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We d i u s s  the stationary distribution of hot ions with energies E > T(M/m)ll', at which interaction with 
the electron subsystem, which plays the role of a thermostat, prevails. The effective ion temperatures 
established in the interaction with a nonequilibrium electron gas are determined. For ion sources localized 
in energy (beams, nuclear reactions), the distribution contains an equilibrium part, which goes over into a 
power-law "tail" parametrized by the flux along the spectrum. It is shown that the obtained power-law 
distributions are stable under local isotropic perturbations. Formation of a power-law distribution of the 
ions under nonstationary and inhomogeneous conditions is considered, particularly in the case of 
excitation by a beam. It is shown that in the interiors of stars the power-law tails of the distributions 
influence the rates of the secondary nuclear reactions with large Coulomb barriers. 

PACS numbers: 05.30.m(, 95.30.Cq 

1, INTRODUCTION 

Stationary states of a plasma, produced in the pre- 
sence of sources such a s  nuclear reaction o r  beams of 
high energy particles, can greatly deviate from equili- 
brium in definite energy intervals even i f  the source 
power i s  low. In particular, the plasma can become 
considerably enriched with high-energy ions, a s  is 
manifest in the simplest cases by the onset of power- 
law "tails" in the particle velocity distribution.'-4 
As already noted, the presence of such tails should 
greatly influence a number of properties of the plasma, 
including the dispersion properties, as well a s  the 
rates of the thermonuclear reactions in the plasma 
(see,  e.g., Ref. 2). The flow of hot electrons and ions 
from sources plays an important role also in a low- 
temperature plasma.5s6 

A considerable role in the formation of the distribu- 
tion tails can be played by thermal particles. In partic- 
ular, in the region of sufficiently high ion energies of 
interest for thermonuclear plasma 

e>T(Mlm)" (T=T.) (1.1) 

the ion-electron energy transfer predominates7 and the 
energy relaxation of the ion, which is  characterized by 
the reciprocal relaxation time 

is determined from the interaction with the electrons: 

vi.'Bvii=uiin,u, u,,=ne'~'h/e'. 

For electrons, a t  the same time, only the interelectron 
interactions a r e  of importance. Under these conditions, 
the kinetic equations for the ions become much simpler 
(if the electron distribution can be assumed given). 
Without allowance for  diffusion in velocity space, such 
an equation was considered in Refs. 1 and 4, where it 
was used to analyze the relaxation of a high-energy ion 
beam in an equilibrium plasma a t  v,, << v << v,,. 

In this paper we discuss the differential kinetic equa- 
tions for the distribution function of high-energy ions 

v >> vT,; in addition to the electron-friction force, we 
take account in this equation also the diffusion (Sec. 2). 
This makes it possible to describe explicitly the transi- 
tion from the equilibrium part of the distribution to the 
power-law tail, with transition region determined by 
the relation between the source power and the temper- 
ature (and the density) of the plasma (cf. Refs. 8 and 9); 
the transition occurs for a number of astrophysical and 
laboratory situations in the region (1.1) (Sec. 3). 

We obtain below stationary solutions for an isotropic 
ion distribution function in the presence of a flux, over 
the spectrum, from sources localized a t  high energies. 
In the energy interval 

the distribution of the ions in the tails is f - 1J 
(in agreement with the result of Ref. I ) ,  whereas a t  

the distribution flattens out, f - (J ( (Sec. 3), where 
4nJ is the ion flux along the spectrum and is equal to 
the source power. The proportionality of the ion den- 
sity in the dietribution to the flux [and not to its square 
root a s  in Ref. 2,  see  (3.6)] is due to the fact that a t  
the small  fluxes considered in the present paper the 
tail is formed in collisions between ions and thermal 
electrons, while the ion-ion collisions of the particles 
in the tail a r e  inessential. 

If the electrons a r e  not in equilibrium, then under 
stationary conditions the electron subsystem plays 
the role of a thermostat with an effective temperature 
that is a functional of the electron distribution. (A 
similar situation was investigated for a system of 
interacting electrons and r a d i a t i ~ n . ' ~ ' ~ )  In the absence 
of an ion source, the interaction with the electrons 
leads to the establishment of an "equilibrium" ion 
distribution with effective temperatures that a r e  dif- 
ferent, generally speaking, in the intervals (1.3) and 
(1.4) (Sec. 3). The power-law distributions of the ions 
in the tail turn out to be stable against isotropic local 
perturbations (Sec. 4). Sections 5 deals with the in- 
fluence of the power-law tails on the rates of second- 
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ary nuclear reactions in stars.  It turns out that for 
reactions with a large Coulomb barr ier  i t  becomes im- 
portant to take the disequilibrium into account. We 
discuss briefly the role of the spatial inhomogeneities 
(using an ion beam a s  an example), and of the non- 
stationary character of the sources, in the formation 
of the flux distributions (Sec. 6). 

2. KINETIC EQUATION FOR ISOTROPIC 
DISTRIBUTIONS OF HOT IONS 

We consider the Landau kinetic equation for the ion 
distribution function f ' = f in a plasma a t  sufficiently 
high ion energies (1.1) when, as is well known,' the 
ion-energy distribution is governed by the interaction 
with the electrons. It takes the form of the continuity 
equation in the momentum space of the ions: 

af? - + div, j=G., (2.1) 
a t  

where G ,  is the d&sity of the particle sources. For 
an isotropic distribution of the ions f (&) and of the 
electrons f '(&I) the Landau expression7 for j ,  can be 
transformed into j, = r j ( p ) ,  where 

Integrating over the angles, we obtain" for the radial 
component of the flux density: 

an dp'p'' af af 
I ( P ) = ~ J ~ [ U + U ~ - I U ~ - V I ~ ~  f 7 -  (2.2') 

( 8 s  f ~ ) '  

here a =ne4z2x, x is the Coulomb logarithms, and the 
primed quantities pertain to electrons. 

Introducing the diffusion coefficient D ( p )  and the 
friction force F @ ) :  

we write down the final equation for the isotropic dis- 
tribution function of the ions under conditions when 
scattering by electrons prevail, in the form 

(2.4) 
We consider first the stationary solution of (2.4) in the 

absence of an ion source (G =O). The electron distri- 
bution is assumed stationary but, generally speaking, 
not in equilibrium. Equation (2.4) reduces to the con- 
dition J(p) = const, and in view of the absence of a 
source the constant is equal to zero  (cf. Sec. 3): 

The effective temperature T,,, is defined by 

Ten ( v )  = - u D ( p ) / P (  P )  (2.6) 
and coincides in the case of a Maxwellian distribution, 
a s  seem from (2.3), with the electron temperature. 
From (2.5) we obtain the stationary distribution of the 
ions : 

It is seen from (2.3) that i f  the ion velocity v is less 
than the characteristic electron velocity <, then 

D ( p )  - const, F ( p )  --v, va&.  

For equilibrium electrons, as is well known, 

where ne=.fdp'fe is the particle density. It follows from 
(2.8) that in the interval (1.3) the distribution (2.7) takes 
the form of a uniform distribution with temperature 
T"' = T,,,(O): 

In the limiting case of high ion velocities v >>G we have 

D ( p )  - l / u 8 ,  F ( p )  -- l /v' ,  (2.10) 

including, for equilibrium electrons, 

an.T an. 
D ( P ) = ~ ~ ,  F(p)=-2.. mu" 

The distribution of the ions for these velocities also 
becomes Maxwellian with a temperature T"' =T,,,(m), 
more sensitive to the high-energy electrons than T"': 

In expressions (2.9) and (2.11) for Ta t2 '  i t  is assumed 
that f '(v') ensures convergence of the integrals. 

Thus, when ions interact with nonequilibrium elec- 
trons and there is no ion source,  equilibrium distribu- 
tion of the ions is established in each of the integrals 
(1.3) and (1.4), with effective temperatures T " * ~ '  that 
a r e  functionals of the electron distribution. A similar 
situation is realized in the interaction of electrons 
with radiation (see the reviews10g12). 

In the presence of given ion sources,  the stationary 
solution of the kinetic equation (2.4) takes the form 

dp' 

Pmln Pa," 

The solution (2.12) presupposes satisfaction of the con- 
dition of the matching of the source and the sinks, 
which is an obvious consequence of (2.4): 

I(-)-J(P., . )-  j d p p z G ( p ) .  
PM" 

(2.13) 

We assume that there is no flux a t  infinity: J ( ~ ) = O . "  
For the cases of physical interest, when the source is 
a beam of particles o r  a nuclear reaction, the source 
can be regarded a s  given and localized a t  energies E ,  

much higher than thermal, for example, using the rep- 
resentation 

where I is the strength of the source. As to the sink, 
unless specially stipulated, we assume that it is outside 
the considered region a t  Ti.', in contrast to the dis- 
tributed sink in Ref. 4. 

488 Sov. Phys. JETP 51(3), March 1980 Mel'nik eta/. 488 



3. STATIONARY DISTRIBUTIONS WITH FLUX 
ALONG THE SPECTRUM 

We now discuss the case when the sources of the ions 
a r e  concentrated in an  energy region much larger than 
that of the sinks. A flux of particle numbers from the 
sources to the sinks is then produced over the spec- 
trum. This region can naturally be called the inertial 
interval, in analogy with the Kolmogorov turbulence in 
a liquid, o r  the Zakharov weak turbulence in a system 
of waves with 

The solution in the inertial interval can be obtained 
a s  an intermediate asymptotic form of the general 
solution (2.12). It is more convenient, however, to 
obtain i t  in terms of the flux along the spectrum from 
Eq. (2.4). This equation makes it possible to take sim- 
ultaneously into account also the role of the thermostat, 
which is quite significant. In the inertial interval G = 0 
and the stationary solution corresponds to the vanishing 
of the collision integral o r ,  equivalently, to constancy 
of the ion flux along the spectrum, J(p) =J. In the en- 
ergy region (1.3) (region I) the equation takes the form 

af We-" T - +  f--- 
4 

V ~ ( ~ M ) ~ *  ' 
T (Mlm) "<e<min(ep,  TMIm),  v ,  = -v. ae 327'" 

(3.1) 
The solution of this equation is a sum of the Maxwellian 
term f "  (the solution of the homogeneous equation) and 
the power-law "tail" f ", which describes the flux of the 
ions towards the lower energies (Fig. 1): 

It is recognized here that our analysis, including the in- 
itial equation, i s  itself valid only a t  & >> T. 

The conditions under which the power-law term in 
(3.2) predominates include limitations on the flux (if 
GO > TM/m, then it must be replaced by T M / ~ ) :  

~ o %  e x ~ ( - - e o / T ) / 2 ( n T ) ' ~ <  l J l / ~ , ~ z ~ l .  

The left-hand side of the inequality corresponds to the 
fact that the source is locatedat higher energies than the 
"joining point" G * : 

v n 
e , > e . a ~  ln- 

2nY'I1l ' 

at  which the thermal and flux terms of (3.2) become 
equalized. The right-hand side of the inequality corres-  
ponds to the condition that the number of particles in 

- 
FIG. 1. Distribution function f(&) of the ions in region I (v 
<<vTe) under the condition n q  >> I JI exp(-WT). 
The power-law tail f4'- I JI -3/2 is formed in the presence of a 
flux J along the spectrum from a particle source localized at c 
=co<TM/rn. 

the tail be small  compared with the total number of 
particles. The number of particles in the tail 

n t " ' - 8 n 1 1 1 ~ ~  1 1 1 p ~ / p ~  (3.3) 
is determined by the strength of the source (the flux 
along the spectrum), multiplied by the relaxation time 
Ti v:. The lower limit of the region of the coordinate 
of the sink is replaced in (3.3), with logarithmic ac- 
curacy, by the thermal momentum. 

Our analysis, wherein the relaxation is effected by 
ion-electron collisions, i s  valid only if the number of 
ions in the tail i s  much less than the number of thermal 
electrons (and accordingly, ions). In fact, let us com- 
pare the frequencies of the relaxation of the tail ions on 
electrons and on ions belonging to the same tail. The 
condition 

vfsE>viit  -e6z'hni /e"M" (3.4) 

imposes on the flux a limitation equivalent to smallness 
of the number of particles in the tail, n, <<n: 

1 1 1 ~ ~ a n .  (3.5) 

If the flux is so  large that lJ1 >> vln, then the picture 
changes substantially. For quasi-equilibrium electrons, 
ion-ion collisions predominate, and the transport is 
essentially integral. The problem was solved under 
these conditions in Ref. 2. For  a high-energy source, 
the distribution of the ions did correspond to a constant 
energy flux J,, along the spectrum (the contribution of 
the particle flux in this region can be neglected), and 
according to Ref. 2 we have 

f- 1 ]en 1 'he-r/: I J(>v,n.  (3.6) 

The square-root dependence on the flux is due to the 
fact that the spectrum is caused by collisions of the tail 
particles with one another (for details see  Ref. 2, a s  
well a s  Ref. 12) and, a s  we have seen above, it is re- 
placed by a linear dependence for small  fluxes. 

In the energy region (1.4) (region 11) the stationary 
distribution of the ions, corresponding to a constant 
flux, is obtained from the equation 

and takes the form (Fig. 2) 

2111 M '=  ( 2 n i T ) "  exp (- $ ) + vZ(2MT)" ' m 
T - c e < e o .  (3.8) 

The flux term in (3.8) i s  significant if 1J( > v2nexp- co/ 
T). For fluxes such that 

esp (-M/m) > 1 JJ v,n>exp ( -eo /T) ,  

the flux distribution joins up with the equilibrium dis- 
tribution in the region I1 [see (3.8)]. On the other hand 
if 

then the plateau of (3.8) goes over a t  & -TM/m into the 
power-law tail of region I (Fig. 3). The appearance of 
high-energy power-law tails  in the distribution func- 
tions is thus a rather general consequence of the large 
distance between the high-energy sources and the sinks 
a t  low energies. Under these conditions, a constant 
flux is produced (by virtue of the conservation law) 
along the spectrum of the hot particles. 
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FIG. 2. Ion distribution function f ( E )  in the region I1 (v >> vT,) at 
fluxes nv2 exp (- M h )  >> I JI >>nv2 exp (-cO/T). The tail of this 
distribution takes the form of a plateau at fP'- I J I . 

The appearance of standard tails is also quite typical 
of the electron d i~ t r ibu t ion .~ '~  These tails should ar ise  
if an electron source exists (for example, an electron 
of neutral beam) a t  energies E; >> T. We consider in 
this connection the influence of the tails of the electron 
distribution on the ion distribution. If the number of 
particles in the electron tail is small, n?/n, << 1, then 
the distribution of the electrons in the region T << & << &:, 
where &; is the energy of the electron source, is formed 
on account of the interaction of the electrons from the 
region of the tail with the thermal electrons. It is des- 
cribed by an equation similar to (2.4) and (2.10), where 
f must be replaced by the distribution of the electrons 
of the tail, and f by the Maxwellian distribution. The 
solution of this equation is analogous to (3.8): 

The power-law tail of the electron distribution leads 
to a dependence of the effective temperature of the ions 
on the velocity in accordance with (2.6). This influence 
is small in region I and can become substantial in re- 
gion 11, where the maximum value of the temperature 
is reached a t  v > v; :  

Under the condition 
n.T/eoC<n, ' C n ,  

the effective temperature of the ion is much higher than 
that of the electrons. 

We note that there is also another region, that .of hot 
ions (region 111): 

T<e<T(M/rn) '" ,  (3.10) 

where a flux distribution can be formed and is essential 
for joining the tail to the equilibrium part of the dis- 
tribution. In this energy region the main energy-trans- 
fer  processes a r e  ion-ion collisions. Ifwe assume the 

region (3.10) to be broad enough (this is the case for 
heavy ions), then we can again separate the thermal 
and hot ions, and the flux in the kinetic equation for f 
coincides in form with (2.4) and (2.8). The stationary 
solution is a sum of a Maxwellian and a power-law part 

and the nonequilibrium part of the distribution function 
becomes noticeable above the equilibrium background at 

1 J l >  (n1/7ii) exd - ( ~ / m ) " ~ ] .  

4. STABILITY OF FLUX DISTRIBUTIONS 

We examine now the stability of the stationary solu- 
tions with respect to local perturbations. To this end, 
we turn to the nonstationary equation (2.4), which takes 
in the integral (1.3) the form 

where t is measured in units of = v:. Putting 

f ( x ,  t )  = f o ( x )  + d l )  eat* (4.2) 

we obtain for the perturbation g(x) the equation 

The linearly-independent solutions of this equation a r e  
hypergeometric f~nct ions , '~  which satisfy the condition 
of locality of the perturbations 

g ( x ) / f o ( x )  = o ( i ) ,  x+m,  x+O, (4.4) 

where f,,(x) is the stationary solution of (4.1), but a t  
cr < 0. This result can be made clearer by considered 
the asymptotic region of large x. At a power-law de- 
crease of g(x) a t  infinity, the second derivative in (4.3) 
can be neglected compared with the first ,  and the de- 
creasing solution actually has a power-law form (at  
cr < 3/2) 

g ( x )  -xa-". 

The requirement (4.4) that the initial perturbation be 
local, i.e., that g(x) decrease faster than the solution 
f , ( x ) - ~ " / ~  tested for stability, means that a should 
be negative and, thus, the solution (3.2) i s  stable. The 
conclusion that the power-law tail is stable in region 
I agrees with the result of Ref. 15 that the power-law 
s ~ l u t i o n ~ * ' ~  of the Kompaneets equation for the photon 
distribution is stable. 

For the perturbations g(x) of the solution (3.8) in re-  
gion I1 we obtain the equation 

d=g d g  - + - - ax'"g=O. 
d x ' d x  (4.5) 

Making the substitution g(x) = e - X / 2 u ( x ) ,  we reduce (4.5) 
to a ~ c h r o d i n ~ e r  equation 

In the case a > 0, this equation does not have bounded 
 solution^.'^ Consequently, the solution (3.8) is also 
stable. 

FIG. 3. Ion distribution function f(&) at fluxes nv,  >> I JI 
>> nv, ( ~ / r n ) ~ ' ~  exp ( - ~ / m ) ,  &o > T M h .  The power-law as- 
ymtotics are formed in regions I and 11. 

We note that the investigated solutions belong to the 
class of the so-called intermediate asymptotics, and 
general problems in their theory, including stability, 
a r e  considered in Ref. 17. 
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5. INFLUENCE OF DEVIATION FROM 
EQUILIBRIUM IN THE INTERIOR OF A STAR ON 
THE RATE OF SECONDARY NUCLEAR REACTIONS 

In connection with the problem of solar neutrinos,18 
deviations from equilibrium distributions in the interior 
of the sun have been discussed in recent years." We 
examine the influence of the excess of high-energy 
particles (3.2) on the rate of nuclear reactions. Since 
the energy & of the particles produced in nuclear reac- 
tions is of the order of several  MeV and the thermal 
energy T the order of several  keV, there exists an 
energy interval (1.3) in which the ion distribution is 
the result of their interaction with the thermal electrons 
and is described by Eqs. (2.4) and (2.8). The source 
can be regarded a s  localized [ ~ q .  (2.14)] at E, - TM/m , 
and the sink should be located a t  energies of the order 
of E, - T ( M / ~ ) ~ ' ~ ,  i.e., of the lower limit of the interval 
(1.3). Thus, for L ~ ' ( H , ~ ) B ~ ' ,  C ' ~ ( H , ~ ) N ~ ~ , O ~ ~ ( H , ~  )F", 
and others the region of the sink is at  & - 10-20 keV, 
and for He3(He4 , y ( ~ e ' ,  Ni4(He4, y ) ~ 1 B , ~ ' 6 ( ~ e 4 ,  Y)Ne2', 
and others a t  -20-40 k e ~ . ~ '  Just a s  above, we take the 
presence of such a sink into account by the boundary 
condition and consider the stationary solution (3.2). 

We shall be interested henceforth in the steady-state 
regime. The rate of any reaction of the cycle, and 
consequently also the strength I of the source, i s  deter- 
mined by the slowest reaction. Thus, for the proton 
cycle the slowest reaction is H(H,e+v)d,  and fo r  the 
carbon cycle N14(H, )015. We do not consider at 
present reactions for which the sink is substantially 
distributed o r  located near the source. We then ob- 
tain rather general relations that depend little on a con- 
crete reaction of a given class. 

As shown above, the stationary solution of Eqs. (2.4) 
and (2.8) contains, besides the Maxwellian part f ", 
also, a t  epithermal energies, a power-law tail f P 1  

[see (3.2)]. Under the considered conditions, the num- 
ber of tail particles is certainly low and the criterion 
(3.5) of the applicability of (3.2) is satisfied. Since the 
rates of the nuclear reactions a r e  quite sensitive to the 
number of high-energy particles, it follows, a s  will 
be seen, that an important role in the rate of a number 
of reactions is assumed by the contribution of the 
power-law tails in the distributions of H and He4. Let 
us estimate their role in the hydrogen and carbon 
cycles. The rate of the reaction 1 +2 -. . . , where 
fl and f, a r e  the distribution functions of particles 1 
and 2, 

contains the product of the probabilities (f J2)  of the 
particle collisions and of the penetration through the 
Coulomb barr ier  (characterized by the Gamow energy 
EG : 

-- -- 

GIZ=e: -31,3~~z,A'~[keV'l ,  (5.3) 

where 2, and z2 a r e  the charge numbers, and A is the 
reduced mass number), Sl,2 is the astrophysical fac- 
tor." We consider f irst  nonresonant reactions, where 
S,, depends little on the energy; these reactions include 

c ~ ~ ( H , ~ ) N ~ ~  ,NI4(He4 , y ) ~ 1 8  ,0I6(H, y)Fi7, and others. 
Owing to the presence of the power-law section in the 
particle distribution (3.2), the reaction rate (5 . l)  con- 
tains, besides the usual Maxwellian terms I; (Ref. 20), 
a term that represents the contribution made to the 
reaction rate by the interaction of the fast particles of 
the power-law tail with the equilibrium particles of 
the other sort. 

For fl =f y' and f2 =ff we obtain from (3.2) and (5.1) 

as well as an analogous term with the contribution of 
the tail particles of species 2 and the equilibrium 
particles of species 1. The ratio of the power-law and 
the Maxwellian contributions is 

where AE12 - G , ~ " ~ T ~ ' ~  is the width of the Gamow peak.20 
We note that the strength of the source I ,  which enters 
in (5.4), is defined for the hydrogen cycle in terms of the 
temperature and density by the expression 

Let us estimate the reactions a t  which the condition 

Ilzp'/I,2w> 1 (5.7) 

is satisfied. Substituting in (5.7) and (5.5) the expres- 
sion for the source power (5.6) and the relaxation time 
T = 2vi1, we get 

where 

For the hydrogen cycle (T - 1 keV, n - 1 0 ~ ~ c m - ~ )  we can 
assume log& = - 25 and - 2. Recognizing also 
that the energy of the produced protons and a! particles 
is Eo - 4 MeV [the reaction He3(He3, 2H)He4], an estimate 
for the round bracket in (5.8) yields 65. Then the condi- 
tion (5.7), (5.8) for  the predominance of the contribution 
of the tail nuclei is satisfied a t  

If the particle of species 2 is hydrogen, then (5.9) is 
satisfied a t  zi > 8(016(~,y)~i7,~e20(~,y)~a21), and if it 
is helium, then a t  z l  > 3 (Nl4(He4 , y ) ~ ' 8 , ~ ' 6 ( ~ e 4 , y ) ~ e Z o ,  
and others). In the carbon cycle a t  T - 2 keV, high- 
energy ~e~ nuclei a r e  produced (the region of the 
source is again of the order  of several  MeV), and an 
inertial interval can again exist, in which the flux 
distribution (3.2) with a source I,,' should be estab- 
lishedlcf. (5.6)]. The condition under which the con- 
tributions of the He4 tail particles to the rates of the 
secondary nuclear reactions predominate for the carbon 
cycle is of the form 

3 ( ~ ~ ~ / 2 ) ~ ~ - 6 7 > 3 7 T ' k  (5 .lo) 

Thus, for example, for the reaction c ' ~ ( H ~ ~ , ~ ) o ~ ~  it is 
satisfied a t  T < 8 keV. 

The enrichment of the plasma with fast particles in- 
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creases the rates of those resonant reactions a t  which 
the resonance energy &, l ies in the interval (l.3), on 
account of the resonant behavior of the cross  section 
of the interacting particles21 and for narrow resonances 
(r << A&), when 

the ratio analogous to (5.5) takes the form 

If follows therefore that the main contribution to the 
rates of the resonant reactions is determined by the 
power-law parts of the distribution functions, provided 
the following conditions a r e  satisfied: 

a)  for the hydrogen cycle [the source Z = Z H H M  (5.6) 
is determined by the rate of the reaction H ( H , ~ ' V ) D ~ ]  

e ,>78keV;  (5.12) 

b) for the hydrogen cycle [the source 1=zNHM is deter- 
mined by the rate of the reaction N ' ~ ( H , ~ ) O ' ~ ]  

e,/T-67/T'">25. (5.13) 

One of the examples of resonant reactions is the com- 
bustion of helium 3He4 - c i 2 ,  which proceeds via for- 
mation of the unstable nucleus Bea*. Recognizing that 
&, = 278 keV for the reaction ~ e * *  (He4, r ) c t 2 ,  we find 
from (5.13) that a t  T 4.1 keV the production of C" 
proceeds mainly on account of the interaction of the 
Be8* nuclei with the particles of the power-law tail of 
the distribution function. 

Thus, it is seen that although allowance for the dis- 
equilibrium of the distribution functions does not in- 
fluence the present-day parameters of the sun (neither 
the H cycle nor the neutrino yield20), this influence 
fluence is quite substantial on a number of secondary 
reactions (with sufficiently high Coulomb barrier) .  The 
mechanisms discussed should "include" reactions oc- 
curing in the course of the evolution a t  lower tempera- 
tures than would be the case a t  complete thermodynam- 
ic equilibrium. This circumstance possibly influences 
the chemical composition and the parameters of s t a r s  
in the evolution process. 

6. INFLUENCE OF THE NONSTATIONARITY AND 
INHOMOGENEITY OF THE SOURCES ON THE 
POWER-LAW SPECTRA OF THE IONS 

Distributions with constant flux can be formed also 
under nonstationary and inhomogeneous conditions. For 
example, when a source G(P) is turned on a t  t = O  in the 
region of large momenta, where the energy diffusion is 
negligibly small: ID&) [<<p IF@) I , the ions begin to 
shift to the region of small  momenta under the influence 
of the friction force, and form a flux distribution. For 
a power-law friction F(P) = -A#-"', A > 0 i t  follows 
from (2.4) that 

f (p ,  t )  = A - ~ ~ ' - J ~  d p l p l a ~ ( p f ) ,  a= (pt+AEt)"', (6.1) 
t 

for a zero initial condition f&, 0) = 0. If the source G(p) 
is concentrated near p =pa in a region of width Ap <<Po, 
then the leading front of the flux distribution i s  located 
a t  

p ( t )  = (p2-AEt) "' 
and i ts  width is " 

A p ( t )  - - ( p ( t ) / p o )  '-'AP. 

For a linear friction law F&) = -P/T (region I)  Eq. (6.1) 
goes over into 

b 

j ( p ,  t )  =zp-' ~ d p ' p " ~ ( p ' ) ,  b=p e x p ( t / z ) ,  (6.2) 

and this leads to f ( p )  = T ( J  1 /p3 behind the front far from 
the source. Thus, the flux distribution can be also 
quasistationary in the absence of a sink, and the nonsta- 
tionary character is due to the motion of the leading 
front (seeRefs. 4 and 22). The time of establishment 
of the spectrum (6.2) in the region pi < p  <Po  is 

t=.s ln ( p o / p l ) .  

We consider now the formation of the flux distribu- 
tion in an inhomogeneous plasma using using an example 
of physical interest, when the role of the source is 
played by a beam of high-energy ions incident on the 
plasma3' with a distribution f ,(p) on the boundary. For 
an anisotropic distribution of the ions in the beam it is 
necessary to take into account the diffusion over the 
transverse momenta, which leads to a broadening of 
the distribution. For an ion beam, generally speaking, 
an important role is played by diffusion due to scattering 
by thermal ions. However, confining ourselves to the 
region I (1.3), we can verify that the reciprocal trans- 
verse-relaxation time a t  not too small  transverse mo- 
menta 

is much smaller than the reciprocal energy relaxation 
time vl. Thus, if  the initial angular width of the beam 
o2 >> (m/M) ( v = , / v ) ~ ,  then, neglecting the small angle 
broadening of the beam, we obtain a stationary kinetic 
equation in the form 

Let the beam propagate in the positive x direction 
and enter the plasma a t  x = 0. For a momentum dis- 
tribution that has azimuthal symmetry and depends 
only on x ,  the solution of (6.3) is 

where 8 is the angle between the momentum p and the 
x axis. If fo(p, 8) is concentrated a t  p = P o ,  then with 
increasing depth of penetration into the plasma the max- 
imum of the beam distribution shifts to the region of low 
energies a t  a rate (dp/dx ( =M/T, and the energy loss 
takes place over a mean free path L =pOr/M. If we 
average over distances of the order of the energy length 
L , then it follows from (6.4) that 

where n,= dpfo(p) is the concentration of the particles 
in the beam. Thus, the obtained distribution is equiva- 
lent on the average to a spectrum with a constant flux 
4 i ~  ( J  1 = n, /r .  
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The magnetic field in a conducting fluid in two-dimensional 
motion 
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The evolution of a magnetic field in a fluid moving so that one of the velocity components vanishes is 
considered. A dependence of the other velocity components, of the electric conductivity, as well as of the 
magnetic field on the corresponding coordinate is assumed. Thus a significant generalization of the anti- 
dynamo theorem proved by one of the authors in 1956 is obtained. The result allows one to classify the 
dynamo solutions in terms of the magnitude of the magnetic Reynolds number. 

PACS numbers: 47.65. + a 

1. INTRODUCTION nance of a magnetic field is possible in a moving con- 
ducting fluid has, as is well known, recieved an affir- 

The classical problem of the magnetic dynamo, which mative solution. Many concrete examples of magnetic 
solves the problem whether the amplifcation o r  mainte- dynamos have been constructed and this has stimulated 
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