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The distribution function of molecular fields in a disordered Ising model is studied in the Bethe-Peierls 
approximation. It is shown that the equation for this function has branch points, at which states different 
from the paramagnetic are generated. The density of the distribution is investigated in the vicinity of these 
points. The results are discussed in the case of exchange interactions between magnetic atoms in alloys of the 
type PdFe and CuMn. 
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§ 1. INTRODUCTION 

In disordered magnetic systems, the statistical prop- 
erties a re  primarily determined by the character of the 
distributions of the random parameters of the system, 
such a s  the exchange integrals, the coordinates of the 
magnetic atoms, the anisotropy constants; etc. The 
thermodynamic quantities a re  then functionals of the 
distribution densities of these parameters. Finding the 
densities, which a re  not given, becomes unavoidable at 
some stage of the study of the thermodynamics of such 
systems. 

In the method of fluctuating molecular fields, the chief 
random parameter with an unknowqdistribution is the 
molecular field Hj acting on a localized magnetic mo- 
ment ( j  is the number of the moment). The distribution 
density P,(Hj) of this random field, in the majority of 
theoretical papers, has been investigated in the high- 
and low-temperature ranges. 1-3 Meanwhile, study of 
the behavior of the molecular -field distribution near a 
transition point [see, for  example, Ref. 4, where 
P,(H,) in a Betlie lattice is treated near the percolation 
threshold] may shed light on some interesting problems 
of the thermodynamics of disordered maghetic mater - 
ials. 

In the present paper, the distribution density of the 
molecular fields near a transition point (the ordering 
temperature is determined in O 2) is studied for the 
Ising model in the Bethe-Peierls approximation. It is 
shown that to the Ginzburg-Landau equation there cor - 
responds an equation of branching6 of the nonlinear in- 
tegral equation for P,(H,), whose solution makes it 
possible to find the cumulants of the distribution over a 
quite wide band of the phase plane. 

In § 2 the model is described, the equations for 
P,(H,) and for the cumulants a re  given, and the bifur- 
cation problem is formulated. The bifurcation points, 
at which states different from the paramagnetic are  
generated, a r e  calculated in 8 3. In § 4 the branch- 
ing equation is solved. In § 5 the final expressions 
are given for the cumulants of the molecular-field 
distribution in the vicinity of the bifurcation points, 
for an arbitrary exchange interaction. In 86 the re-  
sults obtained are  discussed in the case of the interac- 
tions that occur in alloys of the type PdFe and CuMn. 

We note that the molecular-field distribution function 
can be obtained experimentally from analysis of M6ss- 
bauer spectra: from experiments on inelastic scatter- 
ing of  neutron^,^ from depolarization of p-mesons: 
and from numerical experiments on computers. 

92. EQUATIONS FOR THE MOLECULAR-FIELD 
DISTRIBUTION DENSITY AND FOR THE 
CUMULANTS; THE BIFURCATION PROBLEM 

We considered a model of a disordered magnet in 
which randomly located magnetic atoms, with a spatial 
distribution density v-'P,(IR, - R I), interact with an 
arbitrary exchange interaction J((R, -Rj I ), where R, 
is the coordinate of the ith magnetic atom, and where V 
is the volume of the system. 

In the Bethe-Peierls appro~imation,'~ the system is 
described by the Hamiltonian 

N-l N-1 %=-Ci J(IRo-Rjl)uou~- ff)q. 
,=I 1-1  

where oj a r e  Ising operators, Hj is the molecular field, 
and N is the number of spins in the system. The ex- 
change interaction J(R,, ), where Rij = JR, -Rj I , may be 
either constant o r  variable in sign. For example, 

J(RJ =Jo  exp (-R,,lro), 
J(H,,) =J,F (SLR, , ) ,  F ( x )  = (sin x-x cos x ) / x ' ,  

(1) 
(2) 

(k, is the Fermi momentum). 

The exponentially decreasing interaction (1) and the 
oscillating Ruderman-Kittel-Kasuya-Yosida (RKKY) 
interaction (2) occur between magnetic impurities in 
alloys of transition and normal metals, of the type 
Pd Fe and CuMn. 

The self -consistency procedure ( oo), =( u,),, i 
1,2,.  . . , N - 1, where the angular brackets denote 
thermodynamic averaging (T is the temperature), con- 
nects the molecular fields on different spins and the 
random distances between them through the equations 

In the molecular-field approximation, 
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Obviously the distribution density P,(q,) of the dimen- 
sionless random molecular field q, should be express- 
ible in terms of P,(R,,,) by some equation based on (3). 
For N -- - and V-IN= n = const .(n is the concentration of 
spins), this equation has the following form14 

The angular brackets denote configurational averaging: 

v< . . . >,,-nj . . . PI(RB)~'R~, 

where v is the mean number of magnetic atoms in the 
"interaction volume": u =  f w @  and u =  9 ~n/(2k,)~ for 
the interactions (1) and (21, respectively. For the lat- 
tice model of disordered magnets, according to which 
the magnetic atoms are  located on sites of a regular lat- 
tice, while the exchange constants Jij fluctuate, the con- 
figurational average must be replaced by an average 
over the distribution density P, (J,,): 

v< . . . ),,+(. . . ),. 
Equation (5) is derived on the assumption of statistical 

independence of the molecular fields. This assumption 
is evidently justified for long-range interactions within 
whose sphere of action there are a large number of 
randomly and independently distributed spins, which 
create the molecular field at the given spin. It is dis- 
cussed in detail in Refs. 3 and 4 and is a basic approx- 
imation of the model. 

It i s  convenient to work not with Pa(q) but with the 
logarithm A(y) of its characteristic function: 

From (5) we have the<ntegral equation for A(y): 

A ( P ) = V ~  K ( P , Y ; ~ ) ~ X P A ( Y ) ~ Y  

with kernel 

where 8= T/J, is the dimensionless temperature. 

Starting from the properties of the function B k ,  R; O), 
one can find a representation (the n representation) for 
which the linear integral operator with kernel K(p, y; 8) 
corresponds to  a triangular matrix. On carrying out a 
cumulant expansion in (6), we get 

xk=v((Bk(q, R; 0)).),, k=1, 2 , .  . . , (7) 
or 

where x ,  are the cumulants of the distribution of the 
dimensionless molecular. field. Furthermore, on pass- 
ing from cumulants to moments q,, = (a"), in the right 
side of (8), we arrive at the following algebraic equa- 
tion: 

x=v'f(0)'1(x), (9 
where x and 7 are vectors with components x ,  and qr,  
k= 1,2, . . . , and where y is a triangular matrix with 
elements 

ru=<thk [T-'J(R) I).. 
In the molecular-field approximation, one can obtain 

from equation (8) the Sherrington-Kirkpat9ck (SK) 
equationu*" for the lattice model of a spin glass with a 
normal distribution of exchange constants J,j. In fact, 
i t  was shown by Klein3 that the SK model corresponds to 
a normal distribution of molecular fields, x ,  = 0 for k 
a 3. In the molecular -field approximation (41, we have 
from (7) 

x~=vT-'<I~(R) ),,(thk (q) >,, k z 1 . 2 ,  . . . , 
and the first  two equations (8) coincide with the SK 
equations. 

The algebraic equation (9) is more graphic than the 
integral equation (6). From it  one can trace the char- 
acter of the solutions obtained in O 5. But in a study 
of the questions of existence of the necessary solutions, 
it is more convenient to operate with integral operators 
than with large matrices. 

It is easy to  see that 

therefore the paramagnetic solution A( y ) = 0 is satisfied 
over the whole phase plane (u, 9). Suppose that we move 
along the phase plane from a paramagnetic point that i s  
not a characteristic point for the kernel K(p,y; 8) (Fig. 
1). The function A(y)= 0 is an balytical solution of 
equation (6) in the vicinity of this point. This trivial 
solution can be continued analytically as far as the first 
real eigenvalue vi1(8) of the kernel K(p, y; 8). The point 
of generation of a nonpararnagnetic solution can be only 
vi1(9). If among the branches that appear there is a 
nontrivial one, then v','(8) will be a bifurcation point of 
equation (6). Thus the ordering temperature must be 
sought among the points of bifurcation of the equation 
for the logarithm of the eigenfunction of the distribution 
density of the molecular fields. It is in general difficult 
to predict what will happen to the states that originate 
at the bifurcation points on further motion along the 

FIG. 1. Phase diagram for the model with the exponential in- 
teraction ( 1 ) .  The circles denote the paramagnetic region, the 
solid curves the eigenvalues v k ( ~ / J o )  ( k =  1 ,  2 ,  3 ,  4) of the op- 
erator K ( T / J ~ ) ,  Curve 1  the line of ferromagnetic ordering; 
the dotted straight line corresponds to the molecular-field ap- 
proximation. On the axis of abscissas. R o =  1 /2k ,  is written 7 0  

in the text of this article. 
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phase plane. Possibilities a r e  a second branching be- 
fore attainment of the following eigenvalue, a new 
branching from this eigenvalue, a continuous transition 
of different branches one to another, etc. 

Let ( v ,  8) be an arbitrary point of the phase plane. 
At this point the paramagnetic solution A( y) r 0 i s  
known. We are  interested in all continuous solutions of 
equation (6) at a sufficiently near point 

(v+sign (A) I h (v, 0+sign (T) 1 %  10) 

[here sign 6v) is the sign of x ]  that tend to the paramag- 
netic solution when ( A  ( and 17 ( tend to zero. We also 
require boundedness and hermiticity of the eigenfunc- 
tions. 

The smallness of ] A  I and 17 1 permits expansion of the 
kernel of the integral equation (6) in these parameters. 
As a result we arrive at the equation 

A-vK(9)A- signn ( e )  lelnKm.(0)Am, 
S.+rTa (11) 

where K(8) and Km,(8) a re  linear integral operators with 
kernels K(p, y ; 8) and %,(p, y; 8) = nm,(p, y; 8); here 

1 d" a,. =-em-  
mln! dBn 

in the case i f  fixed concentration c -= 7, h = 0 and 

in the case of fixed temperature c = A, 7 = 0. We shall 
not discuss the trivial case of analytic continuation from 
this paramagnetic point but shall consider only branch- 
ing that go out from singular points. For this purpose, 
it is necessary first to find these points. 

83. EIGENVALUES AND EIGENFUNCTIONS 
OF THE INTEGRAL OPERATOR K(T/J,) 

In the x representation, a linear integral equation 

can be obtained from (9) by linearization of the 
function 9 ( x )  : 

In this representation, the operator K(8) is triangular, 
and this enables us to find i ts  eigenvalues directly. 
They form a real spectrum 

,,.,-*(e) =(th"T-'I(R) k = l ,  2 ,  . . . (12) 
We consider the "associated" equation 

KT ( 0 )  M=v-*M, 

where K T(8) is the transposed operator; Im K(p, y; 8) 
= 0. We introduce the Fourier transforms of the eigen- 
function, 

and of the kernel K(p,  y;  8) according to formula (6). 
Then the "associated" equation transforms to the follow- 
ing: 

( m [ B ( x ,  R; O ) ] - m ( 0 ) ) R = v - l m ( x ) .  

It is easy to verify that the eigenfunctions of this equation, 
(*) m , ( z ) - - ~ ~  t h h ( z ) ,  k = 1 , 2 , .  . . , 

where ,y L" are arbitrary constants, a re  realized at the 

eigenvalues (12). 

In order to  find the eigenfunctions of the operator 
K(8), we shall use their orthogonality to M,. In the x 
representation, 

(Mh, L,) ,=x'~'x"', 

where the index-1 means that the scalar product is tak- 
en with weighting function 1, 

and xi i '  a re  the cumulants of the eigenfunction L,, 
which a re  to be determined from the orthogonality con- 
ditions, We write the first several eigenvectors xt0/  
xi" (H. i0 are normalizing constants): 

Thus the eigenfunctions L, of the integral operator 
K(8) are  linearly independent nonorthogonal polynomials. 
To fix the normalizing constants x,'", we define the 
scalar product with weighting function p(x)= 2 ~ " ' ~ x ~  
exp(-x2). This function is so chosen that all the scalar 
products encountered in the problem converge. On re-  
quiring the normalization (L,, L$),= 1, we get, in par- 

f 2 ) - 4 ~ / 1 5 ,  ~;~)=m/ii, ticular, u;"=JF/3, no - 
etc. 

54. THE BRANCHING EQUATION 

Let vil(0) be a nondegenerate eigenvalue of the opera- 
tor K(8), corresponding to eigenfunction L,. By the 
methods of the theory of the branching of solutions of 
nonlinear equations: it can be shown that all solutions 
of equation (11) branching from this eigenvalue can be 
represented in a single form, a s  a convergent series 

the number and form of the branches are  determined by 
the auxiliary parameter 5 = (L,, A), . Here Am,(p) are  
functions subject to determination. They can be found 
by the method of undetermined coefficients. We obtain 
the equation for the parameter 5 (the branching equa- 
tion) by multiplying (13) scalarly by L,: 

We write the most important coefficients of the branch- 
ing equation: 

- 
8115 2 

a,L:'L~. m,!," - -(M,, L,) ,, o) ,~"  - -(1+3to,,) (M,, L,) ,, 
i:, n 

rlInv,-'(0) when 1=0 
, , , = , - h - l ) - ,  = v ~ , , - =  dln 0 

1 1  when ?=0 

We are interested in the real solutions of equation (14) 
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that vanish with I& I .  Reality of 5 is necessary for sat- 
isfaction of the hermiticity of the characteristic func- 
tion. We shall solve the branching equation by the 
method of Newton diagrams. l3 We shall seek the value 
of [ in the form of a series 

~ ( ~ E I ) = S ~ , I E I ~ ~ + ~ ~ ~ I E I ~ ~ + .  . ., 
(16) 

where 8,, 4,. . . are an increasing sequence of rational 
numbers. The Newton diagrams for the first term of 
the series (161, plotted by use of the coefficients (15) 
of the branching equation, are shown in Fig. 2. The 
projection of the Newton diagram on the axis of abscis- 
sas is equal to the number of possible values (branches) 
b,; the value of the slope with the negative direction of 
this axis is equal to 8'. The method also permits au- 
tomatically writing the equation for cB1. From Fig. 2 
we have 

in the cases of branching from the eigenvalues v;'(B) 
and v;'(~). To find B, and ha, it is necessary to sub- 
stitute the already known 8, and [,' in (16) and again 
supply the indicated procedure, and so on. It can be 
shown that Se,, k= 2,3,. . . , are subject to linear equa- 
tions; that is, a second branching does not occur, and 
the number of branches is determined solely by equa- 
tions (17). Here 8, = k/2 and & = k in the cases of 
branching from v;'(f?) and v;'(f?) respectively. 

Thus in the case of branching from the eigenvalue 
vil(B), the branching equation [and consequently the in- 
tegral equation (6)] has one trivial branch [ = 0 and two 
nontrivial : 

when r=O 

For sign constancy of the potential, d, is negative at 
x = 0. When J(R) > 0, w, 2 0; therefore [,/, is real only 
when 7 <O or X > 0. For sufficiently small ) &  I, the 
value of $f6 [,/, I E  I 'I2 coincides with the center of the 
distribution. This means that at the value v;'(8) a fer- 
romagnetic state is created on decrease of temperature 
or  increase of concentration. It is clear that the ap- 
pearance of two distribution functions with centers that 
differ in sign is a consequence of the symmetry of the 
Ising model. 

FIG. 2. Newton diagrams for the branching equation: a, 
branching from the eigenvalue y 4 ( ~  /J&; b, branching from 
the characteristic value V ~ ~ ( T / J ~ ) .  

We now consider the case of branching from v;'(f?). 
This case is of interest for the problem with a potential 
of variable sign. For such a interaction, it can be 
shown that vil(B) does not exist or v,(B) > v,(O), and on 
moving from the paramagnetic state we first hit v,(B). 
The branching equation has one trivial and one nontri- 
vial solution: 

0 115 
E = E ~ I ~ I + ~ % ~ I ~ I ~ .  E.,=-dZsign(e), 8 (19) 

h-a 

Y ( R )  W ( R )  J ( R )  - ( h -  [ I  h )  when A-0, 
dr= a 

I 1 when r=O. 

For sufficiently small 1 & I ,  the value of &m[ll& I 
coincides with the dispersion of the distribution. 
Therefore the sign rule sign (d,)= sign(&) must be sat- 
isfied. When A =  0, the value of d, is negative; there- 
fore the sign rule is satisfied when 7 <O or  x > 0. 

$5. CALCULATION OF HIGH-ORDER CUMULANTS 

In the calculation of cumulants of high order by for- 
mula (131, we encounter quite cumbersome expressions. 
The properties of equation (11) brought out in the pre- 
ceding paragraphs indicate a simpler method of cal- 
culating them. 

According to (18) and (19), solutions of (11) are to be 
sought in the form of series 

in the cases of branchings from v;'(f?) and v,"(B) re-  
spectively. On substituting these expansions in (ll) ,  
we find recurrent systems of linear integral equations 
for the functions A,/,(p) and ~ r b ) :  

The first equations of these systems are homogeneous. 
They were solved in § 3. For the inhomogeneous 
equations one can write 

- 
~nlz=gk,~~l+Fy~+R(~)Fklz, .4h=EkLI+I;,,+R'"P,, 

bhl,=(L,, AAIZ)., f h =  (L?. k ) ~ ,  (21) 

where R'" is the resolvent of the kernel 

Furthermore, by using the linear independence of the - 
eigenfunctions L,(p) we can express all powers of L, in 
terms of linear combinations of them. For example, 
Lf= $JTTL~ - $L'. Then the last terms in (21) are 
easily calculated by the formula 

R ( " I , ~ = w , ~ L ~ ~ w ~ , ( L , ,  Lk)J , ,  r + k ,  (A. 1) 
the derivation of which is given in the Appendix. The 
conditions for solvability of the recurrent systems (20) 
uniquely determine the constants 5, the system of equa- 
tions for which are equivalent to the branching equation 
(14). Omitting the intermediate calculations, we shall 
give the final expressions, in the x representation, for 
the solutions of equation (11). 
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Branching from vl1(0 ) r v". The bifurcation curve 
T,(v) is determined by the condition 

v-'=(th lT,-'I(R) 1)- (23) 
When 7 < 0 and X > 0, there a re  two nontrivial solutions 
of the equation 

(k= 1,2,. . .), where for the principal term of the ex- 
pansion there is the recurrence formula 

(k = 2,3, . . . ), The second order in 1 & J  of the center of 
the distribution and of the dispersion is determined by 
the formulas 

6 ( V T ~ ~ ~ ( ~ ~ [ T . - ' J ( R )  ]>a when I-0 

0 when z=0' 

We recall that the quantities v;', w,,, d,, and S l I a  
were defined above by formulas (12), (15), and (18). 

We consider the first order in I & 1 in the range of 
high concentrations v, which corresponds to high tem- 
peratures T,(v) [numerical estimates for specific in- 
teraction potentials J(R) and spatial spin distribution 
P,(R) will be made in the next paragraph]. When 
v-'v,(T,)>> 1, we have 

Keeping only terms of the first degree in w,,, we get 
x : = w,, ulrb, whence we have directly a generalized 
Poisson distribution 

A ( ~ )  =v<exp { i p x ,  th [T.-'J(R) I } - ~ ) R ,  

xI=xI1(T.) lel". 

In the molecular-field approximation (4), 

The distribution (28) has the finite sum 

where z i s  an independent random quantity, taking non- 
negative integer values and having a Poisson distribu - 
tion with parameter v. Hence it follows that z + 1 has 
the meaning of effective number of "nearest neighbors." 
The center of the distribution and the dispersion of z 
are equal to v. 

Branching from vi1(6) = v-'. The bifurcation curve 
T,(v) is determined by the condition 

When 7 < 0 and X > 0, there is one nontrivial solution of 
equation (1 1 ) : 

(k= 1,2,. . . ), where for the principal term of the ex- 
pansion there is the recurrence formula 

(k= 3,4,. . . ). The second order in 1 & I of the first two 
nonvanishing cumulants i s  determined by the formulas 

~ l " = ~ l r b z + ' / a r d z ' ( 5 + 3 9 ~ z ~ ) ,  

x ,"=~ / ,  sign ( E )  b , d , ~ , ~ + ~ ~  sign ( e )  d?d,wr;(I+ w,,) 

+'I, sign ( ~ ) d r S l 2 0 ~ ~ ~ ( 1 + 3 ~ ~ , )  -3wz'(5+7wn) I ,  (31) 

])n when A=O 

0 when 7-0' 

Analogously to the preceding case, in the first order in 
I & ] ,  when 

one can obtain 

In the molecular-field approximation (4), 

86. ALLOYS OF THE TYPE PdFe AND CuMn 

We consider a model in which the spatial distribution 
of magnetic impurities is absolutely uniform, P, (R) = 1. 

Exponential interaction (1). The eigenvalues of the 
operator K(T/Jo) are shown in Fig. 1. The upper solid 
curve corresponds to the temperature of ferromagnetic 
ordering. Asymptotically (to within accuracy 0. lo? at 
v = 0.5) it coincides with the Curie temperature T, 
= v( J(R)), of the molecular-field approximation. Thus 
the Bethe-Peierls approximation gives a lower ordering 
temperature at all concentrations. The condition vZ 0.5 
determines the range of applicability of the molecular - 
field approximation. For a Heisenberg ferromagnet, 
T, i s  proportional to the mean energy of exchange in- 
teraction when v >> 1. ' When T,k 4J0, the function 
n i(T,)/n :(T,) and n,'(T,)/x/(T,) reach plateaus with 
values 1.1 and 0.6 for A = O  and values 5.3 and 1.4 for 
7 = 0; that is,  the second order (26) for 1 & 1 can be neg- 
lected, at least for the center of the distribution and for 
the dispersion when 17 1 << 0.6 and 1 A 1 << 1.4. The 
range of applicability with respect to T, of the gener - 
alized Poisson distribution is T, 2 1.2 J,, v 2 0.2 
(v-'va(Tc) 2 10). 

At small impurity concentrations, the Curie temper- 
ature of a Heisenberg ferromagnetic, as was first 
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shown by Korenblit and ~hender,' is determined by the 
interaction at the mean distance, T,- J, e ~ p ( - ~ v " / ~ ) ,  
where p is a quantity of order unity. The condition (23), 
a s  was shown by ~inzburg: gives the same concentra- 
tion dependence. Analogously: one can obtain for v << 1 

where R,= roln(T1J0) is the distance at which the ex- 
change energy is equal to the temperature. The equa- 
tion v,(T,) = v(Tl = T,) gives 

Hence one easily obtains 

In contrast to (2'0, the values of w, are large at small 
concentrations. When v 2 1V3, we shall restrict our- 
selves to the leading term of the expansion (34). In 
this range, al l  the quantities d, and b,, k= 1,2, . . . are 
also of a single order: 

-3vY when L=0, 3v" when A=0, 
1 when z=0, = 0 when T-0. 

The asympotic behaviors of formulas (25) and (26) at 
v z 1V3 have the following form. When A = 0, the eumu- 
lants are inversely proportional to the mean distance 
between impurities: 

where a ,  =2.12, a =3.00, a, =9.55, a4=48.00, 
Bl=20.15, &=47.00. For the center of the distribu- 
tion and for the dispersion, the second order in 1 T I can 
be neglected when 1 r 1 <c 0.06. When T = 0, 

Xk'=ahv'b-k16 w- 
1 k -$nv - *  h, 

(36) 
a1=1.22, c~,=1.00, a,=1.84, %=5.33, /3,=3.78, 
&= 5.06. The second order in I A  1 of the center of the 
distribution and of the dispersion can be neglected when 
I A I << 0.20 v1I3 2 0.02. Since the cumulants n , = a 
= a ( [  T I )v1I3 describe a discrete Poisson distribution, 
the distribution function P,(q) of molecular fields at 
small concentrations of magnetic atoms can evidently 
be approximated by a function with maxima at nonnega- 
tive integral values of the dimensionless molecular 
field q. 

RKKY interaction (2). The eigenvalues of K(T/J,) 
are shown in Fig. 3. The sign of the RKKY interaction 
at small distances, 2kpRU << 1, corresponds to ferro- 
magnetism. The ferromagnetic state is generated at 
the bifurcation curve T,(v) (23) i f  the concentration n of 
the magnetic atoms exceeds 6.09 1V2ki. But if  n 
c 6.09 1V2k:, then on lowering of the temperature the 
paramagnetic phase P, (q)  = 6(q) transforms to a spin- 
glass phase with zero mean molecular field at a local- 
ized spin, but with nonvanishing dispersion and with 
cumulants of higher orders. Experimentally, the 
abrupt transition predicted for the classical Heisenberg 

FIG. 3. Phase diagram for a model with the RKKY interaction 
(2) .  The circles denote the paramagnetic region, the solid 
curves the eigenvalues v , (T /Jo )  (k = 1, 2 ,  3 ,  4 )  of the operator 
K(T/J&;  Curve 1 is the line of transition to the ferromagnetic 
phase (v>3.19 lod ) ;  Curve 2 is the line of transition to the 
spin-glass phase ( v<  3.19 -10"). The dotted lines, correspond- 
ing to vi (T/J,,) and vz ( T / J ~ )  in the molecular-fi eld approxima- 
tion, intersect at v =  6.99. loa. 

model" and king model" is not always observed.15 A 
bifurcational approach to the king model, different from 
from the method of a specific ensemble of exact copies 
(replicas) of the system at infinitely separated instants 
of time,'' also shows an abrupt transition. From Fig. 
3 it is evident that the transition temperature T, is de- 
termined by the second .characteristic value (29) of the 
operator K(T/Jo). In the range of small concentrations 
of magnetic atoms, n 2 lV2kP3 (v r 0.5 1V2), it varies 
linearly with the concentration, T, = 0.574 JJZ,,-~~, since 
the mean distance between magnetic atoms is large, 
2kpR,j>> 1, and J(R,)-(2kpijr3. We note that the 
mean energy of exchange interaction is v(J(Rr), 
= 1.572 J,,kp-%. In the molecular-field approximation, 
T,= 0.574 J&;'I %'I2. 

Figure 4 shows graphs of the coefficients in the ex- 
pansion of the low-order cumulants as series in 1 T 1 ,  as 
functions of T, and T, along the boundaries of the para- 
magnetic phase. The breakdown of the continuity of 
these coefficients at the point T,=T,=4.50*1V2Jo cor- 
responds to the transition between ferromagnetic and 

FIG. 4 .  Variation of the coefficients in the expansion of the 
cumulants a s  series in I T (  with the ordering temperature in the 
case of the RKKY interaction (2) .  Solid curves, first order x i ;  
dotted, x; /x; ' ;  k =  1, 2,  3 ,  4 .  
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spin glass. In the range of high concentrations of mag- 
netic atoms, not shown in the figure, the high-order 
cumulants decrease rapidly with increase of the con- 
centration. In this range, the distribution of molecular 
fields is nearly normal in agreement with formulas (28) 
and (33). But for the spin-glass phase near T,, such 
concentrations a re  unattainable because of the transition 
to the ferromagnetic state. For example, near the 
phase boundary T, = 4.4 1 W2J, the coefficient of excess 
is x ,'/n," = 5.9, whereas for the normal distribution 
it  is zero. This means that for adequate description of 
the spin-glass phase, it is insufficient to consider only 
two equations of the system (8) (with u k  = 0 for k 2  3); 
i t  is necessary to study the complete system or  the in- 
tegral equation (6). 

L,=cp~M,+R'"cp,%f,. . (A.3) 
On substituting (A. 3) in (A. 2), we get f a r  if k formula 
(A. 1); see Q 5. 
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Magnetic linear birefringence of light and dichroism in the 
region of the absorption band of the rare-earth ion in 
europium iron garnet 

G. S. Krinchik, V. D. Gorbunova, V. S. Gushchin, and A. A. Kostyarin 
Moscow Stote Universi@ 
(Submitted 1 August 1979) 
Zh. Eksp. Twr. Fiz. 78,869-879 (Feburary 1980) 

Results are reported of a spectroscopic investigation, by a polarization magneto-optical procedure, of the 
optical transition 'F,+'F, of the Eu" ion in the structure of europium iron garnet. It is shown that in the 
employed Voigt geometry the magnetic linear birefringence and the dichroisrn reach values lo-', and 
have a strong dependence on the wavelength and a strong anisotropy. For a sample cut in the (1 10) plane, 
comparison shows that the spectra for the cases 1ll[i10], e11[001] and I11[001], ell[ilo] differ noticeably. The 
known formulas for 6n and 6k (the contribution due to I to n and k), which describe well the magnetic 
birefrigence and the dichroism of cubic crystals far from the absorption line, are invariant to interchange of 
the directions of I and e. A model-based theory is proposed to explain the observed independence of the 
spectra as being due to the low local symmetry of the surrounding of magnetically active ions in the crystal. 

PACS numbers: 78.20.L~. 78.50.Ge 

1. INTRODUCTION terest of late. A large value of the magnetic linear 
birefringence was first discovered by   ill on' in an 

Investigation of magnetic birefringence (MB) of light yttrium iron garnet crystal, and used to observe the 
by magnetically ordered crystals is attracting much in- domain structure. It was shown in Ref. 2 that the mag- 
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