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In connection with the problem of raising the sensitivity of gravitational-wave experiments, a study is made 
of the quantum limitations that can arise when a classical force is measured by the response of a quantum 
oscillator. Following up work done by the groups at Caltech and Moscow, and also by Unruh, attention is 
drawn to a class of nondemolition measurements that are free of quantum limitations on the accuracy with 
which a force can be measured. It is shown that such measurements can be realized in the case of observation 
of operators that are quantum integrals of the motion of the investigated system. The physical reasons for the 
presence or absence of a quantum sensitivity limit for an arbitrary choice of an observable are elucidated; they 
reside in the degree of uncertainty of the initial state of the system. In the case of integrals of the motion, this 
uncertainty can be reduced to zero by an initial precise measurement and subsequently remains zero 
(quasinondemolition measurement). It is shown further that one can make a choice of observables that do not 
depend on the initial state of the quantum system at all but retain information about an external influence. In 
this case, a precise continuous measurement can be realized without special preparation of the state of the 
system (strictly nondemolition measurement). The general rule for the construction of such an optimal 
variable is identical to the recommendations of the quantum theory of filtration. 

PACS numbers: 04.80. + z 

8 1. INTRODUCTION the temperature to lom3 OK, so that a situation for which 

Questions relating to the limiting sensitivity in mac- 
roscopic experiments have attracted considerable in- 
terest in recent years in connection with the significant 
progress made in experimental techniques and also the 
need to  make a number of measurements of fundamental 
and applied nature (for a detailed discussion of the state 
of the a r t  seeRefs. 1 and 2). A new stimulus in this 
connection has been provided by gravitational-wave ex- 
periments and relates to  the elucidationof the existence 
(or absence) of quantum limitations on the detection of 
weak gravitational signals from space by macroscopic 
terrestrial  antenna^.^-^ According to the estimates of 
Thorne et a1 .: the deformation of a gravitational detec- 
tor of the Weber type under the influence of a burst of 
radiation from the Virgo Cluster must be less  than the 
characteristic quantum dispersion of the coordinate of 
the detector, regarded a s  a quantum oscillator. A p r i -  
ori, the very possibility of measurements a t  thisC'quan- 
tum" level was not obvious. However, in the papers of 
13raginsk6 et al? it was shown that such a sensitivity 
can be achieved by means of a definite measuring pro- 
cedure, which has become known a s  quantum nondemo- 
lition or  nondisturbative measuiement. Later, Unruh5 
and Thorne et ~ 1 . ~  studied the mathematical featuresof 
nondemolition measurements, and also gave examples 
of variables-the real  and imaginary parts of the com- 
plexamplitude of an oscillator-suitable for continuous 
precise measursment and, therefore, for the detection 
of an arbitrarily weak external force applied to the quan- 
tum oscillator. Recently, the same problem was inves- 
tigated from the point of view of the theory of optimal 
filtration of a signal in quantum noise?p8 

The second generation of gravitational antennas is 
characterized by a temperature T - 1 "K at  frequency w, 
2 101, which corresponds to  a "classical" many-quan- 
tum state with mean level (n)- kT/ f iw ,  - lo7. However, 
the pursuit of accuracy callsfor a further lowering of 

(n) - 1 is conceivable. In addition, ~ r a g i n s k f i  has poin- 
ted out'.' that if the detector has a high Q quantum prop- 
ert ies canbe manifested a t  short observation times T 
<< Q,/w, provided 

nkTo,z/Q,<hw, (1) 

The fulfillment of this conditioncan be achieved by arti- 
ficial cooling of the oscillator, i. e., by the preparation 
of a state with n - 1 (Refs. 2 and 9). The majority of the 
papers quotedabove contain, in various modifications, 
an analysis of the key problem of detecting a weak clas- 
sical force from the response of a quantum system. 
Such analysis is basedon the principle of "fluctuation 
back reaction" of the measuring device on the measured 
system proposed by ~ r a ~ i n s k i l ' ~  (for application to a 
gravitational antenna, see Ref. 11). The limitations to 
sensitivity associated with this principle a r e  important 
if the experimentalist is, for example, interested in the 
continuous measurement of the trajectory of some basic 
canonical variables such a s  the coordinate, momentum, 
o r  energy. A possible way of avoiding these limitations 
involves the introduction of the concept of anondemoli- 
tion measurement. 

The aim of the present paper is to discuss the physi- 
cal reasons that lead to a nondemolition measuring pro- 
cedure. We shall show that if the continuous establish- 
ment of the t~a jec to ry  of a canonical variable such a s  
d(t) , f l( t) ,  o r  E( t )  is not an aim in itself but is required 
only to measure an external force, it is possible to sur- 
mount the limitations due to the fluctuation back reac- 
tion by extending the class of allowed measuring opera- 
tions. Wedraw attention to the fact that a quantum non- 
demolition measurement reduces to the finding of a var- 
iable that i s  "convenient" for measurement, such being, 
for example, an integral of the motion of the mea.sured 
system. We shall see that the extension to the class that 
we consider corresponds to the rules of optimal quan- 
tum filtration of a classical system on a background of 

443 Sov. Phys. JETP 51(3), March 1980 0038-56461801030443-08502.40 O 1980 American Institute of Physics 443 



quantum fluctuations a s  set forth in Ref. 12. Note that 
in all  that follows the concept of a "measurement" is 
considered in the framework of the fundamental postu- 
lates of quantum mechanics, which it is appropriate to 
recall word for word in this connection (see, for ex- 
ample, Ref. 13). 

1. Postulate of the state. A physical system is de- 
scribed by a vector ina  Hilbert space H ,  this vector sa- 
tisfying the evolution equation 

a 
ih- I+)=Hl$); I ~ l ( t ) ) - e - ' ~ " '  l$o). 

a t  
( 2 4  

2 .  Postulate of obseruables. An observable i san  
Hermitianoperator A; the result of measurement of 2 
is a real eigenvalue a, of this operator, A I p r )  = a, (cp,.); 
the (a priori)  probability of obtaining a , as  a result of 
the measurement is 

where j is a degeneracy index. 

3. Reduction postulate. After the measurement, the 
state vector goes overinto an eigenvector of the given 
operator; thus, when A is measured and a, is obtained, 
we have 

$+$', where 19') = 1 cp,). (4a) 

In the case of mixed states, the relations (2a)-(4a) a re  
expressed in t e rms  of the density matrix c(t) and takes 
the form 

3. After the measurement A-a,, we have 

^P ( t )  -.$= I cp,)(cp, I ,  (4b) 

if the observer knows the result, and 

if a measurement is made but the observer does not 
know the result. 

The final (4b) reveals the greater generality of the 
formalism of mixed states, namely, reduction is pos- 
sible either to a pure state or  to a state with diagonal 
density matrix depending on the conditions of the exper- 
iment. 

It is important to emphasize the following points. 
First, the postulates 1, 2, and 3 refer only to a single 
measuring (observing) act. The process of repeated o r  
continuous measurements requires independent in- 
vestigation. Second, the posulates asser t  the possib- 
ility of an absolutely precise single measurement of 
observables described by Hermitian operators (it is 
clear that one presupposes a state that is an eigenstate 
for the given operator). Third, the postulates pre- 
suppose an ideal observer (von Neumann's classical 
instrumenti4), which does not introduce during the mea- 
suring process any distortions (noise) apart from the 
collapse of the wave function. Real instruments do, of 

course, have inherent noise. This however does not 
have any relation to the quantum-mechanical features 
of the measuring process discussed in the present 
paper. Although the analysis which follows below is 
valid for an arbitrary quantum system, we shall above 
all have in mind the key problem for a gravitational- 
wave experiment, viz, the detection of a classical for- 
ce from the response of a quantum oscillator. The 
paper is arranged as follows: In Sec. 2, we formulate 
the cri teria of nondemolition measurement; in Sec. 3, 
there follows an analysis of the physical causes of the 
quantum limitations to sensitivity; in Sec. 4, we es- 
tablish the connection between a nondemolition mea- 
surement and the recommendations of the quantum 
theory of optimal filtration; finally, in the Conclusions, 
we formulate the main results of the paper. 

52. NONDEMOLITION MEASUREMENT OF A 
QUANTUM OBSERVABLE 

The expression "quantum nondemolition (or nondist- 
urbative) measurement"" was introduced by ~ r a ~ i n s k i r  
and Vorontsov in Ref. 2 to emphasize the need to find a 
quantum variable o r  measurement procedure for which 
the measurement at the time ti does not have an un- 
controllable random influence on the same observable 
at the subsequent time t2. '' It is in fact required that 
the quantum system at  both times, t l  and t2, be in an 
eigenstate of the operator of the measured variable. 
(Note that in the book of Landau and ~ i f s h i t z ' ~  the ex- 
pression "predictable measurement" is used in this 
case. ) It was shown in Ref. 4 for the example of a 
quantum oscillator that the coordinate operator does not 
satisfy this condition, since for arbitrary t i  and tz the 
measurement of atl) disturbs ;(ti) which introduces an 
e r ro r  in the result of the second measurement of x ( t 2 ) .  

However, in a state that is an eigenstate for the oper- 
ator at) there exist times t,, which a re  separated by 
half-periods, which admit nondemolition measurement. 
Thorne et al. have given examples of variables that 
admit continuous precise quantum nondemolition mea- 
surement, and they have proposed a mathematical con- 
dition that such variables must satisfy. In this section, 
we attempt to give a logical and invariant mathematical 
definition of a nondemolition variable for quantum sys- 
tems in a pure state. The main difference between 
measurements in quantum and classical mechanics is 
the presence of "measurement noise". This last is in 
no way related to the actual properties of the instru- 
ment, which may be an ideal (absolutely exact) clas- 
sical instrument (a von Neumann instrument). The 
"measurement noise" is a consequence of the reduction 
postulate (see 3 in the Introduction). 

Let us explain this more fully. In the classical view, 
fluctuations a re  a property of the measured object, 
and therefore the potential accuracy of a measurement 
can be estimated by calculating the evolution of the ob- 
ject without an instrument. In the quantum case, this, 
in general, is impossible, since the measurement in- 
troduces i ts  "noise" by disturbing the f ree  evolution 
of the object through the reduction effect. Whatever 
inherent dispersion the object may have, the measure- 
ment destroys i t  (results in i t s  reduction), introducing 
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an indeterminate perturbation in the subsequent states 
of the object. The upshot is that when one is estimat- 
ing the result (accuracy) of a continuous o r  repeated 
measurement in a quantum system one must always take 
into account the "perturbation on the part of the in- 
strument". 

One can however find conditions under which this dif- 
ference between quantum and classical measurement 
disappears. Indeed, if the accuracy of a measurement 
is small-greater than the inherent dispersion of the 
measured parameter-reduction does not occur. 3'  It is 
obvious that this situation is preserved when the ac- 
curacy of the instrument is increased until i t  is equal to 
the inherent dispersion of the object. One can say that 
the reduction exists but is trivial, since i t  carries the 
object into itself. This will then be a "nondemolition 
measurement". 4 '  If during the process of evolution the 
inherent dispersion of the object changes, so must the 
accuracy of the instrument (the observation) in order 
to remain "nondemolition". 

Of course, in this paper we shall be interested, not in 
nondemolition measurement in general, but only in pre- 
cise nondemolition measurement in which the condition 
of nondemolition is preserved and the measurement is 
without e r ro r .  It is clear that for this the only suitable 
observables a re  those that have zero inherent disper- 
sion, i. e . ,  a re  in an eigenstate for the measured oper- 
ator. Such a state can be prepared in accordance with 
the reduction postulate by, for example, an initial mea- 
surement. Such observables a re  the operators cor- 
responding to integrals of the motion of the quantum 
system. In accordance with Ref. 16, any system with 
N degre_es of freedom possessing an Hermitian Hamil- 
tonian H has 2N independent integrals of the motion 
j,(t) whose expectation values do not depend on the time: 

$(t) is an arbitrary state of the system satisfying the 
Schradinger equation. If i(t) is a unitary evolution op- 
erator, the integrals of the motion can be readily cal- 
culated in accordance with 

r,(t)  = a ( t ) t , ( o ) ~ - ~ ( t ) ,  (6) 

where i,(0) is a time-independent operator of any phy- 
sical observable corresponding to the considered sys- 
tem. Formula (6) gives the operator of the integral of 
the motion in the Schradinger picture. Going over to 
the Heisenberg picture, we find 

u-' ( t )  f , ( t )  b( t )  =I,(O) =const, 

and the property (5) is trivial, since here the wave 
function is also independent of the time. We note that 
the process of measurement under real laboratory con- 
ditions can be more perspicuously described in the 
Schrodinger representation. l7  Using the definition (51, 
we can readily show that an integral of the motion is a 
variable for which all moments do not depend on the 
time. Then, choosing a st%te of the system that is an 
eigenstate for the operators I,, we can make all the 
higher centered moments-variance, excess, _and so 
forth-vanish. In such a case, the operators I, con- 
stitute an observable that admits a precise nondemoli- 

tion measurement. It is noteworthy that the definition 
(5) is invariant with respect to the picture in which the 
quantum system is described (the other definitions 
could be formulated in only the Heisenberg o r  only the 
Schrodinger representation; see  below, and also Refs. 
3 and 5). 

The function $ in (5) is defined up to the initial con- 
ditions, the choice of which corresponds precifely to 
the transition to an eigenstat? of the operator I,. We 
find explicitly the operators I, for an harmonic oscil- 
lator in the absence of a thermal bath: 

As initial operator ;,(?) one can choose either the co- 
ordinate operator cj= I,(?) [so that G$(q) =qq(q)], o r  the 
momentum operator a = Iz(0) [so that &(q) = -i&a $/aq]. 
Then, using (6 )  and the well-known expansion of an 
operator exponential, we obtain 

i .  i , ( t ) = i c o s ( o t ) - - s l n ( o t ) ,  
mo 

i, ( t )  = sin ( o t )  + - cos ( o t )  mo. [ mo 1 
The Schradinger operators &(t) and iz(t) (they a re  de- 
noted by and ;2 in Refs. 3 and 5) have a simple phy- 
sical meaning, namely, the values that a re  obtained by 
their measurement a re  the initial mean coordinates of 
the o ~ c i l l a t o r ~ i n  i t s  phase space. [In this connection, 
the operator I1(t)-can be called the operator of the initial 
coordinate, and Iz(t) the operator_of t . e  initi$mo-men- 
tum, and they can be denoted by go = I,(t) and po = 12(t)]. 

We now consider what must be the commutation prop- 
ert ies of an operator that represents a nondemolition 
variable which admits precise measurement of i t s  "tra- 
jectory" during the process of evolution. In quantum 
mechanics, a necessary and sufficient condition for one 
to be able to make a simultaneous exact measurement 
of two physic*$ variables described by Hermi?? oper- 
ators and B is that they should commute: [A, B]=O 
(Ref. 15). We generalize this theorem to the case of 
joint measurability of observables referring to differ- 
ent times. By joint measurability, we understand the 
following. 

Suppose that a t  t l  a state $(x,  ti) = Q l  which is an eigen- 
state for the operator A(ti) = Al is prepared. Measure- 
ment of A(tl) gives the result al. Thereafter, the un- 
disturbed wave function evolves in accordance with the 
Schradinger equation, so  that the state which ar ises  at 
the time tz is constructed in accordance with the rule 
$? = $(x,  tz) = i ( t z ,  td$i, where u(t2, ti) =a  is the evolution 
operato:. This new state is an eigenstate for the op- 
erator ~ ( t ~ )  =A2, so  that a measurement gives the 
eigenvalue a2 without disturbing the wave function and so 
forth. Mathematically, if a t  t l  we had 

A,$I=a,$i, (9a) 
then at t2 

Az$z=az$r. 

The fulfillment of Eqs. (9) is-the mathsmatical condition 
that the "physical variables A(tl) a;nd A(tz) a re  jointly 
measurable," and the observable A(t) admits a contin- 
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uous precise measurement of its trajectory. 

We apply to Eq. (9a) the operator 22; from >e left; 
then, inserting the identify operator between A, and $1, 
we obtain 

A,(fiA,fi-i)v2=a,A,$z, (10) 

The operator obtained in the brackets, s2 = zl;-', is 
taken a t  tz, s2=6( tz ) ,  and for i t  t j2  is an eigenfunction 
with eigenvalue al. All the quantities in (10) are re- 
ferred to the single time t2, and therefore the condition 
under wFch zj2 will also be an eigenfunction of the op- 
erator A2 reduces-to the _theorem on the simultaneous 
m_eas_urability of A2 and B,, i. e. ,  to the requirement 
[A~ ,  B,] = 0. This requirement can be expressed more 
fully in the two equivalent forms 

[ A ( t 2 ) ,  fi(tl, t,)A,n-'(t,, t , )  I =0, ( l l a )  
[n-l(t,, t,)A(t,)a(t,, t , ) ,  ~ ( t , )  I =o. (lib) 

Thus, formulas (11) give the n e c e s s y  and sgficient 
condition for joint measurability of A(tl) and A(t2); the 
arbitrariness of t l  and tz guarantees the possibility of 
continuous precise measurement of the "trajectory" of 
A(t). It is easy to see  that for Schrb'dinger operators 
i t  is only in the special case of the equality 

A ( t , )  sB(t2, t,)A,a-l(t,, tz) 

that joint measurability amounts to commutativity of 
the operator 2 at  different times: 

[ A  (tz) ,  A ( t i )  I =O. (12) 
In contrast, for Heisenberg operators, the condition 
(12) always corresponds to the requirement of joint 
measurability, as can be seen from Eq. ( l lb) .  Form- 
ulas (11) and (12) can serve as criteria of a nondem- 
olition observable, but, unlike (5), they a re  not invar- 
iant under a change from the Heisenberg to the Schrod- 
inger picture. 

We show that the conditions (11) a re  a common prop- 
erty of any integral of the motion. For this, y e  write 
an arbitrary Hermitian integral of the motion Z ( t )  in 
p e  form_(6). The problem of joint measurability of 
I(0) and I(t) (t 1 = 0, t? = t) is solved on the basis of the 
constructions 

A ( t i )=f  (0 ) .  A(t ,)  =I ( t )  ; 
B(t,)=C(t)f  (O)B--*(t) =f ( t )=A(t , ) ;  

[ A  ( t , ) ,  B(t,) ] S O ,  

i. e., any integral of the motion satisfies the condition 
(11) of a nondemolition measurement. 

Conversely, if, f2r example, we consider the co- 
ordinate operator A = q for a harmonic oscillator, then, 
although [G(tl),G(tz)]=O always holds because ;j does not 
depend on the time, the requirement (11) is not satis- 
fied in the general case. To verify this, we construct 
the operator 

It can be seen that (11) is satisfied only for fixed times 
t, such that wt = nk, k = 1,2, . . . . Hence, a continuous 
precise measurement of the coordinate operator (and 
similarly of the momentum) is impossible; only a strob- 
oscopic measuring process a t  the times t, will rep- 
resent an exact nondemolition measurement, as was 

noted in Ref. 4. 

It is also important to note that the condition (11) en- 
compasses not only quantities such as integrals of the 
motion. Thus, if 

F(A( t z ) )=8( t r ) ,  (15) 

where F is an arbitrary function of the op%rabr 2(tz), 
then (11) is also satisfied. The operator A(t) need not 
be an integral of the motion but nevertheless the times 
t i  and t2 a re  chosen suc) that (11) is satisfied. At 
these times, act1) and A(t2) a re  jointly measurable. 
One can have not only periodic points (as in stroboscop- 
ic  measurement of the coordinate of an oscillator), but 
also a finite se t  of arbitrarily arranged points. In 
what follows, we shall given an example of operators 
that a re  measurable continuously and precisely but 
which a re  not integrals of the motion of the investiga- 
ted system. To conclude this section, we note that a 
nondemolition observable could be defined in a more 
general manner from, for example, the point of view 
of the criterion of maximal information extracted from 
a measurement, as is discussed in Ref. 19. 

53. PHYSICAL REASONS FOR THE QUANTUM 
SENSITIVITY LIMITATIONS 

We now analyze the problem of detecting a classical 
force from the response of a quantum oscillator. This 
example will show how recourse to the measurement of 
a nondemolition variable enables one to obtain an ar- 
bitrary high sensitivity. In contrast to the previous 
section, we extend the scope of the investigation and 
consider mixed states. Our analysis will reveal the 
physical cri teria that select a nondemolition observable 
from arbitrarily chosen variables. 

We shall give our treatment in the framework of a 
definite model; although this is not unique, i t  is in ac- 
cord with the principles of quantum mechanics and the 
intuitive idea of the behavior of a damped quantum os- 
cillator. We use a model equation of Fokker-Planck 
type, although other models a re  possible (see the re- 
view Ref. 20 and also Ref. 21). Introducing in place 
of the density matrix the Wigner functionz2 

we can write down for i t  the following kinetic equation 
(for the details, see Ref. 23): 

----- a a2w 
aW - aw +- {[moZq+2yp-f ( t ) ]  W } + D  (17) 
dt n ~ d q  d p  ap2 

where y = w/2Q is the damping coefficient, At) is the 
classical force applied to the oscillator, and, finally 
the coefficient D= y m h  coth (Aw/2kT) is chosen to 
make the equilibrium Wigner functionz4 satisfy Eq. (17). 
As  i s  shown in Ref. 25, Eq. (17) satisfactorily de- 
scribes the relaxation of an oscillator under the condi- 
tion that the relaxation time d the thermal bath i s  
much shorter than y" and the random forces acting on 
the oscillator due to the thermal fluctuations of the 
thermal bath are  Gaussian and delta correlated. 

From Eq. (17), we can readily obtain the following 
system of equations for the variances a,= k2)- (q)2, 
0, = (P2> - W2, up, = (P9) - (P)(9): 
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2 1 
% --up,, ir - - up-mozo,-2yapq. 

m "-  m 
(18) 

The solutions of the system (18) have the form 

a, ( t )  =o:") +e-zll { A U .  (cos Qt + sin O) '+ $ sina B 
P 

( 1 9 ~ )  
here, oLm' denotes the equilibrium values of the var- 
iances: 

(so)- , , cw) - moA up -m w o, - -c th- .  
2 2kT 

(i ' The index (i) indicates the initial conditions: hu, = o, - o ~ ~ ' ,  52=(w2 - y2)112. 

Corollary 1. We show that the variance of a canonical 
variable cannot be made arbitrarily small a t  all mo- 
ments of time. Suppose T = 0 and o:' = 0, and we ig- 
nore y/w. Then, for example, i t  follows from (19a) 
that 

a, ( t )  -a:'(' (i-e-':') + - 
2 

Considering short times yt << 1 (without wt > yt) and us- 
ing the uncertainty relation (cr,'"~:~')'~~ 2 k/2, we obtain 
on the average over a period w-' for the minimal es- 
timate of o,(t) 

The first  term in (19e) describes the fluctuations due to 
the interaction with the thermal bath, and i ts  value de- 
creases as yt -0; physically, the second term is due 
to the quantum uncertainty of the initial conditions and 
cannot be reduced to zero by the reduction of the initial 
state. 

By analogy with the case of pure systems, it is nat- 
ural to assume that the best accuracy can be achieved 
when integrals of the motion a re  measured (for a dis- 
cussion of integrals of the motion for open systems, 
see Ref. 26). If there is no external force, the integ- 
ra l  corresponding to the coordinate is the operatorz6 

(20) 

Using formulas (19), we can obtain the following ex- 
pression for ax [for simplicity, we set  oz '=  O,a,(O) 
=,,b"]: 

a , ( t )  mu:'' + c t h  2mo - 2kT {ez7' [i - ~ s i n ( l l ( c o s ~ t  - L s i n S 2 t ) ]  61 - 1 ) .  

@la)  
Corollary 2. We-show that the variance of the inte- 

gral of the motion I,@) can be arbitrarily small for suf- 

ficiently small damping. Suppose T =O; then, assum- 
ing yt << 1 and y/w << 1, we obtain from (21a) the esti- 
mate 

ti 
01 ( t )  =oyl  + - 

m o  rt .  (21b) 

Choosing a state with known initial coordinate u:"=O, 
we see  that u,(t) - 0 a s  yt - 0. 

* When an external force fit) acts, the expectation value 
(I,) no longer remains equal to q'i', but is shifted in 
time by an amount [which is the same for  all states 
Wq, P, t)l 

I 
6 ( t ) =  - el'[sin QT]  f ( T ) ~ T ,  < t ) = q ( i ) - 6  ( t ) .  (22) 

0 
* 

Measuring the value of I,(t) continuously, we can in 
principle recover the form of the external force: 

Before we estimate the accuracy of the measurement 
of fit), let us compare the quantum properties of t_he 
coordinate G(t) with the properties of the integral Zq(t). 
This can be readily done on the basis of Corollaries 1 
and 2. A cardinal difference is the fact that the var- 
iance of depends on both the initial variances of the 
~anonical  pair u,"' and o j ' ,  whereas the variance of 
Iq(t) depends only on u:". This leads to the existence 
of a minimal variance uq(t) = k/2mw and to the possib- 
ility of the vanishing (yt -0) of the variance ox by the 
reduction effect, i. e .  , by the choice of an initial state 
with known coordinate q'" (or preparation of i t  in the 
process of the measurement itself). These properties 
a r e  preserved for fit) +O and do not depend on the form 
of the initial distribution W(q, P, 0). 

We estimate the sensitivity to the external force in a 
measurement of Zq(t), assuming fulfillment of the con- 
ditions y << w and yt<< 1, for which 

A ho 
o l ( t )  =o:"+ - cth- 

Zmu [ 2kT1 2 y t .  
(24) 

In the case of a resonance force At) = Fo sin fit, an est- 
imate in accordance with (22) gives 

6 ( t )  =F.tlZmo. (25) 

The minimal detectable amplitude (E',),,, is found by 
equating 16(t) I and a:l2(t). The result depends essen- 
tially on the choice of the initial state of the oscillator. 

A. Before the measurement, the oscillator is in an 
equilibrium state, a,"' = atm'. In (16), the second term 
can be ignored; the smallest detectable force has the 
the limit 

B. The oscillator is in a state with given coordinate 
g:" =o.  The sensitivity is increased by (2yt)-'I2 
times : 

F,,!::= ( 2 y t ) " ~ " ?  ,.,,". (27) 

In the limit y - 0, an arbitrarily small force can be 
detected. In practice, there will evidently always be 
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the possibility of e r r o r  in the construction of Z~ in the 
case of weak damping. However, if, as before, we 
form the integral of the motion (8) of an undamped os- 
cillator instead of taking the exact operator (201, the 
resulting limit is fairly low, namely, 

F ,,,,,, - F , ! : I ( I I V ~ )  +O as Q+-. 

Concluding this section, we emphasize once more the 
physical origin of the quantum limitations encountered 
in the measurement of an external force by the re- 
sponse of an oscillator. It resides in the quantum- 
mechanical uncertainty of the initial conditions Bo and 
Go. For a nondemolition variable such as an integral 
of the motion this uncertainty can be reduced by, for 
example, an initial accurate measurement. 

$4. EXTENSION OF THE CLASS OF ADMISSIBLE 
VARIABLES 

As was noted in the Introduction, it was already 
shown in Refs. 3 and 4 that there is no fundamental 
quantum limit to the detection of a classical force, so 
that, in principle, the possibilities of a gravitational 
antenna a re  unlimited. The existence of the limit (26) 
is only a consequence of an incorrect measuring pro- 
cedure. However, a change of the procedure to an op- 
eration of "stroboscopic" type4 o r  the construction of 
a "machine" to measure I, and Iz (Ref. 3) appeared very 
complicated for practical use and did not have a pas- 
sage to the limit of the classical methods of measure- 
ment. In this section, we show that there does exist a 
measuring procedure which is a quantum nondemolition 
procedure and links up with the prescriptions of the 
classical theory of optimal filtration. 

As we now know the physical reasons for the quantum 
sensitivity limit, i t  is natural to attempt to extend the 
class of variables that permit exact determination of 
an external force without restricting ourselves to just 
integrals of the motion. Namely, i t  is sensible to seek 
a variable that is free of uncertainty in the initial state 
of the oscillator but a t  the same time contains the re- 
action to an external force. The simplest example of 
such an observable is the difference between the co- 
ordinates of the oscillator a t  adjacent time instants: 

the delay T satisfying the condition S ~ T =  2711, I = 1,2, . . . ; 
y7<<1. 

Let us find the variance and the change of the expec- 
tation value under the influence of a force for j(t, T). 
Mathematically, i t  is convenient to make the calcula- 
tions for Heisenberg operators. We take into account 
interaction with a thermal bath by introducing into the 
%quation% of motion of the operators the random forces 
q(t)  and 8(2) (Langevin method): 

The operator $(t) is needed to conserve the commutator 
[&), p(t)]= iti. In Ref. 23, i t  was shown that the sys- 
tem (29) is equivalent to the kinetic equation for the 
Wigner function (17) under the following conditions on 
!he commutators and the correlation functions of $ and 
8: 

In the case of a pure state in the absence of coupling 
between the oscillator and the thermal bath, y =0, cal- 
culation in accordance with (29) gives for  the variance 
of the observable 3 the expression (we s e t  a::'= 0): 

Since T is taken to be a multiple of the oscillation per- 
iod, i t  follows from (31) that uy(t, T =  2nl/51) =O, i. e . ,  
the variable admits a precise measurement at any 
time. Allowance for damping leads to a limitation on 
the accuracy which vanishes in the limit y - 0. From 
(29) and (301, 

and up('' and u~"/m2512 do not exceed a,'=' in the cases 
in which we a re  interested in the measurement of a 
force, and therefore the variance uy is effectively in- 
dependent of the time and the initial state of the os- 
cillator and is determined solely by the thermal-bath 
fluctuations (y << w ,  w - 51): 

At the same time, the expectation value of the oper- 
ator ^y under the influence of the external resonance 
force At) = FO sinsit changes by the amount 

Comparison of (33) and (34) for t = 7 gives the sen- 
sitivity (271, which is equal to the maximal possible 
sensitivity fo r  measurement of the integral of the mo- 
tion I$). However, this result i s  now independent of 
the initial state of the oscillator. The invarlance of 
the variable ;(t) with respect to the initial state of the 
system can be interpreted a s  follows. The quantum 
fluctuations of the operators ;(t) and G(t + 7 )  contain a 
strongly correlated part due to the uncertainty of the 
state a t  the "initial" time t provided T << T* = y-'. The 
correlation leads to the disappearance of this fraction 
of the fluctuations when the difference operator j, i s  
formed, which renders i t  indifferent to the initial state. 
The variance cry is accumulated only by the interaction 
with the thermal bath and is therefore proportional to 
y. Formally, ;(t) satisfies the definition for a quantum 
nondemolition measurement: Its variance remains a t  
the zero level (when y = O), the commutator vanishing, 
i . e . ,  &(t),;(t')]=O; a t  the same time, i t  is not an in- 
tegral of the motion. The prescription for forming $(t) 
is different from the rule for constructing integrals of 
the motion and does not require us to follow B(t) as well 
as observing G(t). From the point of view of the phil- 
osophy of "measuring disturbances" (Sec. 2), the con- 
struction of ;( t )  is a procedure that effectively uses the 
correlation between the disturbances introduced by the 
acts of measurement a t  different sections of the trajec- 
tory of G(t). 

To get an idea of an instrument that would realize 
$(t) ,  i t  is sufficient to recall that, as is well known in 
radiophysics, a difference section with delay T through 
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which a random process q(t) is transmitted is equiv- 
alent to filtration with spectral transfer coefficient 

( K ( j o )  1 a sin [ (0-m0)7/21,  1 ( o - o o )  I G A o K o o ;  (3 5) 
here, w, is the oscillator eigenfrequency correspond- 
ing to the center of the filter. Thus, ;(t) can be mea- 
sured by continuous observation of the coordinate ij(t), 
but through a "light filter" with the characteristic (35). 
This is a measurement of the spectral Fourier com- 
ponents of the trajectory of i(t) that (roughly) lie out- 
side the stop band of the filter, whose width is ho - ?". 

Through such a filter, the observer is not in a position 
to obtain information on the trajectory of G(t) for f = 0, 
since i t s  spectral components then lie within the stop 
band if T<< T * .  But when a force acts at times equal to 
o r  less than T, some of the spectral components of 
G(t) cross  the edge of the stop band and can be detected 
and measured. Note that measurements of an indiv- 
idual spectral component of the operator < ( t )  leave the 
remaining spectral components undisturbed. 

It is now important to emphasize the following cir- 
cumstance: The difference-section operator $(t) is only 
one possible example of a variable that does not depend 
on the quantum uncertainty of the initial state of the 
measured system. A general prescription for finding 
such operators is given by the theory of optimal fil- 
tration of weak signals, which has been generalized to 
the quantum case by Stratonovich and ~ r i s h a n i n , ' ~  and 
also Helstrom. 28 In particular, if a deterministic func- 
tion S(t) is measur$d on the background o_f a q-turn 
Gaussian variable [(t) with commutator [((ti), ((t31 
= c,,(c,, is a numerical matrix), an optimal observable 
can be constructed in accordance with the prescription 
(Heisenberg operators)1° 

I I 

~ ( t )  = s ~ K - * ~ I s ~ K - * s ~ .  J J s ( t , )  ~ - l ( t , ,  t 2 )  ~ ( t ~ d t ,  atr, (36) 
0 0 

where 

is the correlation matrix of the quantum variable i(t). 
(The matrix form of expression ar ises  when the con- 
tinuous function ~ ( i )  is replaced by the discrete se- 
quence (column) G l  =;(ti), ij2 =ij(t2). . . ; sT is the trans- 
posed vector row.) Simple calculations show that the 
observable satisfies the quantum nondemolition re- 
quirement, i. e . ,  [;(ti), Q(tz)]=o for arbitrary t i  and 
t2. 5' For a single harmonic oscillator coupled weakly 
to a thermal bath, the rule (36) [in the case of a priori 
information only about a band h w  - 7-' of the spectrum 
of S(t)] reduces to the difference-section operation. 27 

The results of application of (36) to a gravitational an- 
tenna of given structure (coupled oscillators, passive 
and active variants) a re  presented in Ref. 8. The pre- 
scriptions of optimal filtration a re  constructed as the 
solution to the extremal problem of the best separation 
of one statistical set  [in our case, the deterministic 
process ~ ( t ) ]  on the_ background of another [the quantum 
Gaussian variable ~ ( t ) ]  with maximal use of a priori in- 
formation on the nature of both variables (spectra, cor- 
relation properties, and so forth). Use is hereby made 
of subtle differences in the spectral coloration of S(t) 
and ~ ( t ) ,  which makes possible a considerable advance 

in sensitivity compared with the rough integral criterion 
of "fluctuation back reaction". 51'0*11 The value of spec- 
trally selective quantum measurement has also been 
recently noted in Ref. 29. 

55. CONCLUSIONS 

1. In our opinion, the main result of the present paper 
is the following. We have identified the physical rea- 
sons why integrals of the motion a re  suitable variables 
fo r  continuous precise measurement whereas an ar- 
bitrary operator is not. They concern the uncertainty 
of the initial parameters of the quantum system. A sel- 
ection of operators that depend on an incomplete se t  of 
canonically conjugate variables, to be precise half of 
them, enables one through an initial reduction to elim- 
inate this uncertainty and ensure subsequently a pre- 
cise measurement. Elucidation of this circumstance 
has shown that i t  is helpful to adopt a detection proced- 
ure  that does not depend on the initial parameters and, 
quite generally, the initial state of the measured sys- 
tem. We have seen that the classical optimal methods 
of separation of a weak signal from noise a re  based on 
such a rule. The problem of optimal filtration has been 
given a quantum generalization in Refs. 12 and 28. 
These rules can be fully applied to the separation of a 
signal from the quantum fluctuations of a gravitational 
antenna. 

2. We have noted a point of principle with regard to 
the theory of quantum nondemolition measurement. It 
is as follows. The continuous measurement of a can- 
onical variable, the coordinate o r  momentum, is an ex- 
ample of a disturbative measurement with limited ac- 
curacy, whereas the_ contipous measurement of inte- 
grals of the motion Ia and I, was defined3 as nondisturb- 
ative and, therefore, precise, but under the condition 
of a special initial state of the system. This state is 
realized by an initial precise measurement. There- 
fore, measurement of integrals of the motion (and the 
"stroboscopic" method as a special case of this) could 
strictly be called a quasinondisturbative measurement, 
since the initial act  of measurement is here in the gen- 
era l  case disturbative. We have pointed out above that 
there exist variables with a known prescription for con- 
struction that a re  immediately and always strictly non- 
disturbative irrespective of the state in which the quan- 
tum system is. Thus, measurement of observables 
constructed in accordance with the rule (361, (28) of 
optimal quantum filtration can be called a strictly non- 
disturbative (nondemolition) measurement. 

3. What now follows from this for gravitational-wave 
experiments? It was already known from Refs. 3 and 
4 that there is in principle no quantum limitation on the 
sensitivity of a gravitational antenna; the smallness of 
the response of an antenna to a burst of gravitational 
waves is not the criterion of a quantum limitation on 
the possibility of detecting such bursts. However, i t  
followed from Refs. 3 and 4 that it would be necessary 
to rearrange radically the measuring procedure (as 
compared with the traditional methods employed with 
first-generation antennas) with the aim of finding pro- 
cedures with a proper quantum basis. Examples of 
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such  procedures were  seen i n  the implementation of the 
stroboscopic method (connecting and d i s c o ~ e c t i n g  the 
s e n s o r  to the gravitational detector  in t i m e s  much 
s h o r t e r  than a period) or the construction of a machine 
measuring the real and imaginary components of the 
complex amplitude of an oscillator3 and so forth. It is 
clear f r o m  the analysis  made  in this paper  that there  
is no need f o r  this, and it suffices to follow the rec- 
ommendations of the theory of optimal filtration. F o r  

a gravitational a n t e ~ a  of Weber type, these  recom- 
mendations were  explained in Ref. 8. 

4. We note that  in principle a problem of quantum l im- 
itations on the measurement  of weak classical forces ,  
ra ther  than coordinates, momenta, and s o  forth, does 
not exist. The point is that, by Ehrenfests  theorem, 
any classical forcef i t )  can b e  measured  by measuring 
the mean values of the accelerat ions (2) and mean val- 
u e s  ( a U / ~ x )  of functions of the  coordinates, f =m@) 
+(%U/ex) ,  and th i s  can be  done with a r b i t r a r y  accuracy 
i n  the f ramework  of quantum mechanics. This con- 
clusion depends nei ther  on the  tempera ture  o r  on  the 
relationship between the work of the f o r c e  and the dis- 
tance between the energy levels  of the sys tem.  Basic- 
ally, the limitations on the accuracy  of the  measure-  
ment  of a classical f o r c e  fit)  i n  the quantum case do 
not differ f r o m  the limitations i n  the classical treat- 
ment. 
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