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The effect of the inelastic tunneling of electrons with emission of photons on the current-voltage 
characteristic of a symmetrical N-I-N junction is considered. In the low-temperature limit ( T 4  K) in the 
case of high-grade junctions (the facing and the layer contain no impurities) it is shown that the contribution 
made to the derivative of the conductivity G(eV) by excitation of surface and volume modes of 
electromagnetic oscillations in the insulating layer leads to different results. The surface collective excitations 
cause a decrease of the derivative of the conductivity, while the volume excitations cause an increase. The 
decrease of G ( e 0  is due to the transformation of the tunneling electron into surface plasmon oscillations. On 
the other hand, when the volume modes are taken into account, the increase of G(eV) is steplike, owing to the 
appearance of singularities in the photon distribution function. 

PACS numbers: 73.40.R~ 

Lambe and McCarthyl have recently observed emis- festation of this electromagnetic field can be analyzed 
sion of light froin a tunnel junc!ion made up of alumi- with the aid of the form of the current-voltage charac- 
num films of thickness d  =500 A and films-of Ag, Au, Pb, teristic (CVC) of the junction. 
In with d ~ 2 0 0  A. The causes of this emission a r e  the 
relaxation of the elastically tunneling electrons with 
excess energy AEG eV (V is the voltage on the junc- 
tion), and the inelastic tunneling processes with emis- 
sion of photons. Each of these radiation mechanisms 
has a threshold frequency w,, = eV. However, their 
manifestations a r e  substantially different. When the 
electrons relax to  the Fermi  energy of the metal a t  eV 
< w, (w, is the plasma frequency of the electrons in the 
metal) the excess energy becomes redistributed rapidly 
enough among uncorrelated electron-hole excitations, 
which give up energy to the thermostat mainly via in- 
elastic scattering with photon excitation. On the other 
hand, if e V >  w,, the energy of the electrons can become 
transformed into a collective plasma excitation, which 
in electrodes made of sufficiently narrow films can 
propagate to the boundary with the vacuum, where, by 
virtue of the corresponding boundary conditions, the 
longitudinal excitations become transformed into a 
transverse electromagnetic field (see Ref. 2 ) .  Radia- 
tion of this type was observed by Hwang et al? in a tun- 
nel junction made up of bulky aluminum and a thin silver 
film. This radiation, according to calculations by Fuse 
and ~ c h i m a r u , ~  is predominantly p'-polarized, a s  was in 
fact observed in Ref. 3. The light emission observed 
by Lambe and McCarthyl is diffuse and essentially un- 
polarized. This circumstance gives grounds for as- 
suming that the princiN1 mechanism that leads to emis- 
sion of light in the experiment of Ref. 1 is inelastic tun- 
neling with participation of transverse electromagnetic 
excitations in the oxide, which forms a tunnel barrier,  
and of the junction electrons adjacent to the barrier.  
It is interesting in this connection to  investigate the in- 
fluence of a transverse electromagnetic field on the 
character of the tunneling. For  simplicity we confine 
ourselves to a symmetrical tunnel junction whose elec- 
trodes a r e  semi-infinite pieces of metal. Naturally, 
for such a junction the entire electromagnetic field will 
be concentrated in the vicinity of the barr ier  and cannot 
be taken to the outside. Nonetheless, an indirect mani- 

On the basis of the approach developed by ~vanchenko,' 
we write down the Hamiltonian of the system that makes 
up the contact, with account taken of the quantized el- 
ectromagnetic field 

H , = T , + T , ,  
va 

To= jdrtlr, ( I )  [- --+ v ( I ) ]  Y , l (~ )+H.c . ,  
Znz 

where *i(r), *,,(r) a r e  the operators of creation and an- 
nihilation of electrons in the first  and second electrodes, 
respectively, A(r), ~ ( r )  a r e  the operators of the poten- 
t ials of the electromagnetic field, and v(r) is the poten- 
tial of the barrier.  

With the 
powers of 
obtain the 

aid of nonstationary perturbation theory in 
(D is the transparency of the barrier)  we 

following expression for the tunnel current: 

Z(eV)=-2e 1111 dt e-""O( t ) i (  [ 7 ' , + ( t ) + T I J  ( t ) ,  T , ( O ) + T ,  ( O ) ] - )  S 
- - 

(2) 
ca 

=-2e Im J dt e-'""l{K,,(t) + [ K , , ( t )  +Kc,, ( t )  ]+Kt, (t)}=-2e 1m K ( e V ) .  
0 

The averaging is carried out here over an equilibrium 
ensemble of the non-interacting subsystems of the first  
and second electrodes; To(t), Tl(t) a r e  the operators of 
To and TI in the interaction representation. 

The meaning of (2) is quite obvious. The term with 
Koo leads to the usual elastic tunnel current. The in- 
crements containing Klo and KO a r e  due to the "inter- 
ference" of the elastic and inelastic tunneling mecha- 
nisms. They describe the process of deformation, in 
the vicinity of the barrier,  of the virtual-photon cloud 
surrounding the electron. In fact, the first  three terms 
contain only information on the tunneling-electron self- 
energy due to i t s  interaction with the electromagnetic 
field, and a r e  therefore of no importance in what fol- 
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lows. The last term in (2) leads to the purely inelastic 
contribution with excitation (absorption) of electromag- 
netic-field quanta. After a number of transformations, 
using the analytic properties of the function K(eV) we 
obtain in first order in the fine-structure constant e/c 
in TI an expression for the current: 

e.k(r-.,) lim ( V , ~ - V , ) , ( V , , - - V , , ) , ~ ~ ~ ) '  ( r I ) f ; * )  (r)fi2)' (r1)f;') ( r I 1 ) ,  
,'f. 

.,'*.% (3) 
F ( o ,  o t ) = f ( o ) - f ( o , ) ,  

where A"'(~, w) i s  the spectral intensity of the electronic 
excitations of the ith (i = 1,2) electrode, f(w), tl(w) a re  
respectively Bose and Fermi distribution functions, 
14 =p* k/2 (k is a two-dimensional operator lying in the 
plane of the barrier), w, = w * e ~ ,  f;"(r) a re  the single- 
particle electron wave functions with the aid of which 
the Hamiltonian of the junction i s  subdivided into Ham- 
iltonians of the left-hand and right-hand electrons and 
the tunnel Hamiltonian, and Dij(x, x'; k, w) is the Four- 
ier transform of the retarded Green's function of the 
photon, defined in the usual manner: 

e (t-t') 
Dao(r, t ;  r', t l ) =  - < [ A , ( r , t ) , A p ( r 1 , t ) 1 - )  (a, B=0,1,2,3). 

i 

To simplify the calculations we assume henceforth 
that w) is the spectran intensity of the free elec- 
trons. Neglecting also the terms of order vo/c (vo is 
the velocity on the Fermi surface), we obtain for the 
second derivative of the current with respect to the 
voltage the expression 

where N(0) is the state density of the electrons in the 
metal, taken on the Fermi surface, B(k, w) is the value 
of B(p, q, k; w) averaged over the angles of the vectors 
p and q on the Fermi surface, the function.F(w) is por- 
portional to a 6 function a s  T-OK and is a dome-shaped 
function of width -T at finite temperature.F(w): 

From (4) it is seen that the structure of the second 
derivative of the current with respect to the voltage is 
determined by the form of the function 

To calculate 9(w), a s  follows from (31, it i s  necessary 
to know the greatest function of the electromagnetic 
field Dm, for a system consisting of two metals sepa- 
rated by an insulator layer. The temperature Green's 
function of systems of this type was obtained by Dzya- 
loshinskfi, Lifshitz, and pitaevskG5 in an analysis of 
the forces of the interaction between solids. We shall 
therefore use here their results to calculate D,,, (see 
also Ref. 6). It should be noted that if  we use for the 
vector potential a gauge with q = 0, then the main con- 
tribution to the tunnel current in terms of the parame- 

ter  vo/c will be made by the xx component of the tensor 
function Dm,, which takes in the region of the barrier 
the form 

D ( f , f f ; q , Q ) - D i Q , f l ; q , Q )  
+D,(Z, 5'; q, Q )  +D,(Z, Z'; q, Q ) ,  

2nq' 
D,(Z ,Z ' ;q ,Q) - - -  sh w& sh w3' cth 1, 

~ , Q ~ e ~ w ,  

where 

We have introduced here the following dimensionless 
variables: q =kh ,  X, = c/w,, 51 = w/w,, x=x/b ,  5 = d / ~ ,  
(d i s  the thickness of the insulating layer). 

For simplicity we assume that the dielectric constant 
of the insulator is ~ ~ ( 5 1 )  = 1. The dielectric function of 
metals is chosen in the form 

e,(n)=i+(nz+61QI)-:  (9) 

where 6 is the dimensionless relaxation time of the 
electrons in the electrodes. 

A few remarks must be made concerning this approxi- 
mation. The local approximation for &,(51), a s  shown 
by Englman and Sondheimer ' is suitable in the case 
when the quantity 16/ 1 6 + i n  I (the frequency is real 
throughout) is much less than in any other characteris- 
tic length. Here I =VOT is the mean free path of the 
electron, and the quantity 16/16 + i51 I has the meaning 
of the effective dynamic length traversed by the elec- 
tron without any collisions. For high frequencies WT 

= 51/6 >> 1 this length is equal to vo/w and constitutes 
the distance traversed by the electron during one period 
of the oscillations of the electromagnetic field. Other 
characteristic lengths in our problem are  the photon 
wavelength X=2rc/w and the depth of penetration of the 
electromagnetic field %(w) in the electrodes that make 
up the junction: 

W+bS " 
L o ( Q ) = L p l T l  - 

In the case of a "dirty" metal (51 << 6) the typical sing- 
ularities on the tunnel characteristic a r e  weakly pro- 
nounced because of the voltage smearing in the region 
AV -li/eT, so that one can hardly extract any informa- 
tion concerning the photon excitation in the region of the 
barrier. It is therefore of interest to investigate the 
case of a pure metal, when 51 >> 6. In this limit the 
condition for the applicability of the approximation (6) 
takes the form vO/up << min()b, XpS22. 

It is easily seen that a t  small C2 this condition can be 
violated even in very pure metals, for which further- 
more the condition 51 >> 6 is satisfied. We thus obtain a 
lower bound on the frequency, and consequently on the 
region of the minimal voltages (eV =liw), in the form 
51 7> 4 6 ,  qvo/c]. 

In expressions (5)-(9) the functions D(sz) and ~ ~ ( 5 1 )  
a re  given, to abbreviate the notation, on the imaginary 
frequency axis. To obtain the retarded Green's func- 
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tion it is necessary to  make the substitution 51--in + 6, 
and furthermore in such a way a s  to obtain in the upper 
half-plane of the new variable 51 an analytic function that 
coincides on the imaginary axis with that given in (5). 
It is easiest to  carry  out the continuation for the func- 
tion Dl(@, since the hyperbolic cosine is an analytic 
function, and wi has two branch points d q .  For  a u- 
nique determinationof ?u, onthe real51 axis it is neces- 
sary to make on this axis cuts a t  151 1 > I q 1 ,  with the 
signs on the edges of the cuts determined from the gen- 
era l  relations that connect the temperature and the re- 
tarded Green's functions. At zero temperature we then 
have 

where H. = (q2 - Q ~ ) " ~  is an analytic continuation of the 
function wi. On the other hand, the continuation of Dz 
and D3 is more complicated because they depend on the 
multiply valued function ln[rp.(51)/cp - (S2!]i,whi~h has two 
branch points 51, and [(a: = q2 + $ * (q4 + a) )] of infinite 
order: 

where cpl(51) is the analytic continuation of toi&,& w,. 

We investigate the behavior of argcp,(S2) on the entire 
real-frequency axis. From the analyticity of the causal 
function in the upper complex 51 half-plane follows the 
continuity of argcp,(51) on the real  frequency axis, and 
knowledge of the limits of argcp,(51) a s  52-"3 makes i t  
possible to determine uniquely the region of i t s  varia- 
tion: 

lxle n 
arg cp+=O(I+ xZ)O(-xZ) arc tg- + - 0 (-1-~~)sign(Q+~-62~), 

( I + X ~ ) ' ~  2 
(11) 

lxle 
arg cp-=-O(l+ x2)O(-x2)arctg- - nO(QZ-Q-') - ?0(-1-xz). 

(1+x2)'" 2 

The frequency dependence of argcp,(S2) a t  fixed q is 
shown in Fig. 1. We shall dwell in detail on the fact 
that in the limit of a "pure" metal (6-0) the functions 
argcp+(CZ) and argcp-(a) have discontinuities a t  the fre- 
quencies S2, and 51- respectively. The reason is that in 
these frequency regions the linear approximation for 
~(51) is suitable only in the "dirty" limit. If the facing 
of the junction is made of "pure" metal, then in these 
frequency regions i t  is necessary to use the exact ex- 
pression for c(q, 8),' since the approximate expressions 
for the dielectric function of the metal can lead to viola- 

I - 

FIG. 1. Plots of the functions argcp,(CZ+ i6). The dashed curves 
show the functions in the limit as 6 - 0. 

tion of the principal of relativistic causality (see, e. g., 
Ref. 9). 

The poles of the function Dz(51) a r e  obtained from the 
solution of the equation sinhz = 0, the roots of which, 
obviously, a r e  z, =inn (n = 0, i 1, . . . , N). Since z (a )  
is a complex function of the frequency 51, this condition 
breaks up into two conditions, for the real  part z1(S2, q) 
= 0 and for the imaginary part ~"(51, q) = sn. In the fre- 
quency region where ~ ' ( 5 1 ~ )  * 0, a band of electromag- 
netic oscillations exists in the layer 2N + 1 and the equa- 
tion ~'(51, q) = 0 determines the dispersion relation 51,(q). 
It is seen from Fig. 1 that a t  51' < 51: there exists one 
band (n = O), and ImDz(S2 + i6) takes the form 

The dispersion equation is transcendental, and we 
consider therefore some limiting cases. 

1. In the limit I cl H. >> 1, H.-0, which corresponds to 
the start  of the band, we have CZ2(q) = 5q2/(5 + 2). 

2. The limit of large q(q>> 1) corresponds to  surface 
plasma oscillations 2CZ2(q) = 1 - exp(-bq). Consequently, 
this dispersion equation describes a longitudinal sur- 
face mode that is adequately described by the longitu- 
dinal electrostatic theory. 

We obtain analogously the poles of the function~,(q,  511, 
the imaginary part of which a t  q2 ' SJ2 is obtained from 
(12) by replacing the hyperbolic sine with a hyperbolic 
cosine. The dispersion equation in the limit of large q 
describes the excitation of surface plasma oscillations 
[2a2(q) = 1 + exp(-&)I. 

On the other hand, in the frequency region 1 + q2 ' fi2 
> q2, zl(q, 51) = 0 the sum of the imaginary parts D2 (q, S2) 
and D3(q, takes the form 

Im D' (q, Q f i 6 )  =- - 

where B(q, 51) = (a2 - q2)1'2. 

The dispersion relation 51,(q) is determined from the 
solution of the following transcendental equation: 

Putting 51 = 1 and q = 0 in (14) we get N = [5/a] ([XI is the 
integer part of X). 

It should be noted that besides the N purely trans- 
verse modes of volume electromagnetic oscillations 
there exists a mode that is transformed a t  a2 = q2 = 2/ 
(5 + 2) into a longitudinal surface mode. The form of 
the dispersion curves is shown in Fig. 2. In the limit 
of a small width of the dielectric layer (5  (- 1) the re- 
sults agree with those obtained by ~conomou. '~  The 
function obtained in this manner makes it possible to 
calculate the value of @(a). 

According to the results (10) and (121, the imaginary 
part of the photon Green's function of an N - I - N junc- 
tion is positive in the frequency region a2 < q2 and nega- 
tive a t  n2 q2, whereas by definition the imaginary part 
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FIG. 2 .  Dispersion equation for the photon in an N-I-N junc- 
tion at & = r+ 0: curve 1 corresponds to n2 = 1+ q2 at q2 << 1;  
curve 2 is describedby the expression Q=q[C/ (C+ 2) l i i2  at i2<< 1 ,  
q<< 1 and by the expression d = [1+ (1+ q S ) i / 2 ( l +  e-cq)l-' at q 
>> 1 .  In the limit of large q curve 3 takes the form Sf 
= [ I +  (1+ q-2) i /2 (1  -e-Ca)]-i. 

of the causal Green's function should be only negative 
in the entire frequency region. This paradox is due to 
the fact that the calculated function (5)-(8) is the dif- 
f erence between the Green's functions of an inhomogen- 
eous (N - I - N junction) and a homogeneous infinite me- 
dium. This procedure was used to be able to disregard 
the infinite contribution made to the tunnel current by 
electromagnetic oscillations with small wavelengths. 
Consequently, what should be negative in the entire fre- 
quency region is the imaginary part of the complete 
Green's function (the sum of the homogeneous and in- 
homogeneous parts). 

The physical picture of the fact that in the frequency 
region S2' 22 4 the opening of an additional (inelastic) 
tunneling channel decreases the tunnel current rather 
than increasing it is quite clear. The point is that the 
electrons whose quasimomentum projection on the plane 
of the junction section exceeds their frequency (q2 >S2') 
stimulate longitudinal surface collective oscillations of 
electron-hole pairs, a s  a result of which the current in 
the N - I - N junction decreases. 

We examine now the contribution of the surface oscil- 
lations to the tunnel current. At low voltages (52' << 1) 
the derivative of the conductivity takes in the limit of 
low temperatures (T -OK) the form 

h e . '  
C (Q,) = - (c+2) ITlzN2(0)Q0" sign Qo, 

c?oPJS.' 

where no= e~/w, ,  / ? I 2  is the square of the modulus of 
the modified matrix element1' averaged over the Fermi 
surface 

L I Z  

Tp,  = J d 5  ZT,, (f) . 
- t / 2  

This expression is valid so long a s  both dimensions in 
the cross section of the junction (L, and LC) a r e  of the 
same order. The case when one of the linear dimen- 
sions i s  much less than the other (for example L, = L  
<<LC) was investigated in Ref. 11, where it  was shown 
that in such junctions inelastic tunneling of electrons 
with emission of photons leads to oscillations of the 
derivative of the conductivity. 

At high voltages (51; -+) we obtain for the derivative of 
the conductivity the expression 

ITI'B (28.'-1) 8 (y2-1) 0 (e2-u,'ya) y2 sign Q0, G(4)-- 
e'o:E (17) 

where y =[ ln12tZi - 1 1 ]/5tZ0. Equation (17) is clearly 
only qualitative in character, since neglect of the spa- 
tial dispersion in c(q, 52) in this frequency region leads 
to violation of the principle of relativistic causality. 
Nonetheless, notice must be taken of the good qualita- 
tive agreement between the result and the experimental 
data," where the decrease of G(tZO) due to generation of 
surface plasmons was observed for the first  time ever 
in this frequency region. 

The contribution of the volume modes of the electro- 
magnetic oscillations to  the derivative of the conducti- 
vity of high-grade N - I - N junctions (the facing and the 
insulating layer contained no impurities) can be repre- 
sented in the form 

where wn(tZ) a r e  the roots of the dispersion equation 
(14), and I Tn 1 '  i s  the square, averaged over the Fermi 
surface, of the modulus of the matrix element 

Let u s  dwell in detail on our result. As follows from 
(18), when the frequency S2 i s  equal to the natural fre- 
quency w, of then-th photon mode, the function +(a) un- 
dergoes a jump equal to  A%, = %, - The physical 
cause of these jumps is quite obvious-they a r e  manifes- 
tations of singularities in the state density of the pho- 
tons of the insulating layer. It must be borne in mind 
that in the low-temperature limit Y(S2) has a smearing 
of the order of 4~-'. Therefore a clear-cut manifesta- 
tion of the singularities in the state density of the pho- 
tons on G(eV) is possible when the condition PA%,,>> 1 is 
satisfied. 

We note that the effects considered here depend sub- 
stantially on the width of the insulating layer. Thus, 
for sufficiently low but broad barriers (d - lo3 A) (using 
a semiconductor or a semimetal a s  the insulator), the 
state density of the photons has only two singularities. 

In conclusion, the author thanks Yu. N. Ivanchenko 
for suggesting the problem and for a helpful discussion 
of the results. 
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