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A general relation is obtained for the excitation-energy spectrum in an SNINS junction. The influence of the 
external magnetic field on the quantization of the excitation enenergy in an INS system is investigated. It is 
shown that the magnetic field shifts the energy levels of such a system, but is not the cause of the instability of 
the spectrum (in contrast to the previously investigated behavior of the spectrum of an SNS junction in a 
magnetic field). General formulas are derived that make it easy to find the Green's functions of an arbitrary 
superconducting system containing a dielectric barrier with arbitrary transparency, if the Green's functions of 
this system without this bamier are known. A microscopic calculation is made of the stationary Josephson 
current in an SNINS junction. The magnitude and temperature dependence of this current are different for 
different positions of the dielectric barrier inside the normal-metal layer. 

PACS numbers: 74.50. + r 

1. INTRODUCTION oretical point of view and in connection with the possi- 

It is well known that in a superconductor-normal met- 
al-superconductor (SNS) system the energy of the ex- 
citations localized in the normal layer is spatially quan- 
tized. This phenomenon is due to the weak reflection of 
the electron excitations from the NS boundary, first  
pointed out by Andreev.' Excitations having an energy 
lower than the energy gap A of the superconductor can- 
not penetrate from the normal metal into the supercon- 
ductor. However, because of the small value of A 
(compared with the Fermi energy) the excitation mo- 
mentum is left practically constant by the reflection (the 
excitation momentum is of the order of the Fermi mo- 
mentum). In an SNS system this leads to formation of 
a discrete spectrum at excitation energies lower than 
A ,  and the wave functions of the incident and reflected 
excitations have a spinor structure of the "electron- 
hole" type, which is peculiar to superconductivity. Ku- 
lik2 has shown that in the presence of current in an SNS 
system the energy levels shift by an amount proportion- 
a l  to the phase difference between the order param- 
eters of the two superconductors. The formula for the 
spectrum of the SNS junction (under the condition E 
<<A) is2 

Here u, is the absolute value of the projection of the ex- 
citation velocity on the direction of the normal to the 
boundary between the normal metal and the supercon- 
ductors, and d is the thickness of the normal metal. 
We assume A =  c = 1 throughout. The presence of a dis- 
crete excitation spectrum of the type (1) determines in 
many respects the properties of SNS systems. Thus, 
the temperature and phase dependences of the Joseph- 
son current in an SNS junction (see, e.g., Refs. 2-6) 
differ noticeably from the analogous dependences for an 
S I S  junction7 (I is an insulator layer). 

In the present paper we investigate certain properties 
of SNINS junctions, i.e., spatially-inhomogeneous su- 
perconducting systems whose "weak spot" is a combi- 
nation of normal-metal and an insulator layers. A 
study of these systems i s  of interest both from the the- 

bility of performing the appropriate experiments. In 
Sec. 2 we obtain the excitation spectrum of such junc- 
tions. In addition, we discuss the influence of an ex- 
ternal magnetic field on the quantization of the excita- 
tion energy. In Sec. 3 we calculate the stationary Jo- 
sephson current in an SNINS system. 

2. EXCITATION SPECTRUM, INFLUENCE OF 
MAGNETIC FIELD 

Let a normal-metal layer placed between two super- 
conductors have a width d. We direct the x axis per- 
pendicular to the N S  boundaries, and let x = 0 be the 
midplane of the layer of the normal metal. We choose 
the order parameter of the system in the form 

I Ae'", z<-d/2 
A ( z ) =  0, 121<d/2. (2) 

Ae'h, z>d/2. 

This is the universally accepted model if the inequality 

d W . 0  (3) 

is satisfied ( 5 ,  i s  the coherence length of the supercon- 
ductor). Assume that the thin insulator layer (usually 
-10 thick) is located inside the normal-metal layer 
and i s  thin enough to permit electron tunneling. The 
small thickness of the insulator layer allows us to sim- 
ulate its presence in the system by a potential of the 
form V6(x -x,). Here x, is the coordinate the insulator 
layer, lx, 1 < d/2. 

We write down the Bogolyubov-de Gennes  equation^^*^ 
for a two-component wave function of the excitation in 
an SNINS system. They take the form 

. (f:[i - ~ : ~ ~ r J ( : ) - ~ ( ~ ) -  (4) 

Here ke= [ - i ~  - e~(r)] ' /Zm + ~ 6 ( x  -x,) - p,  % is its 
complex conjugate, A(r) i s  the vector potential, p is 
the chemical potential, and m i s  the electron mass. 

Assume that at  first there i s  no magnetic field, i.e., 
A(r)= 0. We take the Fourier transforms in (4) with re- 
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spect to the coordinates y and z. We then get 
-- -. 

1  d2 I-==- &+VS (x-2,) u ( x )  +A ( 2 )  v  ( x )  -Eu ( 2 )  , I 
(5) 

where &= p - kf/2m[kl= (k:+ k:)1'2 is  the momentum of 
the excitation in the junction plane]. We seek solutions 
of Eqs. (5) in the form 

We use the notation of Ref. 2. Thus, 

The functions U(x) and v(x) should be continuous at the 
points x = *d/2 and x = xo, and the derivatives of these 
functions should be continuous at x =  *d/2 and have a 
discontinuity at the point x = x,: 

After straightforward but rather cumbersome calcula- 
tions, we obtain the dispersion equation 

2Ed cos (4Exo/v.) cos cp cos-+-- + = 0. 
v, i+v.=/r ~ + P / U = ~  (7) 

This relation determines the energy spectrum of the 
excitations in the SNINS junction. 

Let us examine some particular cases. At V= 0 we 
obtain from (7) the spectrum of an SNS junction (1). 
Putting x0= 0 in (7) we get the spectrum of a symmetri- 
cal SNINS junction: 

2Ed cos cp+ ( V ~ V , ) ~  cos-= - 
vz ~ + ( V / U . ) ~  ' 

We note that at cp= 0 the excitation spectrum is in this 
case completely independent of V. At xo= kd/2 we ob- 
tain from (7) the spectrum of the SINS systemlo 

2Ed cos cp cos-= - 
u. 1+2(V/u.)' ' 

We consider now the case when there is no tunneling 
between the half -spaces x <xo and x >  xo (i.e., V=O~).  It 
is seen from (7) that in this case there exist two iso- 
lated systems of levels (see the figure): 

We have in mind here, of course, the condition d/2 
- Ixo I >> to. On the other hand, if the insulator layer is 
located very close to one of the NS boundaries (d/2 - (xo 1 
s to), then one of the level systems will simply "not 
fit" in the well made up by the pairing potential. 

a b c 
FIG. 1. Schematic representation of the structure of the en- 
ergy levels of quasistatic excitations without allowance for 
tunneling: a-symmetric SNINS junction, b-asymmetric 
SNINS junction, c-SINS junction. 

half-space x >  0 (the INS system). This is equivalent in 
fact to considering a system in which the insulator oc- 
cupies the region x <  0 and the normal metal is in the 
region O<x< d/2, while the superconductor is in the re- 
gion x> d/2. Obviously, the excitation spectrum in such 
a system is of the form 

A spectrum of the form (9) was indicated for INS sys- 
tems back in Ref. 10, which was devoted to an investi- 
gation of the behavior of SINS junctions. We discuss 
here the properties of INS systems in greater detail. 

We have already established that the excitation spec- 
trum of INS systems does not depend on the phase of 
the order parameter of the superconductor [see (9)]. 
Therefore, without loss of generality, we can set it 
equal to zero. The wave functions of the excitations in 
the INS system take the form 

We recall that in the SNS system there exist two ener- 
gy-level systems (1) (which a r e  degenerate at cp= 0). 
This corresponds to two opposite directions of excita- 
tion motion (along the x axis). The two types of exci- 
tations ("+" and "-") are  not intermixed because the 
momentum is almost completely conserved upon reflec- 
tion from the NS boundary, i.e., the momentum p,= mv, 
is  in this case a "good" quantum number. In the INS 
system the reflection of the excitation from the IN 
boundary obeys the laws of specular reflection (the mo- 
mentum p, reverses sign), and on the NS boundary we 
have the usual Andreev reflection with momentum con- 
servation. We see that in this case the two types of ex- 
citations already become intermixed (in the sense that 
the same excitation can have a momentum projection 
p, a s  well a s  -p,), and a single system of levels (9) is 
produced. 

We investigate now the behavior of the spectrum of the 
excitations of the INS system in an external magnetic 
field. Assume the presence in the system of a magnetic 
field with the following configuration: 

H ( x )  = (0, 0, H ( x )  ), H ( x )  =H8 ( d / 2 - I ) ,  

where O(x) is  the Heaviside function, i.e., we assume 
that the magnetic field does not penetrate into the su- 
perconductor. We choose the following gauge for the 
vector potential: 

A(z) = (0, A (z), 0), A ( x )  =H(x-d l2 )  @ ( d / 2 - x ) .  

We assume now for simplicity xo= 0 and consider the The phase of the order parameter of the superconductor 
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can be regarded a s  before to be equal to zero every- 
where. Equations (4) for the region O<x< d/2 take in 
this case the form (after taking the Fourier transforms 
with respect to the coordinates y and z )  

In the superconducting region, a t  the chosen gauge of 
the vector potential, the magnetic field does not enter 
a t  all into the equations, meaning also that the form of 
the wave functions remains unchanged at x > d/2. In the 
solution of (11) we use the strong inequality k,- k, - pF 
>> eH,d> eHd (H, is the critical field of the superconduc- 
tor, pF= muF is  the Fermi momentum). As a result the 
wave functions in the region 0 x < d/2 take in the prin- 
cipal approximation the form 

Joining together, a s  usual, the wave functions and their 
derivatives at the point x =  d/2, we obtain the usual 
formula 

We see that the energy spectrum in the considered sit- 
uation now depends not only on the single excitation- 
velocity component v, (as was the case at H= O), but 
also on the projection of the velocity on the y axis. 
Thus, the influence of the external magnetic field on 
the spectrum of the excitations in INS system reduces 
to a shift of all the energy levels by an amount propor- 
tional to the magnetic field and to the velocity v,, and 
this result is  valid in fact for all values of H, since in 
the derivation of (12) we made no assumptions whatever 
concerning the value of the magnetic field (apart from 
the obvious inequality H< H,). 

The question of the influence of an external magnetic 
field on the quantization of the energy of the excitations 
in SNS junctions was discussed in Re$ 11-13. It 
turned out (as first indicated by Galaiko") that applica- 
tion of a magnetic field leads to a substantial restruc- 
turing of a spectrum of the type (1). Such a spectrum 
is unstable, and the levels of (1) a re  replaced by energy 
bands. An important fact in this case is  that the excita- 
tion spectrum (1) depends on the phase difference p. 
Generally speaking, the phase difference of the order 
parameters of two superconductors can always be elim- 
inated by a gauge transformation. However, not all the 
equations that determine directly the measured physical 
quantities (energy, current, etc.) should contain the 
gauge-invariant quantity 

2 

cp=cpr-cp,-2e A dl,  
i 

which is frequently called the gauge-invariant phase 
difference. This quantity, naturally, can no longer be 
eliminated by a gauge transformation. In the presence 

of a magnetic field it varies along the NS boundary, 
i.e., rp = v ( ~ ) ,  and it is  this which causes the instability 
of the spectrum (1). If the magnetic field is  homogen- 
eous along the y axis, then the function rp is a linear 
function of this coordinate. The Bogolyubov-de Gennes 
equations (4) constitute then a system of differential 
equations with periodic coefficients, s o  that one can 
speak of the presence of energy bands for the excitation 
system.13 

The excitation spectrum (7) of the SNINS system also 
depends on the phase difference rp, meaning that it 
should be unstable when a magnetic field is  turned o n  
However, the phase dependence of the spectrum (7) is 
determined by the transparency of the dielectric bar- 
rier. In the case of small transparency this dependence 
is  weak, and consequently the smearing of the discrete 
levels of (7) is small. We emphasize once more that 
this result holds for arbitrary (not only small) values 
of the magnetic field. It is seen thus that the depen- 
dence (or lack of it) of the excitation energy on the 
phase of the order parameter of the superconductor in 
the presence of a magnetic field determines the quali- 
tative differences in the behavior of the spectrum of the 
system. Whereas in the SNS system turning on the 
magnetic field "mixes" the levels and smears out the 
singularities in the state density, in the INS system 
the magnetic field only shifts the energy levels (12) but 
does not lead to instability of the spectrum. 

3. STATIONARY JOSEPHSON EFFECT IN AN 
SNINS JUNCTION 

A nondissipative current (Josephson current) can 
flow through the considered SNlNS system, just a s  
through any other weakly coupled superconducting sys- 
tem. For a microscopic calculation of this current we 
must know the Green's functions of the system. It is  
convenient to use for this purpose the following general 
method. We consider arbitrary (in the general case, 
inhomogeneous) superconducting system. Assume that 
we know the Green's functionsL4 of such a system. We 
introduce in this system an external potential U(x). To 
find the Green's functions of such a system in the pres- 
ence of a potential it is not at all obligatory to solve the 
Gor'kov differential equations.14 These functions can be 
obtained also with the aid of integral equations of the 
following form (the Dyson equations): 

The thick lines in (13) correspond to the sought function 
g,(x,xt): 

Here G,, F,, F,' a re  the Fourier components of the 
normal and anomalous Green's functions. The thin lines 
denote the known matrix Green's function of the system g r ) (~ ,~ ' )  in the absence of a potential, the wavy line is  
used to introduce the potential ~ ( x )  [more accurately 
U(X)T~, since it necessary to take into account the ma- 
trix character of the vertex; T, i s  one of the Pauli ma- 
trices]. 

Equations (13) can be easily solved for a supercon- 
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ducting system containing a thin dielectric interlayer, 
in other words, U (x) = V6(x -x,). In this case Eqs. (13) 
reduce to algebraic ones, and a s  a result we have 

g . ( z , xZ)  =g,"' ( 5 ,  z f )  ( z ,  x,) V T ~ [ ~ - ~ ? )  (x, ,  xO) V T , ] - ~ ~ T )  (XO,  2') .  

(14) 
After simple calculations we obtain the following ex- 
pressions for the Green's functions: 

G.(x, 5 ' )  =G? ( x ,  z ' )  
V" 1 + - {G:') ( x ,  z , )  [Gin' (xo ,  X I ) -  -G:? (zm, 26) G?) (so, x i )  

i+n v 

We note that in the derivations of (14)-(16) we made 
no assumptions whatever concerning the value of V. 
In what follows we shall find it convenient to have an 
expression for the function G,(x,x'), but only in the 
limit of large V (small transparency of the barrier). 
We expand the expression (14) for the Green's function 
in powers of the parameter 1 / ~ .  It is then easy to ob- 
tain the function G,(x,xl) in any order in this param- 
eter, but we restrict the expansion to terms of f i rs t  or-  
der. We thus have 

where 
G,.(z,  5')  =G? ( s ,  s ' )  

- {G:' ( 5 ,  zo) [G!: ( z , ,  xo) Ga(@)(xo, XI)  + F.?) (50, xo)~; '"  ( ~ 0 ~ 5 ' )  1 

+F."' ( s ,  2,) [G:" ( z , ,  x,)  F:"' (so, X I )  -F'.!') (xo ,  s o )  G? (so, z') 1) 

x{G."' ( z O ,  zo)G?: ( s o ,  z o )  +F? (x, ,  Z ~ ) P ~ ( ~ '  (TO,  ZO)}-' ,  
(17) 

(x ,  r= I Gt) ( 2 ,  so) G$' (XO. 5')  - fl!' (5 .  q) O)(O) (z,,, xf)  
v G t )  ( ~ 0 ,  ~ 0 )  z,)2 (xo, $0) + +O) (20, z,,) fl) (zo ,  xo) . 

(18) 
For the sake of clarity we represent the results of the 
expansion in diagram form: 

We have taken into account here the fact that the in- 
equality 

holds for our problem. The fact that the exact Green's 

functions of the system a t  arbitrary values of the trans- 
parency of the insulating barrier can be determined by 
solving algebraic (and not differential) equations is a 
substantial advantage of the method described above. 
To calculate the current, it remains for us to deter- 
mine the Green's functions of the SNS junctions. To 
this end, of course, we must already resort  to a solu- 
tion of differential equations. Such a procedure was 
used in many papers and i s  well known. In particular, 
Kulik2t6 used a method of expanding the Green's func- 
tions in terms of the spectrum of the single-particle 
problem. This method is lucid, but can be used with 
sufficient simplicity only for temperatures much lower 
than critical (T << T,). Another method4 of calculating 
the Green's functions of an SNS system (the so-called 
t-representation) is  based on a quasiclassical lowering 
of the order of the Gor'kov equatio& and "gluing to- 
gether" the Green's functions from two suitably chosen 
linearly independent solutions of the homogeneous sys- 
tem. This method [in model (2)] is exact and i s  used 
in our calculations. For  the sake of brevity we do not 
present here the calculations, which a r e  quite cumber- 
some. We note that this procedure of constructing the 
Green's functions of an SNS junction is described in de- 
tail in Refs. 4 and 10. We present below only the final 
result which we need for the calculation of the tunnel 
current. 

We use the well known equation for the current in an 
inhomogeneous superconducting system15 

X A ( I )  A' (2') G,."(s, z ' )  GI - .  ( z ' ,  z )  , (19) 

which enables us to calculate the current in first  order 
in the transparency of the insulating barrier. The sum- 
mation is carried out, as usual, over the frequencies 
w =  rT(2n+ 1). The function G1,(x,x1) is  determined 
from (18), while G,,"(,xl) is the Green's function of 
the normal metal in the presence of an insulating inter- 
layer in f i rs t  order in 1 / ~ .  The expression for it i s  
well known (see, e.g., Ref. 15): 

Equation (20) can also be easily obtained from (18) if 
we assume the anomalous mean values to be equal to 
zero, and replace G lp)(x,xl) by the Green's function of 
the homogeneous normal metal. 

We note also that the second term in the numerator of 
(18) makes no contribution to the current (this can be 
easily verified directly). We can therefore replace 
G1,(x,x1) by the function D,(x,xl), which contains, with 
allowance for the foregoing, only terms that contribute 
to the current. We present the final expression for this 
function, obtained from (18) after suitable computations 
(Q'=A'+ w2) 
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The poles of the function (21) [or (18)] determine the 
spectrum of an SNINS junction at zero transparency of 
the insulating barrier. 

Using (19)-(21), we arrive at a final expression for 
the density of a stationary Josephson current in the 
SNINS system [A = h(T) throughout]: 

Here R =  2r2v2/e2~ '  is  the resistance of the insulating 
barrier in the normal state: and or= v,/vF. Expression 
(22) is suitable for any position of the insulator inside 
the normal-metal layer. Putting x,= id /2  we obtained 
directly Eq. (3.7) of Ref. 10 for the current in an SINS 
junction. Generally speaking, the result (22) is  valid in 
the model at an arbitrary temperature and at an arbi- 
trary value of d. Thus, at d= x,= 0 expression (22) 
yields the well known Ambegaokar -Baratov f ~ r m u l a . ~  
However, the model (2) itself, can be strictly speaking 
used only for broad junctions d >> 5,. Under this condi- 
tion greatest interest attaches to the region of low tem- 
peratures T << T,. In this case expression (22) takes the 
simpler form 

At T= 0 the summation over the discrete frequencies i s  
replaced by integration. As a result we get for a sym- 
metrical SNINS junction (x,= 0) 

At x,= id/2 we obtain the result of Ref. 10 for an SINS 
junction: 

. X UF ,=- -sin cp, 
5 eRd 

which can be seen to be somewhat smaller than the cur- 
rent (24). 

In our case it is  easily concluded from (22) [or (23)] 
that the critical current at any temperature, a s  a func- 
tion of x,, has a maximum at x,= 0 (i.e., for a symmet- 
rical SNINS junction). Physically this result is quite 
understandable. In fact, according to Bardeen and 
Johnsons the superconducting properties of a system 
containing a broad (d>> 5,) layer of normal metal deter- 
mines the gap in the spectrum of the quasiparticle ex- 
citations of such a system. Let us compare, for exarn- 
ple, a symmetrical SNINS junction and a SINS junction 
having the same parameters. In the former case the 
excitation spectrum has at a fixed value of v, a gap 
equal to (see Fig. a) A,= rv,/2d. In the latter case this 
gap in the spectrum is half a s  large (Fig. b), so that the 
superconducting properties of this system should be 
weak, i.e., the critical current through an SINS junc - 
tion should be less than the current through an SNINS 
junction, a s  is  in fact confirmed by exact calculation. 

At vF/d<< T << Te we obtain for an SNINS junction 

Equation (26) is  valid in a rather wide range of the pa- 
rameter x,: 

A t  (x, I - d/2 - 5, the tunnel current in the system  be^ 
gins to decrease somewhat and at x,= id/2 we arrive at 
the expressionlo for the current in an SINS junction, 
which turns out to be half the value (26) at the same 
temperatures. This, in our opinion, is  a rather inter- 
esting property of SNINS systems. This effect bust a s  
the presence of an exponential factor in (26)] is due to 
the well known exponential damping of the anomalous 
Green's function in the interior of a normal-metal lay- 
er.' 

In the temperature region T- T, the parameter A is  
small and Eq. (22) yields 

Strictly speaking, the model (2) is  not valid at high 
temperatures. Equation (2'7), nevertheless, is  valid 
since A in this formula should be taken to mean (see 
also Ref. 4) the order parameter of the superconductor 
near the NS boundary, and not far from it (i.e., A - T, 
- T and not [T,(T, - T)]'/~. In fact, the change of A 
takes place over distances of the order of (d(1-  T/ 
T,)'/' from this boundary (this is  much larger than 5, 
at  T- T,). Therefore at T- T, the quantity of interest 
to us has its order parameter A not in the interior of 
the superconductor, but near the boundary with the nor- 
mal metal. Accordingly we can state that the critical 
current in the SNMS system at temperatures close to 
T, is proportional to (T, - T)2. We note that a similar 
dependence of the current on the temperature obtains 
in an SNS junction (in contrast to the SIS junction, 
where j -  T, - T). 

The result (27) does not depend on x,, since the dis- 
crete spectrum (7) is  in fact absent a t  T- T,. The con- 
crete value of the current is  determined only by the 
width of the normal layer d. In this temperature region 
we have 5,- to, ie., when the inequality (3) is  satis- 
fied the current (2'7) turns out to be exponentially small. 
We note also that all the results are  valid if there are 
no impurities in the system. The presence of impuri- 
ties, on the other hand, decreases the amplitude of the 
Josephson current. This question as  applied to SNS 
junctions was investigated in Ref. 16. On the other 
hand, in the case of an ordinary SIS junction the im- 
purities do not influence the tunnel current, this being, 
a s  is well known, a direct consequence of the Anderson 
theorem. 

Thus, we have investigated in the present study some 
properties of superconducting systems that contain of 
normal-metal and insulator layers. We obtained the 
spectrum of the excitations in such systems. We have 
shown that in the presence of an arbitrary magnetic 
field in an INS system the spectrum of the excitations 
(in contrast to SNS systems) is stable; the energy lev- 
els shift by an amount proportional to the magnetic 
field. An analogous conclusion holds also for SNINS 
systems if the insulating barrier has low transparency. 
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In fact, although the spectrum of such junctions de- 
pends on the difference of the phases of the order pa- 
rameter q, nonetheless at low transparency (V-00 )  this  
dependence is weak, so that the level smearing in this 
case is also small (including also in strong magnetic 
fields). It can consequently be assumed that in SNINS 
systems the magnetic field does not upset the discrete 
character of the excitation spectrum even at rather ap- 
preciable dimensions of the system (in the y direction), 
whereas in SNS junctions in a strong magnetic field it 
is utterly meaningless to speak of discrete excitation- 
energy levels, and the spectrum in this case is contin- 
uous. These conclusions can be reconciled completely 
with experiment. We have constructed also a micro- 
scopic theory of the stationary Josephson current in 
SNINS junctions. The magnitude and quite unique tem- 
perature dependence of this current, which are gov- 
erned by the presence of a phase-coherent spectrum of 
discrete states in the system, is strongly influenced 
also by the position of the insulating barr ier  inside the 
normal-metal layer. 
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The magneto-optical spectra of cobalt single crystals were investigated in the energy region 0.2-3.35 eV. 
Anisotropy of the frequency spectra of the equatorial Kerr effect was observed in the case of magnetization 
along different crystallographic directions. The off-diagonal components of the dielectric tensor are 
calculated. The observed anomalies are identified with definite interband transitions when account is taken of 
the selection rules for a hexagonal crystal. It is shown that the magneto-optical spectra for cobalt agree best 
with the band structure proposed for ferromagnetic cobalt by Batallan and co-workers. 

PACS numbers: 78.20.Ls, 71.25.Pi 

INTRODUCTION 

Many physical properties of ferromagnetic 3d metals 
and alloys have by now been explained within the frame- 
work of the magnetism theory of Slater, Stoner, and 
Wohlfarth by invoking the concepts of single-electron 
band theory. Cobalt, just as nickel, is a typical band 
ferromagnet. Calculations of the electronic structure 
of cobalt were reported in a number of theoretical 

connolyl was the first to publish data on the band 

structure of cobalt in individual high-symmetry points 
of the Brillouin zone. The calculations were made by 
the  augmented plane-wave method with optimized spin- 
dependent potential. The exchange splitting in his mod- 
e l  was assumed to be 2 eV. Wakoh and yamashita2 
later calculated the energy bands and the Fe rmi  sur- 
face, using the Korringa-Kohn-Rostoker (KKR) meth- 
od with constant exchange splitting (AE,, = 1.73 eV). 
1shida3 calculated the band structure of hexagonal cobalt 
by using amodified Muller interpolation scheme. None 
of the presented structures provided a satisfactory de- 
scription of the experimental data obtained later on the 
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