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We consider the singularities of the modulation mechanism based on stimulated Pendellosung absorption of 
photons by electrons in the course of diffraction in a single-crystal plate illuminated by a laser beam. It is 
shown that on account of the Pendellosung effect, for electrons in a state with s = 0 (s is the number of 
absorbed photons) in contrast to the previously considered cases, the depth of modulation in one of the 
electron beams, direct or diffracted, having a minimal intensity at the exit from the crystal, can greatly exceed 
the amplitude of the stimulated emission of the photon and reach an estimated value of -20%. 

PACS numbers: 61.80.Fe. 78.45. + h 

1. The quantum theory of modulation of an electron 
beam passing through a dielectric plate along which an 
electromagnetic wave propagates was developed by 
Varshalovich and D'yank~nov."~ It i s  shown that the 
modulation in the region of the optical frequencies 
is essentially a quantum effect and i s  due to the inter- 
ference between states with different energies, pro- 
duced a s  a result of stimulated absorption of s quanta 
Rw(s = 0, *I, *2.. . )by the electron. In Refs. 1 and 2 
they considered a case when absorption o r  emission of 
a photon by an electron becomes possible because of 
the jump in the dielectric constant near the plate bound- 
a r i e s  (the transition-radiation mechanism). 

A more effective modulation mechanism, based on the 
Cerenkov effect, was proposed by D'yakonov and 
Varshalovich3 and by Van Zandt and Meyer. It makes 
possible a higher degree of modulation by increasing 
the thickness of the plate, since the photon absorption 
takes place in the entire volume of the dielectric. 

~ a r e t s k ;  and ~ o m o n o s o v ~  developed a theory of dif- 
fraction of electrons in a single-crystal plate placed 
in the field of a circularly polarized electromagnetic 
wave directed perpendicular to the plate boundary. It 
i s  shown that additional Bragg maxima appear, with 
intensities that depend on the amplitude of the applied 
field, and can in certain cases be modulated by i ts  
frequency. 

The depth of modulation of the electron current in 
the foregoing i s  determined by the amplitude 
n,, of the stimulated absorption (emission) of the pho- 
ton, and turns out to be 5 0.1 at realistically attainable 
field intensities in the dielectric. 

2. The present paper discusses the distinguishing 
features of the previously proposed6 modulation mech- 
anism based on stimulated Pendellosung absorption 
(emission) of photons,'" when electrons a r e  diffracted 
in a single crystal in accordance with the Laue scheme. 
It i s  shown that the depth of modulation in one of the 
electron beams passing through the crystal (direct o r  
diffracted), in contrast to the results of other 
~ o r k e r s l - ~ ,  can exceed considerably the value1' la,, I. 
This result i s  the consequence of the Pendellosung 
effect for electrons in a state with s = 0, and i s  due to 

the character of the Pendellosung radiation, inasmuch 
a s  the Pendellosung effect does not exist for electrons 
in states with s =*I. By decreasing the amplitude of the 
direct o r  diffracted electron wave in the state with s 
= 0 via the Pendellosung effect (with suitable choice of 
the crystal thickness) it is possible to attain a modula- 
tion depth -0.2 a t  stimulated Pendellosung emissions 
Ja,,l s 0.01. 

3. We consider electrons of energy E ,  = Rw, and mo- 
mentum p,,=& incident on a crystal a t  the Bragg angle 
6 and reflected by the planes a s  shown in the figure. In 
the two-beam approximation of the dynamic theory of 
diffraction, the wave function of the electron inside the 
crystal in the absence of interaction with the magnetic 
field i s  of the form2' (see, e.g., Ref. 9 )  

where 

FIG. 1. Incidence of electrons with momentum I ko a t  the 
Bragg angle on reflecting planes (dashed lines) parallel to the 
yz plane. The thicknesses of the arrows a r e  proportional to 
the intensities of the corresponding plane waves (in the state 
with s = 0). The vectors ko, b(u). g lie in the x z  plane. The 
wave vector u of the photon (wavy line) is perpendicular to the 
x z  plane. In the presented case the intensity of the beam pass- 
ing through the crystal is concentrated predominantly in  the 
diffracted wave. The direct beam is then maximally modu- 
lated. The vectors 4(&,k, a r e  shown projected on the 
x z  plane. 
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g is the reciprocal-lattice vector, g = 2n/d, d is the 
distance between the planes, the indices (1) and (2) 
number the branches of the dispersion surface E, of 
the electron in the crystal. Its equation, when the Bragg 
condition i s  exactly satisfied, takes the formg 

Here Kz= 2m(E0 + Vo)/@, Ug= 2mVg/A2; V,, V ,  a r e  the 
amplitudes of the corresponding harmonics of the peri- 
odic potential of the lattice. 

Assume that a plane-parallel electromagnetic wave 
with frequency w and wave vector x ,  directed parallel 
to the y axis (see the figure) propagates through the 
crystal,3' so that the stimulated absorption o r  emission 
of the photon by the electron does not violate the Bragg 
condition. We consider the case of resonance, when the 
frequency w of the modulating wave coincides with the 
frequency of the "oscillations" of the electron upon dif- 
fraction (see "Pendellosung emissionv6-'), i.e., 

Here v, =i%, cosOB/m and 5, i s  the extinction length 
characterizing the spatial period of the beats produced 
in the crystal by the electron waves pertaining to dif- 
ferent branches of the dispersion surface (2n/5,= k;, 
-kk, ). Emission of a photon Ew by an electron is the 
result of the transition (I),, - (2k-, while absorption i s  
the result of transition (2),, - (I),+,'-* where E, = E,  
i Ew, (a), denotes the branch CY of the dispersion sur- 
face E. 

Thus, assuming ( at,l << 1 and neglecting the change 
of the amplitude of the state q,, we can write for the 
wave function of an electron in a crystal placed in the 
field of an electromagnetic wave the following expres- 
sion: 

+(r ,  t )  =2-1A[+(1J (k i t ' ,  r )  (kYJ ,I) ] exp ( - ioo t )  

+a+,+"' (k:", r) e x p [ - i ( ~ ~ + o ) t ] + a - ~ $ ( ~ ~  , r ) e x p [ - i ( w o - w ) t l ,  

(5) 

here k!" = k(2) +n ; k!2) = - K ; the functions 
#"'(k!", r)$'29(k!2', r) take the form (21, since the Bragg 
condition i s  not violated (xg=O). The vectors ki'*2' 
belong to the dispersion surfaces E,, whose equations 
take the form (3). 

The amplitudes a,, of stimulated absorption o r  emis- 
sion of a photon Aw are, in first-order perturbation 
theory, 

A is the vector potential of the modulating field and u 
is a unit polarization vector. 

Calculation of the matrix element in (6) yields the 
following result: 
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where 5 ,  is the electric-field amplitude component in 
the direction of ?c (i.e., in the direction of the oscil- 
lations of the electron in the crystal), gL = gug/ lu 1 Igl; 
g= wA /c; 11, = Eg/2m = nwmd i s  the electron velocity 
corresponding to the transverse momentum Eg/2. 

Introducing the notation a,, = -2-"'in,, we get 

4. The function wave Gf of the electronpassing through 
a crystal of thickness D is determined in the region 
behind the crystal (2 >D) by the boundary conditions on 
the exit face of the crystal; these, if we neglect the 
waves reflected from the boundary, reduce to the con- 
dition of continuity of the wave f u n c t i o n . 9 ~  a result, 
writing Gf in the form 

where $: describes the forward electron beam and 
#f the diffracted beam, we have 

n D  ia. (D) 
$1' - cos - exp (ikor-iwot) - - 

k, 2 
~ [ e x p ( i k + r - i ( o o + w ) t )  +exp ( ik - r - i (oa -w) t )  1, (10) 

n D  ia , (D)  
1PIP=i sin- e sp ( i  (k ,+g)  r - i oo t )  f - 

E n  2 

Here k,, and k, a r e  wave vectors with the following com- 
ponents: k,, = (-g/2; 0, k,,), E2ki/2m = E,; k* = (-g/2, 
TU, k*,. The quantities k*, a r e  obtained from the con- 
dition E2k:/2m = A(w0-t W )  and a r e  equal to 

The periodic dependence of the amplitudes of the states 
with wave vectors It,, and k,, +g on D i s  the result ofbeats 
between electron waves belonging to different branches 
of the dispersion surface E ,  in the crystal (the Pendel- 
losung effectq). 

Confining ourselves to two terms of the expansion in 
the small quantity Aw/Eol,(Eoll =@k:,/2m) in analogy with 
Refs. 1 and 2, we obtain for k,, from (12) 

where 

As a result, the density of the electron current per 
electron in the direct and diffracted beams is deter- 
mined by the following expressions ( j ,  ,=ev,,, 1 @''/ '): 

Za, ( U )  sin 6,z 
j.(r, t)=ev.cos:" 

[ I  - COS(XU/E,) 

Za, ( D )  sin 6,z . 
j, ( r ,  t )  =ev, sin2 -;-- 1 -t- 

s i n ( n D / u  
sin w] 

accurate to terms -a:. Here c , ,=c /n  i s  the phase 
velocity of the photons in the crystal, v, and 11, are  the 
velocities of the electrons in the forward and diffracted 
beams, and with I vo\ =Ivrl . 
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We note that a t  the width L of the electron beam the 
forward and diffracted beams diverge in space by a 
distance z, - L/2 tang, behind the plate; for example, 
a t  L - and $ - 50 keV (8,- 0.03) we have 2,- 0.2 mm. 
The corresponding overlap regions for the states with 
s = 0 and i1 in each of these beams were (15) and (16) 
a r e  valid a re  lo3- lo4 t imes larger in the optical fre- 
quency band. 

A substantial quantum periodicity of the depth of mod- 
ulation of the electron current a s  a function of z, with 
a spatial period 1 = n/b,, was f i rs t  noted by Varshalovich 
and D'yakonov' and discussed by them in detail.lV2 On 
the other hand, the dependence on the ratio DIE,, which 
is the consequence of the Pendellosung effect for the 
electrons diffracted in the crystal, has not yet been con- 
sidered. As a result, a s  follows from (15) and (16), the 
depth of modulation in one of the electron beams passing 
through the absorbind crystal can be arbitrary, up to 
unity. We note that the increase of the depth of mod- 
ulation is due to the increase of the relative contribution 
of the states with s = *l with decreasing intensity in one 
of the beams (in this case the intensity increases in the 
other beam, and the degree of modulation decreases 
correspondingly). In particular, a modulation depth of 
1000/ois reached at zero beam intensity (in this case the 
degree of modulation in the second beam is minimal and 
equal to 2a,). However, elastic scattering of the elec- 
trons leads to a different damping of the waves 1 and 2 
in the crystal, owing to the different symmetry of these 
waves (effect of anomalous absorptionQ). Therefore 
the intensities in the forward and diffracted beams in the 
state with s = 0 never vanish and a re  always finite, there- 
by strongly limiting the maximum possible depth of mod- 
ulation. 

5. The effects of damping of the Bloch waves in a 
crystal a re  described phe,nomenologically by introducing 
an imaginary potential iV (r), and i t  i s  usually assumed 
that ~ ' ' ( r )  does not depend on the coordinate, just a s  the 
real  lattice potential b (r) ,  but i s  10-30 times smaller 
than the latter.' The electron wave functions corres- 
ponding to different branches of the dispersion surface 
then acquire the form 

Here @".2' a re  the wave functions with allowance for the 
absorption, i1'ls2' a r e  defined by (2), €A, EL a r e  the 
damping lengths connected with the corresponding 
harmonics of the potential ~ ' ( r ) ,  and EL,,  = n T i r ~ , , / ~ ~ ,  ,. 

In the case when D << E ;  and D<< ti, confining ourselves 
to the first  terms of the expansion in nD/Ei, we obtain 
from (17) for the amplitude 02 of the s = 0 direct wave, 
passing through the cryst9,i. 

where no and po a r e  respectively the modulus and the 
phase of the complex quantity 0:: 

It follows directly from (19) that the minimal ampli- 
tude of the direct wave, accurate to t e rms  of higher 
order in nD/tO,,, is equal to a:"= n~/[:. As a result  
we obtain for the maximum depth of modulation reached 
in the direct beam 

2a. (D) EP' e&EI' tg Bo B = 
?ID 

- _nho-' - 

(20) 

In the diffracted beam the quantity Y? coincides with 
yZm. The presence of exp(ip,) in expression (18) leads 
to a phase shift by an amount p, in the periodic depen- 
dence of the depth of modulation on z . ~ '  

In the optical region, for example, a t  Aw = 2eV, which 
a t  E ,  = 50 keV ($= 0.41; tg 0, ~ 2 . 7 '  lo-') corresponds to 
€,=2540 A, an estimate by means of (20) yields for 
gL = 6.104 V/cm and E ;  30€,, a value 7:" 

=19.5$&, which i s  approximately 10 times the value of 
20, (at D - 5,), for the depth of modulation of a beam 
passing with maximum intensity through the crystal. 
In the case described in Refs. 1 and 2, the maximum 
depth of modulation i s  reached when the polarization 
vector is  parallel to the z axis, and depends on (n2 
- l)/n2, and at n =  1.3 and for the same values of 
Kw, E,, $ it amounts to - 12.4%~. 

I t  must be emphasized that the influence of the Pen- 
dellosung effect in a state with s= 0 on the depth of 
modulation of the electron beam is due to the character 
of the Pendellosung radiation, wherein, a s  a result  of 
absorption o r  emission of the photon, only one of the 
branches ( E ,  or E - )  of the dispersion surface of the 
electron is excited, so  that in states with s =+  1 there i s  
no Pendellosung effect. A similar enhancement of the 
modulation effect i s  possible also for another mech- 
anism, if in the stimulated absorption of the photon the 
branches of the dispersion surface of the electron in 
the crystal a r e  excited with substantially different am- 
plitudes. 

In conclusion the author is deeply grateful to D. A. 
Varshalovich, K. E. ~ i r ' yanov ,  A. S. ~yl 'nikov, A. I. 
Smirnov, and 0. I. Sumbeav for helpful discussions. 

 he behavior of electrons in the region behind a crystal was 
not considered in Ref. 6. 

'"I%e effects connected with the damping of the electron waves 
in a crystal are discussed in Sec. 6 below. 

3 ) ~ t  i s  assumed that the crystal constitutes for the photons a 
homogeneous medium with a refractive index n, so that 
u = w n/c. 

"In next order in the expansion in nD/[;, the difference be- 
tween the damping of the waves in the states with s=*l comes 
into play, and leads in the direct-beam current to a modula- 
tion wave of the form 

-sin (bkz+ PO) cos wT- (nD4;) cos ( 6kz  + po) sin w r .  

As a result not only the amplitude but also the phase of the 
modulation wave has a periodic dependence on z.  
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We study the effect of thennal oscillations of molecules in a one-dimensional molecular lattice on soliton 
properties. We show that with increasing temperature the soliton size increases and its properties wme ever 
closer to those of an exciton. We also investigate the dependence of the soliton parameters on its velocity. 

PACS numbers: 61.50. - f 

1. INTRODUCTION A,+ and A, are  operators corresponding to the presence 
and absence of intra-molecular excitations of the mole- 

It was shown in Refs. 1 to 5 that in soft one-dimen- cule n. The summation in (2.2) and in all further ex- 
sional molecular lattices the collective states corres- pressions i s  over all N molecules. 
ponding to intra-molecular excitations with a transi- 
tion dipole moment directed along the lattice are soli- 
tons propagating with a constant velocity which does not 
exceed the velocity of the longitudinal sound waves. The 
exceptionally large stability of the solitons allows one 
to expect that they may play a large role in the energy 
transfer along quasi-one-dimensional molecular 

In all papers mentioned above it i s  assumed that the 
lattice is  at zero absolute temperature. It i s  of interest 
to study the effect of the thermal oscillations of the 
molecules in a one-dimensional lattice on the soliton 
properties. The present paper is devoted to an elucida- 
tion of that problem. 

2. HAMI LTONl AN OF COLLECTIVE EXCITATIONS 

One can consider the solitons to be bound states of an 
exciton and a local lattice deformation. In a one-dimen- 
sional molecular lattice consisting of N (>> 1) neutral 
molecules occupying the sites z, = a n  (n = 1,2, . . . , N )  the 
solitons are described by the Hamiltonian 

where effective mass (m) approximation for the exciton 
its energy operator has the form' 

The operator of the oscillations of the molecules rela- 
tive to the equilibrium positions z, in the harmonic 
approximation, i.e., the acoustic phonon operator, is  
given by the expression 

where b: , 0, are the creation and annihilation operators 
of phonons with wave number 9 and frequency 

where Mis the mass of a molecule, x the elasticity 
coefficient, and & = a  (x/M)"~ the longitudinal sound 
velocity. In (2.3) and in all further sums the summation 
over 9 i s  over all N values which are  uniformly distri- 
buted over the interval 

-n/a<q<n/n. 

The operator of the local interaction of an exciton 
with the displacements 6 ,  of the molecules from their 
equilibrium positions takes in the approximation linear 
in the displacements the form2' 

For an analysis of the role of the thermal motions it 
is  convenient to express the displacements in terms of 
the phonon creation and annihilation operators6: 

R 
En= (-)I1 ( ~ g - k ~ - g + ) e l ~ ( w ~ ) .  (2.6) 

Here 87, is  the energy of the bottom of the exciton band, 
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