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We study the effect of thennal oscillations of molecules in a one-dimensional molecular lattice on soliton 
properties. We show that with increasing temperature the soliton size increases and its properties wme ever 
closer to those of an exciton. We also investigate the dependence of the soliton parameters on its velocity. 

PACS numbers: 61.50. - f 

1. INTRODUCTION A,+ and A, are  operators corresponding to the presence 
and absence of intra-molecular excitations of the mole- 

It was shown in Refs. 1 to 5 that in soft one-dimen- cule n. The summation in (2.2) and in all further ex- 
sional molecular lattices the collective states corres- pressions i s  over all N molecules. 
ponding to intra-molecular excitations with a transi- 
tion dipole moment directed along the lattice are soli- 
tons propagating with a constant velocity which does not 
exceed the velocity of the longitudinal sound waves. The 
exceptionally large stability of the solitons allows one 
to expect that they may play a large role in the energy 
transfer along quasi-one-dimensional molecular 

In all papers mentioned above it i s  assumed that the 
lattice is  at zero absolute temperature. It i s  of interest 
to study the effect of the thermal oscillations of the 
molecules in a one-dimensional lattice on the soliton 
properties. The present paper is devoted to an elucida- 
tion of that problem. 

2. HAMI LTONl AN OF COLLECTIVE EXCITATIONS 

One can consider the solitons to be bound states of an 
exciton and a local lattice deformation. In a one-dimen- 
sional molecular lattice consisting of N (>> 1) neutral 
molecules occupying the sites z, = a n  (n = 1,2, . . . , N )  the 
solitons are described by the Hamiltonian 

where effective mass (m) approximation for the exciton 
its energy operator has the form' 

The operator of the oscillations of the molecules rela- 
tive to the equilibrium positions z, in the harmonic 
approximation, i.e., the acoustic phonon operator, is  
given by the expression 

where b: , 0, are the creation and annihilation operators 
of phonons with wave number 9 and frequency 

where Mis the mass of a molecule, x the elasticity 
coefficient, and & = a  (x/M)"~ the longitudinal sound 
velocity. In (2.3) and in all further sums the summation 
over 9 i s  over all N values which are  uniformly distri- 
buted over the interval 

-n/a<q<n/n. 

The operator of the local interaction of an exciton 
with the displacements 6 ,  of the molecules from their 
equilibrium positions takes in the approximation linear 
in the displacements the form2' 

For an analysis of the role of the thermal motions it 
is  convenient to express the displacements in terms of 
the phonon creation and annihilation operators6: 

R 
En= (-)I1 ( ~ g - k ~ - g + ) e l ~ ( w ~ ) .  (2.6) 

Here 87, is  the energy of the bottom of the exciton band, 
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The operator (2 .5)  then takes the form a r e  the diagonal matrix elements of the energy operator 
of the system; 

(2.7) . -. 

<vlexp(-H,lB) I v )  
pw= 

Z<v lexp (-EIPh/B) I V >  

where 
a r e  the diagonal elements of the density matrix of the 
phonon states,  8= kT. F ( y )  =2i~(h/?.lIS>,)'~ sin qa 

zio(hlql12i\lVV)"~q/lql, o=2ax. (2.7a) The following matrix elements occur in Eq. (3 .2)  

The collective states of the lattice corresponding to 
an/intra-molecular excitation and to displacements of 
the molecules from their equilibrium positions, and 
the phonon ensemble {v , )= .  . . v,. . . a r e  determined by 
the wave function 

where where the phonon function is 

Using the explicit form of the unitary operators (2 .9 )  
and the identity 

The U,,(t)  are  unitary operators of the displacements 
of the molecules from their equilibrium positions 

(v,] exp(ab,+-a'b,) exp (r'b,-yb,+) Iv,) 

=erp ((v,+ I) ay'+v,a'y - (v+'/,) ( 1 a 1 '+ 1 y 1 ') , 

The functions &,(t) are  chosen in the form of modulated 
plane waves: we get 

The squares of the moduli of the functions cp,(t) satis- 
fy the normalization condition 

We a r e  interested in those states of the system in 
which the displacements of the equilibrium positions of 
neighboring molecules differ little from one another. In 
that case we can write and determine the probability for the excitation of the 

molecules n .  

The functions Ban ( t )  in ( 2 . 9 )  characterize the average 
displacements of the equilibrium positions of the mole- 
cules in the state U , ( l )  Iv >. Indeed, 

Using the values of the matrix elements (3 .4 )  we 
change Eq. (3 .2 )  to the form 

3. THE HAMILTON FUNCTION OF A SYSTEM IN 
THERMAL EQUILIBRIUM WITH A THERMOSTAT 

We turn to the evaluation of the unknown functions 
cpn(t)  and p, ,( t)  which determine the collective excita,- 
tions in a one-dimensional lattice in thermal equilib- 
rium with a thermostat which has a temperature T. 
In that case we must go over to a statistical description 
of the quantum states of the system. 

The statistical averaging of (3 .1 )  reduces to replac- 
ing in Eq. (3 .8)  the quantum numbers v, by their aver- 
ages 

Thus the Hamilton function, which depends on cp,(t), 
@,,,(t), and the generalized momenta iBz and iB@,*,, which 
a re  canonically conjugate to them, is given by the ex- 
pression - - 

We define the Hamilton function of the system by the 
expression 

where 
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where is equal to (3.7) with v, replaced by iT,. sion we obtain 

Using the function $we find the Hamilton equations olq,l2 1 qsinqa aolrp,lz 
p. ( t )  =- - Mvu2(I-S1)aCT-- i s  (3.21) 

I acp. - 8% A i f t =  ep  +- A' e x p  (-V,,) 
at  aq: ( ma2 ) '*- 2maz (Cp~-i+q"+i) 

4. CONTINUUM APPROXI MATION 

The explicit form of the solutions of the equations giv- 
en in Sec. 3 can be obtained in the continuum approxi- 
mation which is valid when s << 1. In that case the func- 
tion q,(t) can be replaced by the function q(z, t) of the 
continuous variable z/a which is normalized by the 
condition Usually the following inequality holds3' 

so that we can replace Eq. (3.12) by the simpler equa- 
tion In accordance with (3.18) this function will satisfy the 

equation 

We shall look for solutions of this equation in the form 
of modulated plane waves [see (2 .lo)] 

Bq" ( t )  =Bsn(O)  ~ X P  ( i l  Q I V t ) ,  (3.15) 

where V is a constant velocity. Substituting (3.15) into 
(3.14) we find 

Bq.(t) =-F(q)  Irp,12/ftlq IN'"(V.-+V). (3.16) 

The equation obtained is as yet too complicated since the 
function r d e p e n d s ,  according to (3.20), on (q (z ,  t) (". 
We shall therefore look for i t s  approximate solution. 

For some restriction on the velocity of displacement 
of the excitation (s << 1) and a t  not too high a tempera- 
ture the following inequality holds 

In the same way we get from the equation which is the 
complex conjugate of (3.14) 

p-q, n ( t )  =-F(q)  ( r p .  12/N"fi I q I ( Va-V). (3.17) 
in which the values of B and f (8) a r e  determined by 
Eqs. (3.20a) and (3.20b). In that .case we can put 
W(z, t )  = O  in Eq. (4.2) in the zeroth approximation. It 
then transforms to the well studied non-linear Schr8- 
dinger equation 

Substituting these values into (3.11) we get a non-linear 
equation for the function q, 

A2 n2 e x p  (-W*) 
i A % - ( s o + -  ) T n +  ( q , - i + ~ n + , )  +GlqnI2qn=O, 

at ma1 2ma' 
(3.18) 

where 

G=oZlMV2(1-sz) , s=V/V., 

Vmmlqnl 'Bf (e ) .  

Normalized by the condition (4.1) the solution of Eq. 
(4.4) has the form 

Here 

~ a q O a 2 ~ ' 1 4 M V ~ A ( 1 - s 2 )  in which k = nl V/ti 

is a dimensionless parameter, qb = n/a, 

To obtain solutions of Eqs. (4.2) in the next approxi- 
mation we carry  out in i t  simplifications of the factors 
which stand, respectively, in front of cp and a2q/az2: 

( ~ - e - ~ ) q = ' / ~ f l a ~ l p ( z ,  t )  I z B f ( B ) q ( z ,  t ) ,  
is a function which depends on the temperature 8. In 
the li,miting cases it has the form 

'/2+2@/h510, when A51,/8&1, %=V.~qo 
f(e)= ( 1 + 2 .  , n 8'/6h251,', when RQ,/B>>1 

The quantity $aao  occurring in these expressions is the 
maximam value of 1 cp,(z, t )  12. After the simplifications 
(4.7) Eq. (4.2) again becomes the non-linear SchrS- 
dinger equation 

Equation (3.18) has a solution, normalized by the con- 
dition (2.11), which is non-vanishing in some range of 
n values. In the region of the lattice covered by the ex- 
citation the distances between neighboring molecules 
decrease proportional to lq, 1 '. Indeed, in which the coefficients nr(8) and G ( 8 )  depend on the 

temperature. With increasing temperature the ex- 
citon mass increases, since 

m ( 8 )  =m e ~ p [ ' / , a ~ a , ~ B J ( B )  1, (4.9) Substituting the values (3.16) and (3.17) into this expres- 
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while the non-linearity coefficient 

decreases. 

The increase in the exciton mass  is caused by the 
effective decrease in the resonance interaction between 
the molecules, a decrease produced by the violation 
of the phase coherence of the intra-molecular excita- 
tions. The decrease in the non-linearity parameter 
when the temperature r i ses  reflects the effective de- 
crease in the coupling of the exciton with the lattice de- 
formations. At a sufficiently high temperature the par- 
ameter G(8) may become negative. In that case Eq. 
(4.8) will not have localized (soliton) solutions. This 
conclusion has, unfortunately, only a qualitative mean- 
ing, since our formulas a r e  valid only when inequality 
(4.3) is satisfied. 

When s < l  an increase in the velocity V of the de- 
placement of the excitation leads, according to (3.20a), 
to an increase in the parameter B and acts hence, in 
the same direction a s  an increase in the lattice temp- 
erature which causes an increase in the exciton mass. 
The change in  the non-linearity parameter (4.10) is 
more complicated. As V - Va the value of G in- 
creases, according to (3.191, while the factor [I- 
S B ~  (@] decreases. At sufficiently high temperatures a 
change in sign of that factor is even possible and leads 
to a loss of localization of the excitation. This fact, 
apparently, removes the difficulty discovered in Refs. 
1 to 5: the fact that the soliton energy tends to infinity 
and i ts  size to zero as the soliton velocity approaches 
the longitudinal sound velocity. The n-dependence of 
the unitary operator of the displacements was not taken 
into account in those papers, i t  was chosen in the form 

u= U". 

The range of values V= V,, of course, needs a special 
study. 

Solving Eq. (4.8) we find that the probability for the 
distribution of the excitations along the lattice is de- 
termined by the function 

where 

In accordance with (3.21) the decrease in the equilibrium 
distances between neighboring molecules is determined 
by the function 

n20(e) a ( @ )  
p(z.')=- -- - 

2 111.. [ : - Z ~ - T ~ ~ ] }  ' (4.13) 

The energy of a soliton moving with a velocity V << V, 
is proportional to the square of the velocitv: 

with a soliton mass  

a2 
m,..,-m(e) [ I + ~ - G ' ( ~ ) ]  

- - 
(4.15) 

and a res t  energy 

E..,(O) =8,-m(8) azGz(8)/i2h2. (4.16) 

The size of the soliton is, in  accordance with (4.111, 
determined by the quantity 

l=xla(8) =2nR2/am(8)G(8). (4.17) 

We substitute in  that expression the values (4.9) and 
(4.10). When the condition for the continuum approx- 
imation (aoo << 1) and inequality (4.3) is satisfied, we 
then get, using (4.61, 

With increasing temperature the size of the soliton 
thus increases and i t s  properties increasingly approach 
those of an exciton. Whether the transition from a soli- 
ton to an exciton proceeds continuously o r  with a jump 
can be sorted out only when we develop a new theory 
which is valid in  the region V = V,. 

 he operator (2.2) also describes the motion of an extra 
electron in the conduction band of a one-dimensional dielec- 
tric. In that case m is the effective mass of the electron, 
lo the energy of the bottom of the conduction band, and 4 
and 4, the operators for the presence or absence of an elec- 
tron in the neighborhood of the molecule n. All the results 
of the present paper refer therefore also to the case of the 
migration of an electron through a one-dimensional molecu- 
lar chain from a donor to an acceptor molecule. This effect 
plays, apparently, an important role in biological phenom- 
ena. 

"~estricting ourselves to the linear approximation in the dis- 
placements we do not take into account possible changes in 
the frequencies a, of the vibrational oscillations of the lattice 
when there are intra-molecular excitations. We can neglect 
these changes since we consider collective excitations which 
correspond to merely a single intra-molecular excitation in 
a very large lattice. 

3 '~n  what follows we shall show that 
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