by the surface from the form of 
the S(9) dependence. 

The growth of the conductivity component s,, with de- 
crease in 3 assures trajectories of type 2. The electron 
departing from the surface has, generally speaking, a 
different radius of orbit than i t  had upon approaching it. 
This change in the radius leads to a shift in the center 
of the orbit along the 17 axis by an amount -r/3. 

It is of interest that although the conductivity of the 
plate is ensured by all the electrons on the Fermi sur- 
face, the measurement of the resistivity p,,, makes i t  
possible to determine the extremal cross sections a t  
different directions of H. 

If the Fermi surface is a se t  of spheres, the calcula- 
tion of the conductivity by Eqs. (23), (24) and (28) a t  9 
<< 1 and Y << d can be carried out to the end: 

independently of the relation between n, and n ,  and 

4,,[ , 
S,, = - d,,ii, PE+ +%-I)- ( E P F ~ ) ' ]  , 

9 E  PF2 

4xe2 3 
s,= -S, = - 

(x PF3)'  oPF2 
dvI12 [T(2n*)s1*z 0pF4  + g ( p 2 z  (Neq-l) I 

a t  n, =nh. In these formulas, summation is carried out 
over all spheres, o = 1 for the electron sphere and o 
=-1 for the hole sphere. 

C. Oscillations of the conductivity 

It is known that in strong magnetic fields Y<< d the 
conductivity of a thin plate, except for  the basic part 
that is monotonically dependent on H and d, contains a 
small increment that is oscillatory in these variables. 
For scattering with N = 1 there take place Sondheimer 
oscillations8'9 due to the nonperiodic dependence on d of 
the fraction of turn of the helical trajectory of the elec- 
tron included inside the plate. 

In the case of an arbitrary surface scattering, the 
character of the oscillations depends significantly on 
whether the scattering matrix is a smooth function of its 
variables or  whether i t  contains ~ i n g u l a r i t i e s ' ~ ' ~  (by 
smoothness, we mean a change in p-space over dis- 
tances that a re  large in comparison with p,r/d). 

We f i rs t  consider the case of scattering without singu- 
larities. We first  determine the dependence of the 
smooth part of the function L(p,pl) (for its definition, 
see part B) on d and H. We note that in Eqs. (9) and 
( l l ) ,  the dependence on these quantities is connected 
with p,(p,d, H) for trajectories of type 2, Fig. 2: pa de- 
pends periodically on d with period tO(p,) and almost 
periodically on H with period ~ ~ ( p , )  = ~ 5 a / d .  Since the 
momentum p, is not affected by the integration in (9) [in 
zontrast to the momentum pi, in (l l)] ,  the function 
L@, p') is naturally sought in the form 

where the function M(p, p') does not depend on d and H, 
and the oscillating increment of M,,, is small. 

The assumption of the smallness of M,, is easily con- 
firmed by developing the procedure of the method of 
successive approximations in M,,, for Eq. (11). The 
equation of lowest approximation is 

Here the quantity Q@,, p') is averaged (indicated by the 
bar) over the change in d within the limits of a period; 
from the relation 

f u l ( t ) d t = d  tg 

i t  follows that the indicated averaging reduces to 

if the trajectories with momentum at  the s tar t  p, (or 
finish, p,, and we shall frequently omit the indices s 
and f) refer to type 2, Fig. 2 and fm =f(p,,,) in the 
case of trajectory of type 1. Integration in (34) is car- 
ried out over that interval t,,, which corresponds to 
trajectories of type 2. We emphasize that, a s  a result 
of the indicated averaging, the kernel of Eq. (33) does 
not depend on d and H. 

The equation of the next approximation determines the 
function M,,,: 

(in the presence of several variables corresponding to 
the symbol 6, the variable is underlined). Since W ( p ,  
&) is a smooth function of PI, and 6Q@lp,p1) oscillates 
rapidly with pi, [the average of 6f(p,) over the small in- 
terval p, is proportional in the principal approximation 
to the quantity = 01, the function Y,  and with i t  
M,,, also, is small: M,,,<< M. 

Averaging the expressions (211, (22) over d (by the 
method shown above), i t  is not difficult to divide the 
conductivity into smooth and oscillating parts. For the 
oscillating part, we obtain the following asymptotically 
exact expression in the parameter r/d: 

For scattering with N = 1 and diffusion, only the first  
term in (37) differs from zero. 

As is seen from expressions (35) and (37), the Sond- 
heimer oscillations, in arbitrary smooth surface scat- 
tering, a re  practically indistinct from the oscillations 
in the case of diffuse scattering (or N = 1). Actually, 
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each of the three terms in (37) leads to oscillations of 
the same frequency and a re  comparable in magnitude 
with the value of the amplitude. The oscillating contri- 
bution to each of the terms is connected with the elec- 
trons near the cross section p, =pgo, in which the quan- 
tity to(#,) has an extremum; if the extremum is lacking, 
the oscillations a r e  connected with the reference points 
of the Fermi surface.' We note that near the reference 
point, the quantities 6Q and 6M, which enter into the 
second and third terms in (37), a r e  small: ~Q/Q, ~ M / M  
= (Ipg-pgo l/pp)"2, i.e., they have the same order of 
magnitude a s  the displacement relative to the axis of the 
helical line 6X/r in the f i rs t  term. The latter fact was 
not taken into account in Ref. 6; this led to an incorrect 
conclusion that in scattering that is different from dif- 
fuse, the amplitude of the oscillations is d/r times 
greater than in the diffuse case. 

In the case of scattering with N =1 (or diffuse) the Eq. 
(37) makes i t  possible to carry out the calculations to 
the end and to obtain an exact formula for the Sond- 
heimer oscillations a t  arbitrary 9. We only give the 
angular dependences of the amplitude of oscillations: 

Simple analysis shows that even for an arbitrary smooth 
scattering, the angular dependence (38) is valid a t  9 << 1. 

As has been pointed out above, the scattering matrix 
necessarily contains a singularity connected with a de- 
finite fraction of specularity in the reflection. In the 
work of ~oland,"  oscillations of the conductivity were 
considered under conditions of partially specular scat- 
tering in a magnetic field perpendicular to the surface 
of the plate; i t  was assumed that the surface of the plate 
was a symmetry plane of the crystal. In this work i t  is 
shown that under the stated conditions, new "specular" 
oscillations develop with an amplitude of the same order 
of magnitude as in the "nonspecular," but with double, 
triple, and s o  forth, frequencies. I t  will be shown here 
that the position is significantly different in the case of 
an inclined magnetic field 7r/2 - 9 >> r/d and in a perpen- 
dicular field, i f  the surface of the plate is not a plane of 
symmetry. 

In the determination of the contribution of the specular 
part of the scattering, we shall assume that the specu- 
larity fraction is small4'; a(p) << 1 [see formula (2711, 
we carry out iteration with respect to a! in Eqs. (9) and 
(11) and keep only the lowest term in a in the function 
L(p,pt). (Analysis shows that consideration of the next 
orders of iteration does not change the character of the 
oscillations.) Then the contribution to the conductivity 
due to the singular part L,,,, has the form 

It is not difficult to establish the fact that the products 
Xa(p)X,(p,*) and Xu (p,)X, in (39) lead to oscillations 
of the same type a s  in smooth scattering. Therefore, 
the specific specular oscillations a re  determined by the 
following expression: 

Here we have for convenience proceeded to integration 
over p, and relabeled pa - p, p -- p,. We note an impor- 
tant feature of Eq. (40): whereas in the smooth scatter- 
ing each trajectory makes a contribution to s,,, that is 
periodic in d and H, the trajectory that consists of two 
(and more in higher orders) runs between the surfaces, 
connected by specular reflection, changes aperiodically 
with change in these parameters (the period for the 
quantities W(p,) and W(p,*) is d ~ f e r e n t ) . ~ '  As will be 
seen below, this leads to an aperiodic oscillatory de- 
pendence. 

To estimate s,,,,,, i t  suffices to take into account 
only the most rapid dependences of p, which arise from 
the dependence on p, of the time of flight between the 
surfaces: 

where f(@) and cp(@) a re  periodic functions with period 
1, and 

0 

Initially, we integrate over t in (40) a t  fixed P,. In this 
integral, the principal contribution is made by points of 
stationary phase, which a r e  determined by the condition 
a@(p: )/at = 0, which is equivalent to 

At arbitrary p,, a s  a consequence of the periodicity 
of pf (t), there a re  a t  least two such points. The con- 
tribution of each point is proportional to the following: 

here az@/at2 E H ~ ,  the quantity p: is taken a t  the point 
defined by Eq. (41). In the case of changes in p, that 
a re  small in comparison with p,, the functions f and cp 
behave as almost periodic in p,, but with different per- 
iods. The condition of stationarity for this integral 
over p, is that the periods of the functions f and cp should 
be commensurate: 

where 1 and n a r e  arbitrary integers. It is obvious that 
this equation inevitably has many solutions p,,, relative 
to p,, corresponding to different I and n. These points 
of stationary phase give the following contribution: 

here f ,  and cp, a re  respectively the Fourier components 
of the functions f(@) and cp(@);  summation is performed 
over all solutions of Eqs. (41) and (42). 

As follows from the expression (43), the specular os- 
cillations of the conductivity under the considered con- 
ditions have a complicated nonperiodic character, and 
their amplitude is proportional to a@, i.e., generally 
speaking, i t  exceeds the amplitude of the Sondheimer 
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oscillations a t  the reference points of the Fermi surface 
(which, a s  is known, is proportional to H"'). 

3. CONDUCTIVITY IN A MAGNETIC FIELD ALMOST 
PARALLEL TO THE SURFACE OF THE PLATE 

In this section, we consider the conductivity in the 
case 9<<d/l, when a significant role is played by the 
volume collisions of the electrons. A rigorous quantita- 
tive approach, connected with the solution of the se t  of 
equations (1)-(3), is not realizable; however, the be- 
havior of the mean conductivity and the character of the 
skin effect can be established even in this case. For 
simplicity, we shall assume that the volume oscillations 
achieve complete equilibrium (in the absence of an elec- 
tric field) over the transport free path length I. Here, 
in particular, diffusion size effects a re  l a ~ k i n g , ~  the 
appearance of which is connected with the low probabil- 
ity of volume recombination in comparison with the 
probability of intragroup transitions. 

It is obvious that as a distance from the surface d/2 
- 1 [ 1 > 91, r the electron departing from i t  experiences 
several volume collisions, and therefore the effect of 
the surface here is unimportant: the distribution func- 
tion and the conductivity in this region a re  the same a s  
in the bulk conductor. Thus the problem reduces to the 
determination of the contribution to the mean conductiv- 
ity of the near-surface layer of the plate. We note that 
this contribution is not sensitive to the relation between 
1 and d,  since a distribution is established in the larger 
part of the plate that is characteristic for the bulk sam- 
ple. Therefore, all  the results obtained below a r e  ap- 
plicable also to thick plates, and a t  d>> I the condition 9 
<<d/l does not place any limitation on the value of the 
angle 9. However, the surface contribution depends 
materially on the relation between the quantity N and the 
other parameters of the problem. 

a) In this part, we consider the situation in which the 
surface scattering does not establish equilibrium too 
slowly N << l/r, and the angle a<< ~ " , d / l .  If the more 
rigorous condition N - 1 << l/d is satisfied, then the indi- 
cated region of angles is joined to that considered in 
part B of Sec. 2 (in particular, in scattering with N = 1, 
we obtain a description a t  arbitrary 8 and d/l). In the 
considered situation in a system of electrons colliding 
with a given surface, local equilibrium is achieved (see 
part B of Sec. 2). 

It is not difficult to understand that, since the electron 
colliding with the surface a t  9>> r/l, leaves i t  before 
experiencing a volume collision, the conductivity of the 
near-surface layer of width r is described approximate- 
ly by the expression (25) for6' ŝ ,,,,. In the region 91 
2d/2- ( 5  1 ;2r the distribution function depends on 5  but 
its order of magnitude does not change. Thus a t  d/l 
9z 9 >> r/l, the quantity 3 = Cb + $,,, where 6, is the con- 
ductivity of the bulk sample and ŝ ,, is determined by 
the expression (25). 

At very small angles 9 << r/l, an electron colliding 
with the surface leaves it, traversing a path of order I; 
therefore, the components of the corlduc tivity s,, xx  at  n, 
#nh and s,,, are  determined at large angles by the path 

length 7/9 a re  established to be of the order of e2nrl/ 
dp,. The conductivity s,,, a t  n,= nh is determined by 
a path length of the order of rN,-relaxation takes place 
sooner than emergence from the near-surface layer; 
therefore, the expression (30) for s,,,, i s  valid also a t  
9 << r/l. Further, since at 9 = 0 the presence of the sur- 
face does not change the symmetry of the sample in the 
magnetic field, the components s, should vanish along 
with the xe component of the conductivity of the bulk 
sample; i t  can be shown that this is achieved by the ap- 
pearance a t  9 << r/l of the factor 19/r in front of these 
components in (30), which a re  due to the trajectories of 
type 2 of Fig. 2. 

Summing up what has been said above, we write out 
the following interpolation formulas for the mean resis- 
tivity tensor 0 = ($ )", which is directly measured in the 
experiment; they a re  valid a t  all 9 << N-'. At n, f nh 

At d- .o these formulas transform into known4 expres- 
sions for the resistance of the bulk sample 0,; the quan- 
tities I f [ ,  Ifi I ,  I $J 1s 1 and vanish along with the compon- 
ents o,,, u,, and d,,, respectively. 

It is seen from Eq. (44) that a t  9 << d/l, the sample 
with ne#nh behaves like a bulk sample in regard to the 
mean conductivity. However, a t  all 9 >> r/l a significant 
skin effect occurs: the current density in the near-sur- 
face layer of thickness r is significantly larger than the 
volume density (this follows from a comparison of the 
quantities o, and ds,,dr). In a compensated metal, the 
size effect is different for different components of the 
mean conductivity (and resistance). In particular, the 
relation between the volume and surface parts of s, de- 
pends on which elements of symmetry correspond to the 
direction of H. 

b) Here we discuss the limiting case that is the oppo- 
site of the preceding point, when the surface scattering 
establishes the equilibrium very slowly: N>> l/r. As 
was shown in the Introduction, i t  is in just this case that 
the dependence p,cH occurs. We determine the nec- 
essary conditions for this a t  9 = 0. 

It is not difficult to understand that the desired condi- 
tions a re  connected with the conditions of solvability of 
Eq. (8) for the mean path. Actually, i f  Eq. (8) is un- 
solvable a t  9 = 0, then this means that the stationary 
state in the near-surface case cannot be established by 
single collisions with the surface only [we recall that 
Eq. (8) does not take into account volume collisions] and, 
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consequently, the effective free path length here is of whence 
order I. This also leads to the dependence p, a H. 

pFd (6212+f) 

It is obvious that Eq. (8) can be unsolvable only in the eZnfl(dfB1) ' (48) 
case in which surface scattering does not lead to com- These formulas a r e  valid also in a very wide range of 
plete mixing, in other words, if the momentum space angles, 8 <<Nit, for scattering with N,,<< l/d, N,>> l/?- 
cannot be divided into regions between which transitions [they include the result (31)] and a re  valid for a l l  8 for 
of electrons a s  a result of surface scattering and mo- scattering that is close to being diffuse (N,.= 1). 
tion around an orbit a r e  impossible. The absence of 
complete mixing can be connected, for example, with 
surface scattering that is close to specular incharacter, 
or  with a low probability of intergroup transitions. We 
emphasize that exact prohibition of the corresponding 
transitions is not required (when N =-); i t  suffices to 
have s o  small a probability that the mixing takes place 
more rapidly in the case of volume scattering (this con- 
dition is expressed by the inequality N >> .>/?-). 

In order to establish sufficient conditions for the solv- 
ability of Eq. (8), we integrate both i ts  parts with re- 
spect to v,-one of the regions that does not mix the 
others on the Fermi surface. Using (5) and the nonmix- 
ing condition Q(p,  p') =0, if p and p' refer to different 
regions, we obtain 

Condition (46) means that the mean displacement of an 
electron colliding with the surface is equal to zero, i.e., 
the mixing has the character of diffusion a t  large dis- 
tances. This is in fact the condition of relaxation of the 
surface scattering. We note that the condition (46) can- 
not be satisfied for all regions Vi in an uncompensated 
metal; we verify this by summing (46) over i and taking 
i t  into account that J ~ r ( ~ ) d p  a (n,-n,). 

If the region V, consists of one o r  several closed parts 
of the Fermi surface (carrier groups) the condition (46) 
takes the form 

(n.-nh) ,=o, (47) 

the quantity in the parentheses is the difference in the 
densities of electrons and holes belonging to the region 
Vi. Thus, the presence of any recombination processes 
is insufficient for recombination-this circumstance can 
be very important if, for example, the transitions be- 
tween the electron and hole groups a r e  effected by um- 
klapp processes in the specular scattering. 

We note that the law p , , ~  H can hold only in a certain 
intermediate region of magnetic fields, since the in- 
equality N>> l/r is violated upon increase in H, and then 
&=Hz.  

If the condition (46) is satisfied, then the results of the 
previous part a r e  obviously valid for the mean resist- 
ance a t  8 << d/l. If (46) is not satisfied, then the char- 
acter of the dependence of the surface conductivity on 8 
at  8 << d/l is determined basically by the angular depen- 
dence of the free path length in the near-surface layer: 
I;:,= 1" + a/?-. Uncomplicated analysis leads to the fol- 
lowing result (n, =nh): 

If the condition (47) is not satisfied, then the skin ef- 
fect a t  d/l>> 9 >>r/l possesses the following feature: in 
addition to the current which is concentrated a t  a dis- 
tance r from the surface, there is also a current of the 
same order, which is concentrated a t  a distance 91 
from i t  (its density is naturally ?-/a1 times smaller). 
The origin of this current can be explained in the fol- 
lowing way: on the surface, there ar ises  an excess 
concentration of electrons and holes AC, =ACh= (p,m/ 
h 3 ) e ~ l , , , ,  which, thanks to the volume recombination, 
falls off in the interior of the sample a t  distances -91. 
The presence of a gradient of the concentration leads, 
as is well known, to a current whose density in a strong 
magnetic field is j,= ev,rdc/d[. 

In conclusion, we consider briefly the case of purely 
specular reflection of electrons from the surface of the 
plate (without umklapp processes). The motion of the 
electron in the absence of volume collisions is here 
completely determined and, a s  is not difficult to under- 
stand, the entire trajectory is included in some finite 
region of space. Actually, in the case of collisions with 
the surface, the changes in the y and e components of 
the momentum of the electron a r e  connnected by the re- 
lation Ap,=-Ap, tans and p, does not change. But since 
the change in p, as a result of an arbitrary number of 
collisions cannot exceed the value determined by the 
size of the Fermi surface, i t  is obvious that the range 
of motion is limited in the x direction to the larger of 
the quantities (c/eH  tans)(^.,,^- p. and (c/~H)(P, ,,, 
-p, ,,), and in the y direction, to the quantity (c/eH) 

It also follows from the finiteness of the 
motion that the symmetric part of the conductivity ten- 
so r  is equal to zero. 

It is easy to obtain the general solution of the se t  (1) 
and (2) (without the term with O )  by the method of char- 
acteristics, taking the trajectory to mean the entire 
path of the electron with account of reflections from the 
surface: 

~=up+C{Tr)-((C{Tr) >lo), 
d <C{Tr)) E,,H EL=----- U-- 

d g  ((1)) ~ s i n 6 '  Hd sin 6  
[EllXdl, (49) 

where c{T~} is an arbitrary constant for each trajectory. 

It is easy to understand that the contribution from the 
second term in (49) to the mean conductivity is equal to 
zero. This can be shown with the help of expressions of 
the type (20), but even without this i t  is clear that the 
corresponding contribution of each trajectory is propor- 
tional to the time average of the volocity of the electron 
on it, which is equal to zero because of the finiteness of 
the motion. Thus we obtain the following exact result 
for the case of arbitrary H#O: 

s==s,=O, S,,=-s,=ec (n.-nh)/H sin 6 .  
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In the presence of volume collisions, the diagonal 
components of the conductivity a re  different from zero. 
It is known5 that for a metal with a single group of car- 
r iers  and a spherical Fermi surface, the size effect is 
lacking in the case of specular scattering. In the case 
of an arbitrary Fermi  surface and angles 9 >> d/l the 
volume scattering can be taken into account by the 
method of successive approximations in O. Analysis 
shows that the volume contribution to the conductivity is 
of the same order as for a spherical surface: s,, ,, 
= (e2n/pp)(r2/821), but in the general case there is also a 
current concentrated a t  a distance r from the surface: 
s,, ,, I. (e2n/pp)(r2/91). We note that in the case of the 
presence of several groups of carr iers ,  and, in partic- 
ular, a t  n, =nh, the comparatively large volume current 
a t  3 << 1 is due to the presence in the volume of the plate 
of a nonequilibrium concentration of carr iers  C ,  = C ,  
with the gradient 

dC/dt= (p,mlhS) (eEr/lllz) . 
In the range of angles 9 << d/l at n, =nh the result (48) 

is valid for the conductivity, since specular scattering 
is a special case of scattering for which the condition 
(46) is not satisfied. Thus, as has been shown, in Sec. 
3b, the character of the skin effect is the same. It is 
of interest that with decrease in 9 from the value 9 
> d/l to 9< d/l, the skin effect increases, not only due 
to the growth in the surface current, but also due to the 
sharp drop in the volume conductivity to the value U, 
= (e2n/pp)(r2/1). The latter is connected with the fact 
that at 9 > d/l recombination in the case of frequent col- 
lisions in the volume does not bring about the presence 
of a nonequilibrium concentration of carriers.  

The author is grateful to R. N. Gurzhi and A. A. Slut- 
skin for useful discussions of the research. 

"1n connection with this explanation, it can be shown that in- 
elastic collisions with the surface would guarantee relaxation. 
Actually, the possible scattering inelasticity is unimportant, 
since the energy of the electrons colliding with the surface 
increases as a result of growth in the chemical potential and 

not the temperature. 
2)We note that Babldn and Kravchenko's result5 p m H  was ob- 

tained for the case of diffuse surface scattering. However. 
they did not take into accoyt  the contradictions with the con- 
clusions of Ref. 3, since they were not considering the speci- 
fic situation of diffuse size effect. 

3 ' ~ o  difference was indicated between these types of scattering 
in Refs. 2 and 3. 

4 ) ~ h i s  inequality is certainly not satisfied at.sufficiently small 
angles of incidence; therefore the case of too small angles 9 
should be excluded from consideration. 

5h?he case considered in Ref. 10 of a= lr/2 under the condition 
that the surface of the plate is a plane of symmetry of the 
crystal is an exception. 

6 ) ~ o  justify this assertion, it  must also be verified that the 
distribution function of volume electrons arriving at the sur- 
face does not depend in order of magnitude on the presence 
or absence of volume collisions. This is seen from the com- 
parison of (7) with the known distribution function for a bulky 
conductor. 
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