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The evolution of a magnetic field in a fluid moving so that one of the velocity components vanishes is 
considered. A dependence of the other velocity components, of the electric conductivity, as well as of the 
magnetic field on the corresponding coordinate is assumed. Thus a significant generalization of the anti- 
dynamo theorem proved by one of the authors in 1956 is obtained. The result allows one to classify the 
dynamo solutions in terms of the magnitude of the magnetic Reynolds number. 

PACS numbers: 47.65. + a 

1. INTRODUCTION nance of a magnetic field is possible in a moving con- 
ducting fluid has, as is well known, recieved an affir- 

The classical problem of the magnetic dynamo, which mative solution. Many concrete examples of magnetic 
solves the problem whether the amplifcation o r  mainte- dynamos have been constructed and this has stimulated 
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the applications of the theory to the explanation 
of the origin and maintenance of magnetic fields of 
planets, stars, and galaxies. On the other hand, 
even in i t s  simplest kinematic form (i.e., when the 
velocity field is supposed known ahead of time) the 
theory of the magnetic dynamo remains incomplete, 
since until now no complete necessary and sufficient 
conditions have been found for i t s  functioning. R is 
known that a dynamo is impossible when the magnetic 
field and the velocity field a r e  independent of one of the 
space coordinates, for the case of planarlo' and 
symmetry. In general all  three velocity components 
may be different from zero in this case. However, if 
al l  components of the velocity a re  present these re- 
sults do not extend to the spherical case (cf. infra) and 
to other geometries. For a detailed survey of anti-dy- 
namo theorems see Refs. 5 and 6. 

We recall the essence of the proofs, using a s  an ex- 
ample the plane case a/a, = 0. The two-component part 
of the magnetic field in the 9-plane, Hz= (H,, H,), sep- 
arates from the z-component on account of the indicated 
symmetry, and can be expressed in terms of the single 
component A, of the vector potential. It follows from 
the induction equation that the component A, is subject 
to the same equation a s  the temperature in a moving 
heat-conducting medium. Consequently ,7 A, can only 
decay. The two-dimensional field H, can be amplified 
up to a certain point on account of the decrease of the 
scale of the field (entanglement of the field lines), how- 
ever, in the long run i t  must also be damped out owing 
to ohmic losses.' The growth of this field and i ts  sub- 
sequent decay was recently exhibited numerically in the 
paper of Pouques for plane turbulent motion. For the 
remaining component Hz of the field, in the simplest 
case v, = 0,' one also obtains an equation of the heat 
conduction type, leading to damping. If v, # 0, but a s  
before the motion does not depend onz , then in the equa- 
tion for H, there appears a source depending on H, and 
v,. However, the decay of Hz guarantees the impossi- 
bility of unbounded growth of the z-component of the 
field: if the electric resistivity is taken into account 
in the absence of fields a t  infinity, one i s  led to the 
damping of Hz. 

A complete abandonment of translational symmetry 
(%'a, = 0) does not yet mean that a dynamo i s  possible. 
In reality, a s  will be shown here, a dynamo effect may 
be absent even for  fields depending on a 1  three coor- 
dinates, if one of the components of the velocity of the 
fluid vanishes. The first  indication that a dynamo is 
possible in the three-dimensional situation can be 
found in the paperg of Bullard and Gellman for the 
spherical case with v, = 0 (cf. also Refs. 10, 14); the 
plane case has been discussed by Moffat."he situation 
i s  simplest in a plane geometry for a conducting fluid 
moving with v, = 0. 

It i s  obvious that for such a motion the vertical dis- 
tance zl ,= (r,,), between any pair of points 1 ,  2 remains 
constant. In the approximation of frozen-in magnetic 
fields it follows that Hz is conserved in an incompres- 
sible fluid (or ~ , / p  is conserved in a compressible 
fluid, where p is the density). Taking into account the 

finite conductivity, it follows that H, is damped. For 
H,, H,, v,, vy depending not only on x ,  y , but also on z ,  
the field Hz is an additional source of the components 
H, and H,, and the growth in time of these components, 
o r  even their appearance is quite possible. However, 
there is no feedback. A damped source cannot produce 
an undamped and a l l  the more growing generation of 
fields H,, H,. Thus, one succeeds in obtaining an es- 
sential generalization of the anti-dynamo theorem for 
plane motion. 

The result can be translated fully to the spherical 
case, replacing the condition v, = 0 by v, = 0 and H, by 
rH, . The plane and spherical cases a r e  special be- 
cause in these geometries the curvature of the surfaces 
along which the fluid flows i s  constant in all directions, 
therefore in the equations for H, or "/H, the diffusion 
term (AH),,, can be expressed only in terms of the 
field Hz (or rH,) and i ts  derivatives, without the other 
components appearing. This allows one to obtain for 
H, (or YH,) a separate equation which is similar to the 
heat equation and leads to damping of these compo- 
n e n t ~ . ~  In an ideally conducting medium the assertion 
that H, is conserved for v, = 0 can be generalized to 
more complicated two-dimensional flows. Indeed, if 
the motion takes place in two dimensions, along non- 
intersecting and nondiverging unbounded surfaces, i t  
is clear that the projection onto the normal of the dis- 
tance between two points which move along neighboring 
surfaces will be bounded. Consequently, on account of 
the condition that the magnetic field i s  frozen-in, the 
magnetic field component normal to these surfaces 
must also be bounded. The two other field components, 
for which the normal component serves a s  a source, 
can increase; however, owing to the boundedness of the 
source this growth will be slow (not exponential). It will 
be similar, for instance, to the growth of the azimuthal 
component of a field for differential rotation in the pre- 
sence of a radial field. 

However, if the electric resistivity is taken into ac- 
count, there appears in general a principally new cir- 
cumstance: the normal component of the Laplacian of 
an arbitrary vector also depends on the tangential com- 
ponents of the vector. The magnetic viscosity leads to  
a feedback, owing to which the tangential components 
a re  capable of modifying (in particular, to amplify) the 
normal component. Therefore, in principle, an expo- 
nential coordinated amplification of all  fields also be- 
comes possible, i.e., a dynamo! But a peculiar kind of 
dynamo that depends on the magnetic viscosity. 

The plane and spherical cases turn out to  be degene- 
rate and special. 

It would be interesting to  investigate (in both the flat 
and spherical cases) the rather difficult nonli-near pro- 
blem of a fluid whose resistivity depends on the mag- 
netic field. In this case the resistivity should be con- 
sidered a s  a tensor relating the electric field vector to 
the current vector. 

In connection with what was said above one can give 
a definite classification of dynamo-solutions a s  a func- 
tion of the magnetic Reynolds number. For R,>> 1 and 
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three-dimensional motion a fast dynamo is possible 
with a characteristic time T- 1/21, where lv a r e  the 
scales of length and velocity. A constructive example 
of a fast dynamo is the so-calledfigure-eight (cf. Ref. 5, 
p. 433): a torus with azimuthal field flux, which after 
increasing i t s  length by a factor of two, with a corres- 
ponding thinning, is folded with a twist in such a way 
that the flux is doubled. The doubling time is of the 
order of l/u, so that the dynamo has an increment v/l 
(we neglect the difference between In 2 =0.7 and unity). 
As was noted in Ref. 5, if the field is strictly frozen-in, 
the topology of the field lines changes during each 
doubling cycle. The introduction of a finite v, allows 
one to ontain a conservation of the whole field picture 
under a small change of the increment. 

In two-dimensional motion in the flat and spherical 
cases with scalar resistivity, the dynamo is impossible, 
and in the general two-dimensional case, if i t  is pos- 
sible, i t  will turn out to be slow (with a characteristic 
time tendingtoinfinity for fixed 1, vandfor R,- a). For 
small R, an effective dynamo i s  possible also for two- 
dimensional motion (excluding the flat and spherical 
cases). 

In order to attain maximal clarity we carry  through 
below a complete proof of the anti-dynamo theorem for  
the case of the plane motion with v, = 0 in cartesian 
coordinates (cf. 6). Then we discuss the general case 
more briefly. 

2. PLANE INCOMPRESSIBLE FLOW 

We consider the motion of a conducting fluid, subject 
to  the conditions 

and otherwise arbitrary. The intial field is arbitrary 
and may depend on all three coordinates. We note that 
the vorticity (helicity) of the velocity field (I) ,  i ,e . ,  the 
scalar product 

is generally nonzero (for 8/82 # 0). 

The general evolution equation of the magnetic field 
in the moving conducting medium has the form 

a ~ l a t = ~ o t  ( [ V X H I - Y ,  rot H I ,  (2) 

where v,,, = cZ/4ru i s  the magnetic viscosity of the me- 
dium (a is the conductivity). For simplicity we re-  
str ict  our attention to an unbounded medium and assume 
that 

H+o, Irl+m. (3) 

We write the z-component of Eq. (2) in the medium 
with isotropic conductivity moving according to Eq. (1): 

where d/dt is the substantional derivative and A is the 
Laplace operator. Thus H, is subject to  the same equa- 
tion a s  a scalar quantity (the temperature or the concen- 
tration of an impurity) in a given velocity field if diffu- 
sion is taken into account. It follows from the equation 

that, if v, =0,  H,is conservedat eachfluidparticle, so 
that in this case 

and for finite conductivity and the conditions at infinity 
(3) 

i.e., the quantity H, is damped out. 

The behavior of the two-dimensional field H, = (HE, H, ) 
becomes considerably more complicated if a l l  the 
quantities depend on z. We recall that for a ~ , / a z  = O  the 
condition divH= 0 would imply 

and consequently H, could be represented a s  the curl 
of A,. In the case under consideration, when H, de- 
pends on z , this i s  impossible. 

We note that even if at the initial instant the compo- 
nent HE would depend only on x and y , and not on z, a 
dependence on z would appear later because the motion 
along x and y is accompanied by the deformation au,/az 
#0,  au,/az # 0. Therefore, for a ~ , / a z  = 0 at the intial 
time (in the absence of magnetic viscosity) 

a aH av, a H  a ~ ,  an, '= '+--  
at a z  az  a x  a~ a~ ' 

which is intuitively obvious, if one thinks of the trans- 
port of HE by the fluid particles. 

Thus, one obtains for H, an equation which does not 
depend on the other components, ' describing the general 
damped character of H, and defining the quantity -a&/& 
z q ( x ,  y , z ,  t). Consequently, the two-dimensional vec- 
tor  H, can be represented only a s  the sum of a solenoi- 
dal and potential component: 

aco acp aco acp 
If.=-+- H,----+-. a y  a t '  a z  a y  

We obtain from 
an. aH,  aH. + = - -  
a z  ay a~ 

that 

Taking account of the boundary conditions, this equa- 
tion can be integrated by elementary methods at each 
instant and in a given layer. This determines the 
function p. The damping of y (caused by the damping 
of H,) means that at a sufficiently late stage of develop- 
ment the plane field admits a representation of the form 
H,= curl  (n*), where n =  (0 ,  0, 1). After that the func- 
tion * (which now coincides with the vector potential 
component A,) is also subject to an equation of the heat 
type. Consequently asymptotically H, is damped out. 

For  the sake of clarity, and having in mind generali- 
zations to the case of motion along curved surfaces, we 
write the equation for * before H, and have decayed 
away. From the definition (6) i t  follows that 

At@--rot,H. (8) 

Therefore, in order  to  obtain the equation for  i t  suf- 
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fices to take the z-component of the curl  of equation (2). 
We obtain thus 

where the source S has the form 

Taking (7) into account, a l l  terms in (10) depend linearly 
on Hz. The arbitrary function of z which may be pre- 
sent in the right-hand side of Eq. (9) is inessential in the 
calculation of the integral of CP2 since CP can be selected 
in such a manner that i t s  average over the planes z 
= const will vanish. 

3. THE GENERAL CASE 
It is clear that in the limit of complete freezing-in of 

the magnetic field (v,- 0) the results that have been 
obtained can be generalized to two-dimensional motions 
of a more general type. It is easy to check, for in- 
stance, that in motions along spherical or cylindrical 
surfaces the equation for the radial component sepa- 
rates,  and this field component is conserved in each 
fluid particle. It is simplest and most intuitive to use 
the property that if the magnetic field is frozen into the 
fluid, H, behaves like 6r ,  which is conserved on account 
of the condition v, = 0. 

If one considers motions along a family of stationary 
nonintersecting surfaces of a more general type2' one 
has to bear in mind that these surfaces a r e  not parallel 
to one another, and therefore the normal projection of 
the infinitesimal distance, (by),, between two points on 
neighboring surfaces varies and may increase in time. 
However, if the neighboring surfaces do not diverge in 
an unbounded fashion, which i s  true, e.g., for  a family 
of closed surfaces, i t  i s  clear that (6r),, and conse- 
quently H, will be b ~ u n d e d . ~ )  In this case one can speak 
about the conservation of the product of H, by a factor 
which measures the divergence of the surfaces (a Lame' 
coefficient). 

When one considers a two-dimensional field on a sur- 
face,  one can make use of the decomposition of an arbi- 
t rary  solenoidal field into a "poloidal" and a "toroidal" 
part (cf., e.g.,ll*'): 

H=rot (rot nY+nQ)=rot [VXYn]+[VX Qn]. (11) 

This implies 

H,, = -[n x Ol ' q ,  rot. H=- [n X VI . (12) 

For the function @ one obtains again the equation (9) 
with source S determined by the quantity V'H, (which 
is bounded in time), i t s  derivatives, and the velocity. 
This implies that a rapid (exponential) growth of the 
two-dimensional field component is impossible. 

However, in the general case, the conclusion on the 
damping of H, and the related source, when finite 
conductivity is taken into account, i s  no longer valid 
(see the ~ntroduction). In the general case (AH), is ex- 
pressed not only in terms of H, and i t s  derivatives, but 
also in term of the other field  component^.^) Thus, in 
cylindrical coordinates s: (o, z 

This allows one to draw two conclusions. Firstly, the 
theorem on the impossibility of a dynamo with v,=O for 
arbitrary magnetic Reynolds number R, is valid only 
for flat and spherical geometries. Secondly, the in- 
crement of the dynamo, which is possible in other geo- 
metries, will be determined by the magnetic diffusion, 
and consequently such dynamos a r e  effective only for 
small  magnetic Reynolds numbers. 

We note that the impossibility of a dynamo in the 
spherical and plane cases has already been noticed in 
Refs. 9, 10, 6. What we have show is that these cases 
a r e  the only ones (for the stationary dynamo this was 
noticed in Ref. 14) and have generalized the statement 
on boundedness of one of the field components to  the 
general case. As an illustration of the second conclu- 
sion we indicate the dynamo effect of a helical flow with 
v, = 0 in cylindrical coordinates.12s13 The leading term 
in the maximal increment of this dynamo is propor- 
tional to v:l3; for vm=O the dynamo effect is absent. 
Moreover here the most effective generation is for angu- 
lar  harmonics with a /a  q + 0, which i s  an additional in- 
dication of the decisive role played by the coupling term 
2 ~ - ~ a ~ , / a ( p  in  the equation for  H ,  . 
4. THE ROLE OF INHOMOGENEITY AND 
ANISOTROPY OF THE CONDUCTIVITY 
AND COMPRESSIBILITY 

We make some remarks on the cases when the mag- 
netic viscosity and the density of the medium a r e  func- 
tions of the coordinates. It is obvious that no anti-dyna- 
mo theorems a r e  possible if v, depends on a l l  three 
coordinates. In such a medium solutions a r e  possible 
which simulate the functioning of dynamo-machines 
constructed by means of insulated conductors. How- 
ever, in the simplest case v, = vm(z) or v, = vm(r) one 
can prove the impossibility of a dynamo. In this case 
the equation for H, i s  easily verified to have again the 
form (4) but the relation (5) will no longer hold. In i ts  
place one must multiply Eq. (4) by H,/v,, and then, 
making use of the relation v .  Vv, = 0 we obtain 

Thus, a dynamo i s  impossible in the plane and spherical 
cases and will be slow in the general case. 

It is easy to generalize the theorem also to the case 
when the fluid density is coordinate-dependent, p =p(z) 
or p =p(r) .  Indeed, in this case the continuity equation 
implies that for v, = 0 we have also d i w =  0, i.e., the 
problem w reduces to the one already considered. We 
note that in an ideally conducting medium for arbitrary 
density the quantity H , / p  is conserved (in place of H, in 
the case of an incompressible fluid), since in place of 
(4) we have in this case the equation 

Of particular interest is the case of anisotropic ten- 
sorial  conductivity, which couples together the various 
field and current components. It is then impossible to 
obtain a separate equation for H, and, in principle a 
dynamo with an increment determined by the off-diag- 
onal (in x ,  y ,  z coordinates) components of the conduc- 
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tivity tensor. Usually the direction of anisotropy is 
related to the magnetic field, but then the whole pro- 
blem becomes nonlinear. 

Finally, the most important problem is whether one 
can draw any conclusions for  the general  three-dimen- 
sional problem. Can one, fo r  example, in the absence 
of helicity (vorticity) t ranspose directly to the case  of 
isotropic three-dimensional turbulence of general form 
the concept of diamagnetism of a turbulent plasma and 
a lso  the concepts of temporal growth of fields a s  the 
scale diminishes simutaneously. These notions can be 
applied not only t o  a n  infinite medium, but also to s i t -  
uations with boundary conditions a t  finite distances. But 
this problem i s  only posed here-its solution i s  a matter  
for  the future. 

We a r e  grateful t o  T. Cowling who brought his paper14 
to  our attention. 

"we note that the mean value of H ,  over any close spherical 
surface vanishes, and consequently the volume average over 
any sphere will also vanish. Therefore the damping leads 
not to H,= const. but to H,= 0 a s  t -a. 

''1t is  essential here to take into account the condition of sta- 
tionarity of surfaces, allowing for a nonstationarity of the 
field of potential velocities on the surfaces. The possibility 
of having an instantaneous family of surfaces in terms of the 
instantaneous velocity field does not suffice for the validity 
of the assertions made in the present paper. 

 he boundedness of (&), is to be understood in the sense 

that this quantity remains infinitesimal of the same order of 
smallness. We underscore the fact that in the formulation of 
the freezing theorem for v,= 0 the field o r  H / p  change pro- 
portionally to the infinitesimal vector distance between two 
infinitely close fluid particles. Therefore the rapid dynamo 
is possible even in the case when the motion occurs in a 
finite volume. 

4 ' ~ h e  peculiarity of the plane and spherical cases is  related to 
the fact that the curvature of the surface vanishes in the first 
case and is isotropic in the second. 
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