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Assuming the electron interaction to be sufficiently weak and short range, we succeed in solving exactly the 
problem of the temperature behavior of the thermodynamic quantities for quasi-one-dimensional electrons in 
a system with disorder. Since all the electronic states are localized in the presence of defects, the interaction 
leads to a number of singularities in the low-temperature properties of the specific heat, susceptibility, and 
others. Thus, in the case of repulsion, a region where the Curie law holds appears for the magnetic 
susceptibility. It is shown that in real compounds a major role is played by spatial correlations between the 
occupation numbers of individual localized states. 

PACS numbers: 71.50. + t, 75.30.Cr 

1. INTRODUCTION AND FORMULATION OF 
PROBLEM 

Until recently, mathematical difficulties have made i t  
impossible to take exactly into account the interactions 
between electrons in a one-dimensional system with a 
disorder due to some stat ic  defects (impurities, crys-  
tal  imperfections, and others). The present  paper i s  
the f i r s t  attempt in th is  direction by using a method de- 
veloped by us  ea r l i e r  (henceforth cited as I). 

In addition t o  the general physical in teres t  of the 
problem itself, we have in mind also the curious prop- 
e r t i e s  which were  observed experimentally in the low- 
temperature region in the compounds NMP-, Ad-, and 
Qn-TCNQ.' 

As noted in Ref. 3,  these substances have degenerate 
internal disorder because of the nonsymmetry of one of 
the components-the cation. The nonsymmetry of the 
cation molecules in these compounds is due to the pres-  
ence of either one ex t r a  nitrogen atom o r  of the CH, 
group, which can occupy randomly crystal  any one of 
two possible positions. We make immediately the fol- 
lowing remark:  in these compounds we a r e  dealing with 
ra ther  la rge  flat molecules, a s  a resul t  of which the 
aforementioned asymmetry i s  in  a certain sense  small. 
If in addition the conductivity is due primari ly to the 
motion of the electrons along the TCNQ filaments, a s  
i s  apparently the case (see, however, Ref. 4), then the 
additional group is in turn  located relatively f a r  from 
the conducting chain. These a r e  apparently sufficient 
reasons for  assuming the mean f r ee  path in them to be 
large enough. 

The peculiarity of the propert ies of the aforemen- 
tioned compounds, compared with such typical good 
conductors as TTF-TCNQ, l ies  in part icular  i n  the fact 
that no structural  (Peierls)  transition takes apparently 
place in them a t  higher temperatures.  The most  pro- 
nounced phenomenon observed i n  these compounds can 
be taken to be the singularities in the behavior of a 
number of thermodynamic quantities, primari ly the 
susceptibility, which shows in the temperature interval 
from 5 to 0.2 K a rapid growth reminscent of the Curie 
law, but with a different exponent: X W T - O ,  where a 
=0.58, 0.74, and 0.75 for  NMP-, Ad-, and Qn-TCNQ, 

respectively. 

A number of explanations have been proposed for  this  
behavior.' One is that the conduction band in these 
compounds is exactly one-half o r  one-quarter filled, 
i.e., the Fe rmi  level of the electrons occupies a special 
(commensurate) position in the band. An analysis5 has 
shown that disorder is in fact  capable of leading to a 
singularity in the single-particle s ta te  density, but only 
fo r  a half-filled band. At a sma l l e r  commensurability 
of the Fe rmi  momentum, the maxima that appear in the 
s ta te  density cannot describe the susceptibility temper- 
ature dependences observed in Ad- and Qn-(TcNQ),. 
Doubts have been expressed recently concerning the 
very  fact of the fractional occupation of the conduction 
band in these  compound^.^ 

Another explanation, proposed in Refs. 2 and 6, pre-  
sumes,  on the contrary, that the disorder introduced 
by the cation i s  la rge  enough compared with the width 
of the band, a s  a resul t  of which the electrons a r e  dis- 
tributed, in f irst-order approximation, one each on the 
corresponding TCNQ molecule, and their  spins a r e  
weakly correlated, in proportion t o  a correction that i s  
quadratic i n  the rat io of the exchange integral to the 
characterist ic  sca t te r  of the energy levels of the indi- 
vidual wells. The weak spot of this  approach i s  that the 
conductivity of these compounds is f a r  from smal l  and 
has a noticable temperature dependence, and indicated 
anomalies temperature regularities appear only a t  suf- 
ficiently low temperatures.  

In the present  paper, in accord with the foregoing, we 
shall assume the disorder to be smal l  enough compared 
with the width of the conduction band and use only the 
fact  that in a one-dimensional system, in  the presence.  
of s tat ic  defects, all the electronic s ta tes  a r e  local- 
i ~ e d . ~ , '  We consider here, of course, a simplified 
model of interactions between localized electrons. 
Thus, the interaction i s  assumed to be sufficiently 
weak. However, the principal simplification of the 
model l ies  in the assumption that the interaction poten- 
t ial  i s  short-range, something apparently not always 
satisfied in a rea l  quasi-one-dimensional crystal .  (For 
a single filament our resul t s  could be easily generalized 
a lso  to include the case  of Coulomb interaction.) 
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The physical phenomenon investigated in this paper 
consists in the fact that the repulsion makes i t  impossi- 
ble fo r  two electrons to occupy separate energy states 
that are  sufficiently close to the Fermi level; this leads 
to the appearance of a small  number of unpaired spins. 
In turn, the attraction inevitably pai rs  the electrons and 
leads to a rapid decrease of the susceptibility at low 
temperatures. We succeeded in carrying through to 
conclusion the actual calculation of the mean values that 
appear in the problem, using the method developed in I 
for averaging the products of exact eigenfunctions of 
electrons. 

The degree to which the results  obtained in the article 
a re  general a r e  discussed in the concluding section. 

2. SELECTION OF PRI NCIPAL-APPROXIMATION 
TERMS 

As will be seen later on, by assuming the interaction 
potential between the electrons to be short-range (atom- 
ic scale), i t  suffices to consider in a quasi-one-dimen- 
sional crystal only a single filament. The filaments can 
be regarded as independent in the sense of the distribu- 
tion of the defects, and the electronic states can be re- 
garded as localized on only one filament. To simplify 
the estimates we choose the interaction potential u(x)  
for the time being in the form u (x) =uob(x). The cor- 
responding Hamiltonian of the interaction takes in the 
second quantization the form 

We examine the character of the corrections to any 
quantity, say the magnetic susceptibility X. These cor- 
rections a re  given by the diagram ser ies  shown in Fig. 
1. The matrices $ in the vertices a re  Pauli matrices. 
To understand the meaning of the indices marked on the 
lines corresponding to the electron Green's functions, 
we must recall that in the discrete representation, i.e., 
for localized states, the electron Green's function takes 
the form 

where the sum is taken over all the eigenstates of the 
given realization of the random potential. 

As usual, each diagram contains, besides the sums 
over the energy levels E,, &, , etc., also summation 
over the Matsubara frequencies. The diagrams a r e  
written in accordance with the usual diagram-technique 
rules.g According to I, i t  turns out that in the sums 
over the energies for the individual diagrams of Fig. 1 
a special role is  played by terms with equal indices. 
Thus, if we compare the second diagram of Fig. 1 a t  
IJ.  f v with the first  diagram of Fig. 2, then we obtain 
respectively the following two expressions (disregard- 

FIG. 1. 

FIG. 2. 

ing numerical coefficients): 

and 

-- - 

For  the correction to the susceptibility (i.e., integrat- 
ing with respect to x' and averaging) we obtain 

and 

In order of magnitude we have 

analogously we obtain 

if the "centers" of the states v and C( a re  separated by 
a distance of the order of I. Therefore the number of 
significant terms in the sum over C( is estimated as the 
product of the state density v(E,) by the energy interval 
-T [because of c0sh-~(&/2T)] and by the volume I, i.e., 

AN-v (E,) TL. 

Thus, the contribution of the f i rs t  term ( p +  v) i s  
-v2(E,)uo= v(E,)g (where u,/nv =g i s  a dimensionless 
constant) and has the usual meaning of the renormaliza- 
tion of the susceptibility, just as for f ree  electrons," 
whereas the contribution of the f i rs t  diagram of Fig. 2 
is 

and predominates generally speaking at low tempera- 
tures. This term becomes large a t  

glrT-l. (1) 

The renormalization constants a re  not of great inter- 
e s t  to us. At the same time, it is easy to verify (see 
below) that any diagram of Fig. 2 with identical indices 
yields t e rms  of the form (g/rT)". Thus, the tempera- 
ture  behavior of the susceptibility and of other quanti- 
t ies at sufficiently low temperature calls for summation 
of a ser ies  of diagrams of Fig. 2 over the powers of the 
parameter (1). 

We shall check also on some diagrams of the "mixed" 
type, for example those shown in Fig. 3. As to the sec- 
ond of them, i ts  contribution, as follows from the pre- 
ceding, is of the order of the contribution of the f i rs t  
diagram of Fig. 2, multiplied by g (i.e., g2/rT). For 
the f i rs t  diagram of Fig. 3 we obtain the expression 
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FIG. 3. 

Estimating the sum a s  above, we again find that i t s  rel-  
ative contribution to the susceptibility is g2/ rT.  

Thus, if the summation of the principal t e r m s  yields 
a function of the type f ( g / ~ T ) ,  then the considered 
mixed-type diagrams will be gathered into functions of 
the form gf1(g/rT). 

All the est imates made above with individualdiagrams 
as the example can be easily formulated for  an arbi-  
t r a ry  t e rm of the s e r i e s .  The resul t  of summation over  
the frequencies leads to the usual formulas of quantum- 
mechanical perturbation theory. Therefore, if we have 
the diagram with p interactions and m independent en- 
ergy indices, then the ma t r ix  element of the interaction 
introduces a factor  (g/r)O, and the energy denominators 
introduce a factor  TmP into the est imate of the individual 
te rm in the sum. Finally, the number of significant 
t e r m s  in  m summations i s  

(v ( E F )  Tl) m- (TT) '". 
Thus, the expansion in powers of g actually extends 

over the number of independent energy indices: 

We have no expressions for  the functions f,,,(g/~T), and 
therefore, s tr ict ly speaking, the temperature region 
for  which the resul t s  that follow are valid is determined 
by the conditions 

Nonetheless, qualitative arguments can be advanced 
favoring the assumption that the results  obtained below 
a r e  valid in  a temperature region la rger  than (2). The 
fact that in al l  the d iagrams the main contribution i s  
due to t e r m s  with the s ame  s ta te  index v means that we 
a r e  dealing simply with the energy of interaction be- 
tween two electrons having opposite spins on one and 
the s ame  energy level. This energy i s  smal l  kg/?) not 
only compared with the Fe rmi  energy, but also, by vir-  
tue of the weakness of the interaction g << 1, with the 
average distance -1/r 'between neighboring levels. 
Therefore a t  the temperatures defined by relation (1) 
most levels a r e  ei ther  already occupied by two elec- 
t rons o r  empty, with the exception of those r a r e  s ta tes  
whose energies turn out to be in the interval -g/r near 
the Fermi  level. The number of such s ta tes  (per unit 
length) is v(E,) lglr, and consequently the average dis-  
tance between these levels is 

Recognizing that the wave functions decrease  exponenti- 
ally at  la rge  distances, the matr ix  elements of func- 
tions of such states a r e  exponentially smal l  and we 

might expect the temperatures a t  which the correlation 
between such s ta tes  becomes significant a r e  exponenti- 
ally smal l  like e q ( -  Igl-'). If this  argument is correct ,  
then the t e r m s  of the type gfl(g/rT) a r e  small  of order 
g not only for  (2) but in the entire indicated temperature 
interval. 

So f a r  we have said nothing concerning the corrections 
to the electron Green's functions, for  example those 
shown in  Fig. 4. Fo r  electrons without impurities, the 
principal t e r m s  in this diagram, just a s  in higher-or- 
d e r  diagrams,  reduce to an average shift of the chemi- 
cal potential (AF -gE,). In the presence of defects, the 
chemical potential, of course,  fluctuates in the vicinity 
of each localized state. The order  of magnitude of this 
fluctuation is g/7, i.e., a quantity of the same order  a s  
the temperature scale of interest  t o  us. It is easily 
understood, however, that these fluctuations a r e  insig- 
nificant, since their magnitude does not depend on the 
temperature.  They comprise merely some additional 
s tat ic  random field. In fact, we have explained above 
that each level arbi trari ly close to the chemical poten- 
tial, a s  required by condition (11, i s  surrounded by lev- 
e l s  whose occupation does not depend on temperature, 
including those independent of the degree of occupation 
of the f i r s t  level, since the fluctuation energy g/r is 
l e s s  than the average distance 1/7 between them. 

It must  finally be noted that when we single out t e rms  
of the type (g/7T)" we imply that they constitute the 
principal singularity. Yet it i s  well known1' that, in the 
absence of defects, a system of interacting electrons i s  
characterized by logarithmic divergences. The corre-  
sponding correct ions a r e  of the order  of gln(E,/T) and 
a r e  due to effects of Cooper and dielectric pairing. 
Similar divergences exist a t  leas t  in the Cooper channel 
also in the presence of defects (they a r e  due to the Coo- 
pe r  d iagrams with noncoincident indices). This in turn 
imposes limitations ei ther  on the temperature (at low 
impurity concentration) 

o r  on the impurity concentration, when i t  comes to tem- 
pera tures  defined by condition (1) o r  (3): 

These conditions will hereafter  be assumed satisfied. 

3. ELECTRON INTERACTION ON LOCALIZED 
STATES 

The preceding discussion i s  sufficient for  a final 
formulation of the problem. The needed te rm in the 
diagram s e r i e s  can be described with the aid of the fol- 
lowing interaction Hamiltonian: 

H,,,= ~ ~ , ~ , + ~ ~ + a ^ , , i i , , ,  (5) 
" 

where A, denotes the matr ix  element 

FIG. 4. 
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The contribution of the level v to the thermodynamic po- 
tential is 

Q,=-T In Z., 

where 

The trace in (7) must be taken over the following set  of 
occupation numbers: 

We have included in the level energy, to generalize the 
results, also the term due to the interaction with the 
magnetic field: 

This yields directly 

e. p11 2e,+A. z.-I+Z exp (- r ) c ~ i  - + exp (- T) . 
T  

The thermodynamic potential of the entire system i s  

where the symbol (. . . ), corresponds to averaging over 
all  the realizations of the random potential. 

In the quasiclassical energy region k,l>> 1 the distri- 
bution of the probabilities of the quantity A, (6) does not 
depend on energy. We rewrite expression (8) therefore 
in the form 

B== ( 2 ~ )  6=- ( 2 ~ )  Z'v(Ep) I d :  5 d ~  w ( A )  

. h [ l i ~ e x p  (-*)dl$+erp (8') 

where 2L i s  the length of the chain. We have thus intro- 
duced the probability distribution function for the quan- 
tity A, of (6): 

w ( A )  = (V (E,,)2L) -' ( x 6 ( A - A ~ )  6 (t-ev) ) . 

The presence of the energy 6-function in (8) and (9) re- 
flects the fact that &, is an eigenvalue of the energy at 
the given realization of the random potential. 

The determination of the last mean value, i.e., of the 
function ?(?(A) of (9), is  in fact the subject of the paper. 
Before we proceed to do so,  however, we obtain in this 
section, using the representation (81, expressions for 
the basic thermodynamic quantities. 

The simplest expression i s  obtained for the magnetic 
moment in an external magnetic field: 

 he averaging symbol in this and all the following ex- 
pressions will henceforth denote, according to (8'1, 
averaging with the function ~il(A).] The integral with 
respect to 5 in the last expression can be evaluated ex- 

plicitly; the result, however, depends on the assump- 
tion concerning the sign of the interaction. 

Repulsion between electrons (A > 0 )  

We have 

,-", 
R ( A )  =Lexp ( A / T )  ( ch2(@/T)  exp ( A / T )  - 4 )  Ish. 

At the lowest temperatures2' 

M=pv(Ep)  T  th (pHIT) [In ( 4  c G  ( @ I T ) )  + ( A > / T ] .  (10') 

From (10) we get for  the susceptibility X in weak fields 

At H* 0 and T- 0 we obtain for the magnetization 

The term linear in the field corresponds to the Pauli 
susceptibility whereas the constant term describes the 
contribution of the independent localized spins that be- 
come polarized in the absence of interaction between 
them at T=O even in an arbitrarily weak field. We have 
already advanced arguments that these interactions be- 
come significant only a t  exponentially low temperatures. 
Corresponding lower bounds appear in (11) also on the 
field intensity. 

Attraction between electrons (A < 0 )  

In place of (10) we obtain 

X -- arc t g  
exp ( A / T )  

[ ( [exp(A/Z') (1 - c h z ( p H / T ) e x p ( A / T ) ~  )I ) 
The susceptibility i s  (12) 

x - -arc  t g  
exp (AIT)  -- [ 112 ( [ e x p ( A / T )  ( 1  - e ~ p ( l / T ) ) ] ' ~  

and behaves a t  the very lowest temperatures like 

p n p ' v  (E?) (exp (A12T) ). (13) 

We call attention to the fact that the radicand in  (12) can 
reverse sign, depending on the ratio of the electron in- 
teraction energy A and the field FH [in this case i t  is 
necessary to change over again from (12) to (lo)]. The 
physical interpretation of this phenomenon is obvious: 
a sufficiently strong field is capable of overcoming the 
electron interaction energy in the localized state and 
break a pair of compensated spins. 

At a fixed field pH and at T = O  all  the pairs whose in- 
teraction energy is subject to the inequality 2pH> IA I 
a r e  broken. Going again to the limit T = 0 in (10) we ob- 
tain 

We proceed now to the equations for the specific heat. 
Since we a r e  dealing with low temperatures we need not 
distinguish, by virtue of the Nernst theorem, between 
the specific heats a t  constant volume, say, o r  constant 
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p r e s s u r e ,  and we c a n  calculate directlys'  

c=-T(8Q/3T2) , .  

Differentiation of (8) with r e s p e c t  to t empera ture  m a k e s  
i t  possible, a f te r  a number of s t ra igh t  forward but 
somewhat cumbersome calculations, to t rans form the 
expression f o r  the specif ic  heat  to  the following fa i r ly  
symmetr ica l  integral:  

which in pr inciple  c a n  be calculated i n  closed form. 
Since the remaining express ion  i s  s t i l l  qui te  compli- 
cated, we consider  again the l imit ing c a s e  of low tem- 
pera tures .  We r e c a l l  t h a t A  T O ,  i.e., f o r  the specif ic  
heat of noninteracting electrons,  we have a l inear  tem- 
p e r a t u r e  law: 

C = ~ / ~ V  (Er)  nZT, A=O. (16) 

In the c a s e  of repulsion exp(-A/T)-  0 and the main con- 
tribution is due to the  third t e r m  i n  the integrand of 
(15), with the pr incipal  r o l e  assumed by s m a l l  v .  This  
p r e s e r v e s  the l inear  dependence of the  specif ic  heat on 
the tempera ture ,  but the  coefficient is changed: 

Finally, f o r  a n  at t ract ion interaction, exp(-A/T)-oo 
and the principal ro le  in (15) is played by v - 1. The 
main contribution is made by the  f i r s t  t e r m  in the inte- 
grand of (1 5). We again obtain the l inear  law 

To understand the nature of the resu l tan t  s ta te ,  in te r -  
e s t  a t taches a l so  to  the function that  e x p r e s s e s  the law 
of occupation n(5) of the s t a t e s  with energy 5: 

We consider only the c a s e  of absolute z e r o  tempera-  
ture. We then have f o r  repulsion 

F o r  at t ract ion 

The calculation of the  mean  value (n(5) )  ca l l s  f o r  know- 
ledge of the function w ( A ) .  At any ra te ,  i t  is s e e n  f rom 
(17') and (17") that  the F e r m i  s t e p  becomes s m e a r e d  
out. Th is  smear ing  covers ,  however, a s m a l l  vicinity 
of the F e r m i  surface.  The part ic le-number density 
(for a given chemical  potential) - 

N=v(E,) (n(E) )dE, 
-- 

changes insignificantly. The corresponding changes of 
the chemical  potential (in t e r m s  of the var iab les  N and 
T) a r e  there fore  a l s o  smal l ,  s o  that  a l l  the thermody- 

namic  quant i t ies  c a n  b e  calculated a t  a constant chemi- 
ca l  potential. 

4. CALCULATION OF THE MEAN VALUES 

Before we proceed d i rec t ly  to the calculations, we 
simplify express ion  (6) f o r  the quantity A ,  assuming as 
before a short-range interact ion potential u ( x ) .  Follow- 
ing the a r t i c le  I, we wr i te  down the eigenfunctions 9,(x) 
i n  the  form4'  

$ v ( x )  = R  ( x )  sin cp (s). 

The phase cp(x) of the wave function contains a rapidly 
osci l la t ing p a r t  cp,(x)=k,x, which mus t  be averaged in 
the in tegra l  (6). As a r e s u l t  we obtain 

where  we have introduced the  dimensionless  constants  
g, = (nu)-'u,,, and g, = (nu)-'u,, s o  a s  to establ ish a cor -  
respondence with the notation of Ref. 10. It was  noted 
in Ref. 10, in  par t i cu la r ,  that  the interact ion can  always 
be  divided into two p a r t s  corresponding, f o r  f r e e  elec-  
t rons ,  t o  sca t te r ing  of the e lec t rons  by one another 
e i t h e r  with s m a l l  momentum t r a n s f e r  (g,), o r  of the 
o r d e r  of +21zF(g,). Thus, according t o  (6'), the sign of 
the effective interact ion i s  determined by the s u m  of 
both constants.  

We wri te  the probability dis t r ibut ion ~r i (A)  (9) in  the 
f o r m  

w ( A )  = L j ehAwidA. 
2ni 

Here  C is the Laplace contour (-zoo+ 6, +im+6).  If geff 
> 0 (repulsion), the  Laplace t rans form 

is defined as an analytic function i n  the right-hand half- 
plane of a complex var iab le  X (ReA>O). In C we have 
correspondingly 6 >  0. In the opposite c a s e  of a t t ract ion 
(gef ,  < 0), I(!, is analytic in  the  left-hand half-plane of A, 
ReA<O, and the integration in the  inverse  of the Laplace 
t rans form (18) is along the imaginary axis ,  but 6 <0.  

We now expand the  exponential of (19) formally in a 
s e r i e s .  We consider  a n  a r b i t r a r y  t e r m  of n- th o rder :  

- - (-hg.,tnv) " ( f dz,,RC(z,,) .  . . d ~ z l ?  (I2) 
2Lv (Ep) .4" 

-L =, 

In (20) we have t rans formed the s u m  over  the energy 
eigenvalues in accord  with (27) of I. The fact  that  the  
wave function i s  an eigenfunction is expressed  now by 
the condition that  the phases  of the wave function ~ ' ( x )  
and cp<(x), obtained by solving the Schriidinger equation 
f r o m  the lef t  and f r o m  the r ight ,  coincide a t  a n  a rb i -  
t r a r i l y  chosen junction point x ,  accura te  to  a n  integer  
multiple of n. 
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The factorial  multiplier has also dropped out of (20) 
because all the coordinates a r e  arranged in  increasing 
o rde r  in the integrals  (x, <x,-, < . . . <x,<x, <x,). 

From among the equations of art icle I we shall need 
[(19), I] 

R (5,) =a (xi I xo) R (lo), 

where R ( x d  i s  a normalization factor [(26), I]: 

R2(x,) =2[~>-5<];~. 

(All the eigenfunctions a r e  normalized to unity.) 

Obviously, it i s  convenient to choose in  (20) the junc- 
tion point a t  x l ( x o ~ x l ) .  The mean value (20) depends 
only on the difference between the coordinates a t  2L --. 
After averaging, one of the integrations cancels out the 
total chain length 2L from the denominator of (20). Us- 
ing a l l  this and the fact that v(E,)= (nu)-' we obtain fo r  
(20) 

We rewrite the las t  expression, using the property 

and the transformation 

0 

After making the substitutions we get 

I. I. 

. . . jdx,a""-i) ( X ~ I X , )  jdx, expi-sf>(x,! ! 

x 6(cpD(~.)  -cpC (xl) )exp[sC,<(r,) I ) 
In turn, 

The purpose of a l l  the transformations was to  repre-  
sent  the general expression (20) in the form of a product 
of two factors,  the averaging of which could be car r ied  
out independently by using the Markov character  of the 
random process5': 

where 

Q'"'(s .  g ) = n ( e x p [ ~ ~ < ( x , ) ] F ( c p - ( p ~ ( ~ ~ ) )  ) u ,  

The equation fo r  the function K h - l ) ( s ,  cp I R )  can be 
written by considering its variations with changing x,. 
We shall  not present  here  the ra ther  s imple derivation, 
which i s  entirely based on Eqs. (36) and (54) of a r t ic le  I 
(or  on the equivalent equations for  a Gaussian potential). 
The final expression turns  out t o  be  quite simple: 

(The definition of I in I is such that I = 210, where 1, is 
the kinetic mean f r ee  path.) 

Since the quasiclassical approach is used, k,l>> 1, the 
dependence on the phase cp drops  out in fact from all the 
quantities in the case  when only one proper  energy level  
is involved. The phase distribution probability w (cp) i s  
simply 

w (cp) =n-'. 

Before we continue with the calculations, l e t  us  s im-  
plify the notation, and take into account in part icular  
also this last fact. We introduce the dimensionless 
variable I = I s .  Then Q(O'(s, cp) = Q(O'(%) and sat isf ies the 
equation 

aZQ(0' 
242- - IQ(OI=O, (23') 

asz 

the solution of which i s  

0'" (4) - (2.5) 'hKI ( (24) "') . 
We denote the integral of K("'(B, R )  with respect  t o  R in 
(21) by 

zZ" 
f iR=(n)(s~R)-(- i )n-  2n! Q(*)w,  
0 

where 

zZ=h I g.,, 1 nu. (24) 

Using the condition (22) and Eq. (23), we obtain 

The expression for  the mean value (19) can now be  writ-  
ten in the form 

z2 - 
~ ~ - i - - ~ - ~ @ ( a , s ) ~ ( " ( s ) d s ,  (26) 

0 

where we have introduced in (26) the definition 

The function @ ( z ,  8) (27) sat isf ies according to (25) and 
(23') the equation 

Using the las t  expression and (23') we easi ly verify that 

L 0 

. . . j CZ'~"-'~ ( ~ ~ l x , ) d x ~  ESP[ -s;..(r,) ]6(cpD(xl) -cp) ) ". [We took into account the fact  that ~ ' " ~ ' ( 0 )  = 0.1 

The boundary condition in the las t  expression with r e -  Thus, substituting (29) in (261, we have 

spect  to R =xl  -x, 
wA - i + 22'- a ( "j:" ); az9 

(30) 

A,("-" ( S , ~ I X , = X ~ ) = - .  get,nvsZ fK(~-zl(s, dR. 
(?n-2)  ( zn - -3 )  

(22) The solution of (28) for  @ ( z ,  6 )  is given in  the Appendix. 
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For w, we obtain the simple closed-form equation 

Returning to (18), we obtain 

1 '" xdx 
w ( A ) = ; -  J e x p ( g ) -  

Lni-,- A s h 2 x ' - '  

The possible representation in  ser ies  form follows 
from (32) because of the zeros of sinh(xl/') on the nega- 
t i v e - ~  axis: 

The representation reduces in principle to an expres- 
sion of (33) in terms of the elliptic function 
8,[exp(?r2 I A  I /A) I 01 and i ts  derivatives. 

Equation (33) yields the asymptotic behavior of w(A) 
at large [A[ :  

The asymptotic expansion at small  I A  I can be ob- 
tained directly from the integral (32) by the "steepest 
descent" method. At small  (A (/A large values of x are  
significant. The saddle point l ies a t  x,= I A  / / A .  We get 

5. DISCUSSION OF RESULTS 

We turn now to the equations of Sec. 3. To calculate 
the coefficient of the Curie law in the susceptibility (at 
get,> 0) we must calculate (A)  : 

( A  >=- ( ~ w A / & , )  ~ - o = A / 3 .  

Thus, the susceptibility in repulsion is, according to 
(109, 

Similarly, the magnetization (11) a s  T- 0 is given by 

M=pv ( E F )  (2pH+'lrA+2T In 2 ) .  (36') 

In attraction, according to (13) and (31), where A =  1/ 
2T, the magnetic susceptibility at low temperatures de- 
creases exponentially: 

~ ~ ~ , ~ ~ = n p 4 r  (E,) ( A / ? T ) e x p [ -  ( 2 A / T )  '"1. 

We calculate here M ( H )  for weak fields, in accord with 
(14) and (35): 

An exponential decrease similar to (37) appears also 
in the distribution functions ( n ( 5 ) )  of the particle ener- 
gies in (17') and (17") for both attraction and repulsion. 

The linear laws in the dependence of the electronic 
specific heat on the temperature, which play the princi- 
pal role at the lowest temperatures, were already ob- 
tained by us in Sec. 3 and a re  determined by expres- 
sions (16') and (16"). Although the total dependences of 
any thermodynamic quantity in Sec. 3 on the tempera- 
ture can be obtained with the aid of (33) numerically in 
all temperature ranges, we made no such calculations 

for reasons which will be made clear presently. 

From the foregoing, comparing the results obtained 
for repulsion interaction with the results  of experi- 
ments' for the compounds mentioned above, we can 
state that qualitatively our reasoning leads to the right 
direction. Of course, there i s  no quantitative agree- 
ment, since in our case Eq. (36) for the low-tempera- 
ture susceptibility yields inevitably the Curie law rath- 
e r  than the law X a T - u  (Ref. 2), where CY changes from 
substance to substance. We believe the reasons for this 
discrepancy to be primarily the fact that the strong as- 
sumption made here, namely that the potential of the 
interaction between the electrons is short-range, does 
not take into account the specific Coulomb character of 
the potential. 

This las t  circumstance is  of no importance for the 
problem dealing with a single filament, inasmuch as 
according to (3) the "active" localized states a r e  sep- 
arated by very large distances, and the wave functions 
decrease over distances of the order of 1. The situation 
is different in real  quasi-one-dimensional materials, 
in which the individual filaments, while independent, 
a re  separated only by a distance of the order of the lat- 
tice constant a in the transverse direction. The effect 
of screening of the Coulomb forces (disregarding for 
the time being their specifics in the considered objects) 
come into play only at distances of the order  of the 
Debye radius r,: 

We shall show that now we can no longer confine our- 
selves to the interaction of two electrons with opposite 
spins in one localized state, but must take into account 
the effects of the spatial correlation of the occupation 
numbers of different states. In fact, in accordance with 
(11, the energy scale of the significant localized states 
is 

Let us  estimate the number of such levels AN in a vol- 
ume in the form of a cylinder of radius r, and of length 
I in the energy interval e2/1. Then it turns out that 

v ( E  et 
AN-& (rD2z) - -i. 

a2 1 

The question of the role of spatial correlation calls, 
in particular, also for the study of the character of the 
screening in a system of localized electrons. On the 
whole, we regard this problem as very interesting and 
worthy of a separate study. 

APPENDIX 

We rewrite (28) in terms of the dimensionless vari- 
ables y =2/(21)'/ ': 

+(y,  8 )  is defined as a function of y on the interval (0, m, 

and, according to (26), does not increase a s  y -a. The 
remaining boundary conditions are  obtained from the 
ser ies  expansion (27) of $1, assuming the latter to 
converge everywhere a t  real  y ' 0: 
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(P (y=O, 4 )  - ( ~ s ) ' ~ K *  ((24) "), (A.2) 
@(y, s=0) 11. 

(A.3) 
It is convenient to use  the Laplace t rans form with re- 
spec t  to t h e  variable  y: 

The solution of the equation f o r  a,($), obtained f r o m  

(A-I), 

will be  sought i n  the f o r m  of a contour integral  

For the f u n c t i o n ~ ( t ; ,  x )  we have, in turn,  the  equation 

a 1 -[(r-f ) w ] + , w - 0 .  
ac . .  

The solution of (A.6) is 

The choice of the contour C in (A.5) is determined by 
the  condition that  the  function [W(b, u)eZ8]c vanish on the 
ends of the contour. Figure 5 shows the definition of t h e  
cu t s  i n  e w r e s s i o n  (A.7) and the choice of the contour C.  
For a, (6) we easi ly  obtain f r o m  (A.5) 

(The logari thms here  have cu ts  at negative values of the 
argument.) We rewrite the boundary conditions (A.2) 
and (A.3) direct ly  f o r  the function a,($): 

The condition (A.3') defines completely the solution 
a, (4), with (A.2') sat isf ied automatically: 

exp (-us) du x 2 
cp. ( 4 )  - e x p ( - 5 1 X ) j  u(u+2r,) exp[-Tln(i+;;;-l. (A.8) 

2X 0 

a,($) is analytically continued f r o m  (A.8) everywhere at 
Rex > 0. 

Thus, 

f r o m  which we get  f o r  the quantity in  (30) 

a= rn (Y 6) 
@(+)14 

1 ' ( 1 )  I + 2  tdtexp { [  tl y--In I + -  . 
4ni -i..+e ( : 111 (A.9) 

FIG. 5. 

[On going f r o m  the preceding expression to (A.9) we 
f i r s t  introduced the new variable  1 = x u ,  making use  of 
the fact  that  u < 0 ,  and then made  the  substitution t =uW1.] 

Closing the contour of integrat ion with r e s p e c t  to 1 i n  
the lef t  half-plane around the  cu t  (-2,O) and car ry ing  
out  the  integration i n  the  converging integral  with re- 
s p e c t  to t, we obtain 

where the contour Cl circles the  cu t  (-2,O) counter- 
clockwise. Changing over in the last integral  to  t h e  
variable  p = l  + 1 and integrating by p a r t s ,  we t rans form 
the integral  into 

This  integral  is wri t ten as a s u m  along the two "edges" 
of the cut  and can b e  eltplicitly calculated with the aid of 
the residue theorem: 

The substitution y = ~ / ( 2 1 ) ' / ~  and a definition of z i n  ac-  
cordance with (24) lead to Eq. (31). 

"It can even be shown that this contribution is  exactly equal 
to the correction to the susceptibility for the case of nonlo- 
calized electrons. 

2)Of course, with all  the stipulations made a t  the end of the 
preceding section concerning the applicability of these re- 
sults a t  low temperatures. 

3, Thus, for example. " 

4, We refer the reader to I for the definitions of most quantities 
employed below. We note, in particular, that the method in 
its general form, developed in I, can be equally well for- 
mulated in a representation that the defects o r  implrities 
occupy preferred positions in the lattice, o r  for a random 
Gaussian potential. Both approaches a re  perfectly equivalent 
for the reasoning that follows. Therefore, for example, in 
a number of cases we shall not distinguish between sums 
over the lattice and their continual representation in the form 
of integrals. 

5, We recall that in article I the potential of an individual im- 
purity is in turn short-range. 
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Solitons and nonlinear resonance in two-dimensional 
lattices 
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Zh. Eksp. Teor. Fiz. 78,831-840 (February 1980) 

The behavior of solitary waves in two-dimensional lattices of nonlinear oscillators is investigated theoretically 
and experimentally. Solitons with an anisotropic relation between the amplitude and the duration are found. 
This anisotropy is preserved in the continual approximation. The proper "soliton modes" are studied in 
bounded lattices (resonators); it is shown that such modes are possible only for two configurations of the 
boundaries (rectangle and equilateral right triangle). The resonant excitation of soliton modes by a harmonic 
source (parametric generation of solitons) is considered. Experimental results of excitation of soliton modes in 
lattices of nonlinear electric oscillators are reported. 

PACS numbers: 05.50. + q 

INTRODUCTION conclusions, however, a re  more general in character 
and apply with practically no change, for example, to a 

The role of solitary nonlinear waves -solitons-in corresponding system of mechanical oscillators. 
lattice dynamics was recognized to  be important quite 
long ago, starting with the attempts at interpretation of 
the known "paradoxn of Fermi, Pasta, and Ulam,' which 

THEORY 

is connected with the anomalously slow stochastization 1. We consider a two-dimensional rectangular lattice 
in a system of nonlinear oscillators (we recall that the consisting of identical elements and describable by the 
very term asoliton" was first  introduced precisely in following nonlinear differential -difference equation : 
connection with this problem2). The properties of soli- d2Qm ,, 
tons in one-dimensional lattices (chains of coupled os- L'= dt2 ( U ~ - ~ . " - ~ U ~ . " + U ~ + , , " )  4- (ulll."-,-2um,"~um,"+,), ( 1 )  

cillators) were investigated in sufficient detail, and for 
where Qm,, is a specified nonlinear function of urn,,, and 

particular forms of the interaction potential between the 
the subscripts a re  the coordinates of a given lattice 

oscillators there a re  known solutions. It was shown in 
site in i t s  two dimensions. 

addition that solitons can exist in multilayer semicon- 
ductor structures (superlattices); a s  well a s  in multi- 
band systems. The role of soliton ensembles a s  col- 
lective excitations in lattices was investigated in a num- 
ber of studies; conclusions were drawn that the soli- 
tons can contribute to the energy transport process that 
determines the thermal conductivity of crystals. How- 
ever, almost all the investigations were limited to one- 
dimensional processes. It i s  clear that both the pro- 
perties of individual solitons and their collective be- 
havior can be substantially different in two-dimensional 
and three-dimensional systems (see Ref. 6). 

We consider in this paper solitons in two-dimensional 
lattices and investigate the resonant phenomena con- 
nected with the formation of 'soliton modes" in bounded 
resonators of varying configurations. The theoretical 
analysis is based on the equations of a rectangular lat- 
tice of electromagnetic oscillators, for which the ex- 
perimental results reported below were obtained. The 

Equation (1) corresponds directly to  the oscillations 
of a lattice of electromagnetic oscillators, which was 
used in the experiment described below (Fig, I), where 
L denotes the inductance of the element, urn,, the vol- 

FIG. 1. Diagram of electric lattice used in the experiment. 
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