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A simple and convenient method is proposed for the analysis of the state density in sandwich structures, 
when the potential energy depends only on one coordinate. It is shown that in the general case the state 
density of the system can be broken up into three parts: 1) volume, uniformly built up over the entire volume 
of the system in proportion to the Fenni momentum at the corresponding point; 2) coherent, built up in 
proportion to the time of stay of the electron on a selected segment of a quasiclassical trajectory, with energy 
equal to the Fermi energy; 3) surface, built up over distances of the order of the wavelength near the surface. 
A detailed investigation is made of the situation wherein the coherence of the electron motion is violated in 
one part of the system (metal), while in another part (semimetal) the electron moves coherently. The 
conditions under which oscillations of the state density as functions of the semimetal thickness take place are 
made clear, and it is shown that the oscillating part of the state density builds up completely in the semimetal 
and attenuates outside the metal over distances of the order of the wavelength. 

PACS numbers: 73.40.S~ 

I. INTRODUCTION 

This paper is devoted to the electronic state density in 
sandwich structures of the metal-semimetal type. In 
these systems, the state density is highly inhomogene- 
ous in space, and various measured quantities contain 
the state density not of the entire system but of i t s  indi- 
vidual parts. Thus, the superconducting characteristics 
contain the state density of that region of space where 
pairing takes place. Therefore, in addition to the total 
state density, i t  is of interest to consider also the dif- 
ferential state density. 

The article develops a convenient method for the anal- 
ysis of the state density when, a s  in sandwich struc- 
tures, the potential of the electrons depends on a single 
coordinate. We trace the accumulation of the total state 
density in different points of space. The total state den- 
sity (see the group of papers by Balian and   loch') can 
be represented in the form of a sum of three terms. 
The first  term gy-volume-builds up uniformly in space 
and is proportional to the Fermi momentum kF at  the 
corresponding point of space: 

The two other terms have a scale s/4n2, i.e., they a r e  
smaller by a factor kFd>> 1 than gv (S is the surface 
area  of the sandwich and d is i ts  linear dimension). The 
first ,  coherent term is the result of the motion of the 
electron over preferred (extremal) trajectories and os- 
cillates a s  a function of the phase JkF(~)dl, built up 
over the entire trajectory of the electron. For the case 
of a sandwich, this means motion from one boundary of 
the sandwich to the other with zero transverse momen- 
tum. The coherent term go,, builds up uniformly along 
the entire motion of the electron over the trajectory in 
proportion to the time of stay in the corresponding point 
of the trajectory o r  in inverse proportion to the particle 
momentum at this point. 

The third term 

is connected with the motion of the electron near the 
boundary of the sandwich and builds up over a distance 
on the order of the wavelength of the electron near the 
corresponding boundary. We emphasize that in this 
case the electron wavelength l/k,(~) can be different in 
different sections of the system surface. 

If coherence is violated in the course of motion of the 
electron from one surface to the other, then the coher- 
ent term g,, in the state density yields zero after aver- 
aging, and we a re  left only with the two terms -gv and 
gs [(1.1) and (1.2)]. Since only the coherent term, which 
builds up uniformly over the entire trajectory of the 
electron vanishes in scattering, i t  is immaterial wheth- 
e r  the coherence is violated because of scattering in the 
volume of the system or  because of scattering by the 
boundaries. All that matters i s  the very fact of violation 
of the coherence. The scattering in the system is sim- 
ulated in this paper in two different ways: by averaging 
over the energy (see Ref. l a )  and by averaging of the re- 
sults over the thickness of the system; this corresponds 
to the case when the system is inhomogeneous over its 
thickness. 

The second of these methods of averaging makes i t  
possible to treat more completely the situation formu- 
lated in the paper of Kagan and the author,' when the co- 
herence of motion of .the electron is violated only in part 
of the system, and in the other part of the system the 
electron moves without scattering. Namely: assume a 
metallic film on which a semimetallic coating is sput- 
tered (see Fig. 1). We assume that the electron-motion 
coherence is violated in the metal of thickness d, but 
the motion of the electron is coherent in the semimetal 
of thickness t. This assumption is fully justified in 

FIG. 1. 
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many cases, since the electron wavelength is much 
smaller in the metal than in the semimetal, and the dis- 
tortions experienced by the short-wavelength electrons 
in the metal a r e  not felt by the long-wavelength electron 
in the semimetal (for details see  Ref. 2). 

This ra ises  the question of identifying the quantities 
that a re  sensitive to the electron-motion coherence in 
the semimetal of thickness t. I t  turns out that the total 
state density of the system oscillates as a function of 
the semimetal thickness. These oscillations take place 
only if the potential on the metal-semimetal interface 
varies sufficiently rapidly, namely: the electron Fermi 
momentum in the transition layer must change by a val- 
ue at least of the order of unity over a distance on the 
order of the wavelength. In real  junctions this condition 
is actually always satisfied. In the opposite limiting 
case, when the Fermi momentum in the transition layer 
varies little over a distance on the order of the electron 
wavelength, the oscillations disappear. The period of 
the oscillations is Jp(t)dt (the integration is over the 
semimetal, and p ( t )  is the Fermi  momentum in the 
semimetal). The oscillating part of the state density is 
built up uniformly over the entire semimetal-in inverse 
proportion to the Fermi  momentum of the electron a t  
each point of the semimetal, and attenuates over dis- 
tances of the order of the wavelength in the metal near 
the metal-semimetal interface. At distances larger 
than the wavelength of the metal there a r e  no state-den- 
sity oscillations connected with the coherent motion in 
the semimetal. 

II. LOCAL AND TOTAL STATE DENSITY IN AN 
ARBITRARY ONE-DIMENSIONAL POTENTIAL 

The state density of the system is expressed in terms 
of an integral of imaginary part of the Green's function 

At y- 0, Eq. (2.1) represents the state density. At f i -  
nite y, the function g,(~) is the Lorentz-averaged state 
density with width y (see, e.g., Ref. la). The integra- 
tion in (2.1) is over the entire volume of the system. We 
consider also the differential density of states, when the 
integration is only over the part of the system that is of 
interest. In a sandwich, the potential energy depends 
only on one coordinate, which we take to be x. In this 
case i t  is convenient to go over in (2.1) to the momentum 
representation in the coordinates y and z .  As a result 
we obtain 

The Green's function G,(xxf) satisfies in this case the 
equation 

rl%( rx') / d I + [ E - V ( X )  ] G ( x x r )  =(S(X-XI) .  

(I< , cd. E = ~ I - p A Z + i y .  (2.3) 

We assume here for simplicity that A=2m =l. We solve 
Eq. (2.3) subject to general boundary conditions of the 
form 

dG dG 
( 0 , ' )  - :  ( )  0 - ( d .  2 ' )  + x , G  ( d ,  x')  =0. 
d s  d.c (2.4) 
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To analyze Eq. (2.3) with boundary conditions (2.4), i t  is 
convenient to introduce the characteristic function q(x) 
satisfying the equation 

pcp/olzl+(E-V(X) )cp(x) =O. (2.5) 

and also the conditions on the boundary: 

 or an arbitrary piecewise-constant potential, q(x) can 
be easily written out in general form, inasmuch as in 
this case (2.5) is an ordinary differential equation with 
constant coefficients. Besides the function q k ) ,  we in- 
troduce also the function $(x): 

It is easy to verify directly that $(x), just a s  the char- 
ac teristic function q(x), satisfies Eq. (2.5). Further- 
more, the functions q(x) and $(x) a r e  linearly independ- 
ent solutions of Eq. (2.5), inasmuch as a t  all values of x 
we have 

Therefore we can use q(x) and #(x) to construct the 
function G(xxf): 

The function (2.7) satisfies automatically the f i rs t  bound- 
ary condition in (2.4). The constants P and R a re  de- 
termined from the second boundary condition of (2.4) 
and from a relation that follows from Eq. (2.3) for the 
Green's function: 

As a result we get 

G (xx') =G (2 's )  , x<z'. 

Here and below the prime denotes the derivative of q 
with respect to x. The integral J, (2.2) the imaginary 
part  of which is used to express the state density, is of 
the form 

d 

I,.,(p,? = j G ( x x ) &  
I 

In the second of the integrals in the right-hand side we 
interchanged the order of the integration. 

We shall make extensive use  of the following lemma: 
all x satisfy the relation 

d d 
~' ' (s)-cp(x)-cp(x)-cpr(z)= 1 cpZ(x,)d2, .  

dl: d E  

The proof is quite simple. We write down Eq. (2.5) for 
two energies E and E + AE. Next, multiplying these 
relations respectively by ( P B + ~ J  and qE and subtracting 
one from the other, we arrive a s  AE- 0 a t  Eq. (2.9). 

Using relation (2.9), we easily represent (2.8) in the 
form 



Substituting (2.10) in (2.2) and using the fact that d p  
= - 2pLdpL, we obtain 

In this relation i t  is necessary to choose for the total 
state density g,(p) only that branch of the logarithm 
which vanishes a t  pL =a. 

We consider now a more general situation, when we 
a re  interested in the state density of only a part (0 a x 
Gd) of the system, while the system occupies the re- 
gion 0 x -( d + t. Let the potential on the segment 0 a x  
a d have an arbitrary form V ( x ) ,  and let the potential a t  
d a x  -< d + t be constant and equal to V. In place of the 
second of the boundary conditions in (2.4), we assume 
the condition 

dG 
-(d+t, x') +oG (d+t,  x') =O. 
dx (2.4a) 

Then, using the lemma (2.9) and the explicit form of 
q(x) on the segment d S x - ( d  +t: 

~ ( x )  = v 1 ( d )  sh 6 (x-d)/b+cp ( d )  ch b ( x - d ) ,  

we obtain after simple identity transformations the fol- 
lowing expression for the integral, in terms of whose 
imaginary part is the state density expressed on the 
segment 0 a x d; 

d 
d 1 d 1 

J ~ ( x x ) d x = { - t ( d ) + - - c p r ( d ) ] / [  c p ( d ) + T ~ ' ( d ) ] .  
" dY Xd d~ Ad 

(2.11) 
Here xd depends on p and is of the form 

With the aid of (2.11), the state density of the region 0 
6 x G d can be written in the form 

Since x, depends now on p,, we cannot take in (2.11a) the 
integral with respect top, in general form, a s  was done 
in the derivation of (2.10a) for the total state density. 

If the potential V(x) is not constant on the segment d 
S x a d + t ,  then (2.12) is generalized in the following 
fashion: 

i /x, ,=-@(d)/@'(d).  (2.13) 

Here G(x) satisfies Eq. (2.5) with the following values 
on the boundary (d + t): 

@(d+t )  = - l lo ,  @'(d+t)  +or$(d+t) =O.  (2.1 4) 

Thus, Eq. (2.11a) enables us to calculate the state 
density of any part of the sandwich in terms of the char- 
acteristic function & - ) .  When the total state density of 
the entire system a s  a whole is calculated, substantial 
simplification is possible: integration is carried out 
with respect to the transverse momentum, and relation 

(2.10a) holds for  the total state density. In the sections 
that follow we analyze with the aid of these relations the 
total and local state densities for the simplest systems. 

Ill. TOTAL AND LOCAL STATE DENSITY IN AN 
ARBITRARY ONE-DIMENSIONAL POTENTIAL 
SATISFYING THE QUASICLASSICAL-ANALYSIS 
CONDITIONS 

1. Total state density 

We consider the total state density of the system 0 6 x 
G d with the general boundary conditions (2.4). The 
quasiclassical solution of Eq. (2.5) for the characteris- 
tic function with boundary conditions (2.6) a t  zero can 
be obtained, a s  usual3: 

Substituting (3.1) with x = d  in expression (2.10a) for the 
total state density, we obtain 

g1 ( Y )  =gv+gw+gcoh, (3.2) 
S 

8,. ==@,; @,-iDr= (3.2a) 

k ,  (s) - ik , (s)  = a ( s )  IpI,s (s=O, d ) ,  

S A exp(-2cD,)sin 2 ( @ , - a )  
gEOh = - arctg 

4x2 I-A exp( -2@, )cos  2(@,-a) ' 

We note that to obtain ~ ' ( d )  we need not differentiate the 
pre-exponential factor a"'2(x) with respect to x,  since 
la"da/dx 1 is the principal quasiclassical approxima- 
tion (see Ref. 3). 

Equations (3.2)-(3.2d) describe the state density at 
arbitrary damping y. The term gv (3.2a) is the volume 
state density and is proportionalr to the average Fermi 
momentum of the system. The surface term gs (3.2b) 
and the coherent g,,, (3.2~) is smaller by a factor kFd 
>> 1 than gv. Then gs is determined by the characteris- 
tics of the system only near the surface, and g,,, oscil- 
lates as a function of the total phase accumulated by the 
electron as it  moves from one surface to the other. In 
the limiting case 2cpi >> 1 the coherent term i s  exponen- 
tially small, -exp(-2ei), and we a re  left only with the 
terms gy and gs, in accord with the results of Balian 
and  loch" for the case of a constant potential. In the 
opposite limiting case 2@, << 1,  the quantity g,, de- 
scribes quantum oscillations of the state density (cf. 
Ref. lb). When y is varied, Eqs. (3.3) make i t  possible 
to trace the continuous transition from the pure quantum 
case to the completely smeared spectrum. 

We emphasize that Eqs. (3.2) correspond to averaging 
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of the state density over energy with width y. The van- 
ishing of the oscillating term g,,, upon averaging can 
be due to a number of different physical causes: scat- 
tering in the volume by impurities o r  other defects, o r  
scattering by the boundaries of the system. The result 
actually does not depend on the averaging method, since 
the averaging affects only the coherent term and this 
term, a s  shown below, is built up uniformly only in the 
region where coherence is preserved. We consider the 
simplest averaging method, when the film is inhomoge- 
neous over the thickness d and the results must be sim- 
ply averaged over this thickness. We shall assume here 
that V ( x )  does not depend on x .  We let y (meaning also 
k t )  tend to zero. Then averaging g,, over the period of 
the oscillations yields zero: 

+ 00 

2,l y 
= j &arcs- = 0; g=tg(k,z-or). 

- w I (I-A) + ( l t A ) y 2  (3 -3 

Thus, the result of averaging over the thickness corre- 
sponds exactly to the result of averaging over the ener- 
gy with width y, such that exp(-2@,)<< 1. In the case of 
a metal-semimetal sandwich (Sec. 4) we shall average 
over the thickness d of the metal and not over the ener- 
gy, since averaging over the thickness simulates in 
simplest fashion the situation when there is no coher- 
ence when the electron moves in the metal, and the co- 
herence is preserved when i t  moves in the semimetal. 

2. Local state density 

We examine now the accumulation of the various sec- 
tions gy, gs, and g,,, of the total state density (3.2) a t  
various points of space. Using formulas (2.11a) and 
(2.13), we can write for the state density gdo of the re- 
gion 0 < x < do the following expression: 

p(do) and p1(d0) a r e  defined by relations (3.1). We can 
obtain similarly in the quasiclassical approximation the 
function $(x): 

(3.5) 
We substitute (3.1) and (3.5) in (3.4) and separate in 

the latter those terms that contain in the numerator the 
following hyperbolic functions: 

d d 

sh j n  (x,)dz,. cli jcc.(z,)dx,. 

slr u(.c,)d+,. clr n (r,)dx,. I 
This expression will be designated Ags(do). We subdi- 
vide the remaining expression, which contains both in 
the numerator and in the denominator only the hyper- 

bolic functions 
d d 

shJ a(zt)&i, chJ a(s,)&,, 
0 

into two parts in the following manner. The f i rs t  part  
is obtained by replacing these hyperbolic functions in 
the expression by unity, and the second is the remain- 
der. Recognizing that d p  =-2ada, the f i rs t  part is e- 
valuated in explicit form and contributes to the volume 
and surface parts gv and gs of the state density. The 
second part contributes to the coherent term g,,, and is 
calculated by changing over to the complex plane of the 
variable p: = X  - iy (y > 0) along the contour shown in 
Fig. 2. It is easily seen that the integral along the a r c  
in the complex plane vanishes when the a r c  tends to in- 
finity, and the integral along the imaginary axis builds 
up in a narrow region of the variable y (at x =O). Ex- 
panding a near y =O and taking into account the depend- 
ence of a on y only under the exponential sign (with ac- 
curacy - ~ / p " ~ d ) ,  we can evaluate the integral exactly 
in the limit piJ2d >> 1. Results for gdo takes the form 

arctg - )*+"(O) ] + ~ g ~ ( & ) .  
k. (0) 

(3.6b) 

where T ~ / T  is the ratio of the time of stay of the elec- 
tron in the region do to the period of motion from one 
boundary of the sandwich to the other; 

. . 

-2A exp (-lQ,)cos 2 (Q.-a) I. (3.6d) 
The term %,(do) (3.6d), is generally speaking small. 

It vanishes identically in a constant potential, and also 
at y = 0. In addition, Ag,,(d) = 0. 

The term Ags(do) can be analyzed in perfect analogy 
with g,,(do) along the contour of Fig. 2. It is easily 
seen that i t  is significant only a t  distances on the order 
of the wavelength near the system boundaries. In the 
remaining region i t  is small and is of the order of 
- ~ / p ~ ' ~ d , .  The behavior of Ags(do) a t  small  thicknesses 
makes i t  possible to trace precisely the buildup of gs(do) 
over distances of the order of a wavelength near the 
surface. 

Thus, the volume term gy(do) (3.6a) is built up uni- 
formly over the volume in proportion to the momentum 

FIG. 2. 
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k, (x)  in the corresponding part of space. The surface 
termgs(do) (3.6b) i s  completely built up over distances 
do of the order of the wavelength (-1/p1'2), since, a s  
noted above, Ags(do) falls off over distances larger than 
the wavelength like 1/b1/2do. The coherent term gcoh(d0) 
(3 .6~)  accumulates in proportion to the time of stay in 
the corresponding layer and is inversely proportional to 
the momentum. The period of the oscillations of gcoh(d0) 
is determined by the total phase accumulated on the en- 
tire trajectory of the motion. 

IV. STATE DENSITY IN METAL-SEMIMETAL 
SYSTEMS 

In the preceding section we considered the state den- 
sity of the system when the potential varies sufficiently 
slowly along the system: over distances on the order of 
the wavelength, the Fermi  momentum changes by an a- 
mount much less than unity. In real  junctions between 
two different metals, the situation i s  usually the in- 
verse: the Fermi momentum changes by a value of the 
order of unity over distances of the order of the wave- 
length, and a t  the metal-semimetal junction the mo- 
mentum changes by a large factor. As the starting mo- 
del of such a junction we consider therefore the case 
when the potential changes jumpwise (cf. Fig. 1): 

We a r e  interested in the situation described in the in- 
troduction and formulated in a paper by Kagan and the 
a u t h ~ r , ~  when the electron moves coherently in a semi- 
metal of thickness t, while coherence is violated in the 
metal of thickness d. We shall simulate this by aver- 
aging the final result over the thickness of the metal d. 
The averaging over the energy with width y, carried out 
in Sec. 3, leads, generally speaking, to violation of co- 
herence both in the metal and in the semimetal. How- 
ever, if the thickness of the semimetal t is small  enough 
compared with the thickness d of the metal (more accu- 
rately, i f  t/p <<d/k; k i s  the Fermi momentum in the 
metal and p is  the Fermi  momentum in the semimetal), 
then we can choose an energy width ~ ( ~ d / k  >> 1, but with 
yt/p<< I), the smearing of the state density over which 
does not violate the coherence of the motion in the semi- 
metal, and there is no coherence over the thickness of 
the metal a t  all. In this case the averaging over the 
thickness of the metal is fully equivalent to averaging 
over energy with such a width y. 

1. Total state denstiy of metal-semimetal system 

For  the potential (4.1) we can easily write down the 
characteristic function q ( x )  in explicit form: 

shax chax I - + .  OGz<d 

a = [ -  (kc-pLZtiy) I", 
b=[- (p-V-pLZ+iy) I"". 

For the total state density of the entire system we have 
the relation 

Here o is the boundary condition [see (2.4a)l on the 
boundary (d + t ) .  Substituting from (4.2) the values of 
the characteristic function a t  the point (d + t ) ,  we can 
represent gtOt in a form similar to (3.2). We shall 
ca r ry  out the averaging of the obtained expression over 
the thickness of the metal d. The averaging reduces to 
a calculation of exactly the same  integrals a s  in (3.3). 
It is easy to note that the result of the averaging corre- 
sponds to replacing in (4.3) the hyperbolic functions 
sinhad and coshad by +end [the same was done also in 
the averaging of expression (3.2)]. As a result we ob- 
tain for the total state density averaged over the metal 
thickness d (as y - 0) 

S C sin 2 (p t -a)  
<geuO) = - -arctg 

4nZ i+C cos 2 ( p t - a )  ' 

Here gv i s  the volume state density in the potential 
(4.1), cf. (3.2a); gs is the surface state density in the 
potential (4.1), cf. (3.2b); (g,& is the coherent part of 
the state density averaged over the metal thickness. We 
see  that (g,,,) oscillates a s  a function of the semimetal 
thickness t (the ordinates in Fig. 3 a r e  given in units of 
s/4n2). At P << k the amplitude of the oscillations is 
close to ~ / 2 ,  since C =  1. At p =k the oscillations natu- 
rally disappear, inasmuch a s  in a constant potential i t  
does not matter whether we average the state density 
over the region d or over the region (d + t). 

We consider now the accumulation of the oscillating 
part  of the state density (g,& in various parts of the 
system. 

2. State density of metallic layer in a metal-semimetal 
system 

h r  the state density of the metal in a metal-semi- 
metal system we can use Eq. (2.11a): 

FIG. 3. Dependence of the state densib on the thiclmess of the 
semimetal (a=-, (p- V) /p  = 0.25). 
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The analysis of relations (4.5) and (4.5a) is perfectly 
analogous to the analysis of expression (3.4). It is use- 
ful to separate from (4.5) the part obtained by replacing 
the hyperbolic functions sinhad and coshad by unity. 
The remaining expression can be easily shown to vanish 
after averaging over the thickness d of the metal. This 
is easiest to see  in the case when the metal thickness d 
is large enough compared with the semimetal thickness 
t ,  or  more accurately 

d l k ~ t l p .  (4.6) 
In this case the dependence of xd in (4.5a) on the mo- 
mentum p: can be neglected, and the integral can be 
evaluated in exactly the same manner as the integral 
that leads to the term g,,(d0) in (3.6~). In this case xd 
appears a t  p: =O. The averaging of the resultant ex- 
pression over d was carried out in (3.3) and yielded 
zero. Actually i t  can be shown that the restriction (4.6) 
is immaterial, and a t  all kd>> 1 the resultant expres- 
sion vanishes upon averaging. This is seen, in particu- 
lar, directly in the limiting case that is the inverse of 
(4.6), when d/k << t/p. In this case the quantity tanh bt 
in ud (4.5a) can be set  identically equal to unity, and the 
integral can be again evaluated, just as in the case 
gc,,(d0) (3 .6~) .  Thus, we see  that to average the inte- 
grals over the thickness d of the metal i t  is sufficient to 
replace the quantities sinhad and coshad in the inte- 
grand by the quantity ie". As a result we obtain for the 
averaged state density of the metallic layer 

<g,.t)=g, ,.t+ga met, 

g,. ",., =Skd/4nZ,  

The quantity Jo is the surface contribution of the free 
metallic surface [cf. (4.4b)I: 

~. 

Jd is  the surface contribution from the metallic surface 
in contact with the semimetal. We change Jd to a some- 
what more convenient form. We note for this purpose 
that the integral 

does not depend on V and is equal to the f i rs t  of the in- 
tegrals in the curly brackets of (4.8a). That this is act- 
ually the case can be verified directly, since the inte- 
gral in (4.9) is evaluated in explicit form, for example, 
with the aid of the Euler substitution 

Thus, Jd can be rewritten in the form 

The expression in this form is convenient because i t  
shows that as t- =, regardless of the value of o, the 
integral Jd tends to zero. The integral of Jd cannot be 
evaluated directly, but i t  can be easily calculated nu- 
merically. At small t(pt 5 1)  the form (4.10) of Jd is 

quite convenient for numerical calculation. At larger t 
(pt 2 1) it  is more useful to transform the integral of 
(4.10) along the contour of Fig. 2. As a result we get 

At t 2 l / p  expression (4.10a) is perfectly convenient for 
a numerical calculation, since the integral i s  concen- 
trated mainly in the region y -p/t. The results of nu- 
merical calculation a r e  shown in Fig. 3. In the limit pt 
>> 1 the integral (4.10a) can be evaluated exactly: 

Our analysis shows that Jd does not have a small quanti- 
ty in the parameter kd>> 1 compared with (g,,) (4.4~). 
However, for sufficiently large t(pt 2 1)  the integral in 
J, has a specific smallness for two reasons. First ,  Jd 
contains the ratio (p  - v)/& Second, there is built up 
in Jd a numerical smallness compared with (g,,,) be- 
cause (g,,) contains the arctangent of (4.4c), the char- 
acteristic changes of which a r e  of the order of n, while 
Jd contains at large t the natural logarithm of (4.10b), 
with a characteristic variation -1. 

We see  thus that the averaged state density of the 
metal (4.7) consists of a vnlume term and of the surface 
terms (4.8). The surface term Jd from the region ad- 
jacent to the semimetal has an oscillatory dependence 
on the thickness of the semimetal. The amplitude of 
these oscillations is numerically somewhat smaller than 
the amplitude of the oscillations of the total state den- 
sity (gcob (4.412). In perfect analogy with Sec. 111.2, we 
can trace the locations where individual terms of the 
state density of the metal (4.7) a re  built up. The vol- 
ume term gym,, is built up uniformly over the entire 
metal. The surface terms Jo and Jd a r e  built up a t  a 
distance on the order of wavelength (l/k) near the cor- 
responding metal boundary. Thus, the semimetal forms 
in the region of the contact with the metal a new bound- 
ary condition, which depends in oscillatory manner on 
the thickness t of the semimetal layer, and information 
on the presence of the semimetal layer penetrates to a 
distance of the order of the wavelength into the metal. 

3. State density of semimetallic layer 

To obtain the state density of the semimetallic layer 
i t  is necessary to use formula (2.11a) twice, for the en- 
tire system a s  a whole and separately for the metallic 
layer, respectively, and to subtract one expression 
from the other. After straightforward transformations 
we obtain the density g, of the states of the semimetallic 
layer. Averaging g, over the thickness of the metal is 
carried out just as,in Sec. IV.2. It is then easy to see  
that the state density of the semimetallic layer, aver- 
aged over the thickness of the metal, reduces to the 
form 

C sin 2 ( p t - a )  } - 
(g,>= 4 j p t  + 2- - arctg :- + arctg 

4n- I 4 1) I +C cos 2 ( p t - a )  
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(g,) and (g,,,) (4.7) yield together in natural fashion the 
total averaged state density (g,,,) (4.4). 

4. Quasiclassical analysis 

Let the potential V(x) vary in the region of the semi- 
metal (d<x< d +  t )  slowly, s o  a s  to satisfy the quasi- 
classical conditions 

d 1 -- I b ( x ) = [ - ( p - V ( x ) + i r )  1"'. 
d x  6(z) 

In this case the characteristic function q(x) is written in 
analogy with (4.2), and at the point x = d  i t  is joined with 
the function of the form (3.1) with replacement of a(x) 
by b(x). We write down the total density of states of this 
system, averaged over the thickness of the metal. In 
analogy with (4.4) we have 

arctg 5 - arctg- 
4n2 k 

S .  C sin 2 ( x - a )  
(g,,)=--arctg 

4nZ l+Ccos 2 ( ~ - a )  ' 

Here 
d+l 

x=i b ( z ) d ~ l ~ , = ~ . , = ~ ,  p ( x ) = i b ( ~ ) l . ~ = ~ . , = ~  ( x = d , d + t ) ,  
d 

The period x of the oscillations is determined by the 
total phase accumulated by the electrons in the semi- 
metal along a trajectory with zero transverse momen- 
tum p, = O  and with an energy equal to the Fermi energy. 
In analogy with the treatment in the preceding two sec- 
tions, IV.l and IV.2, we can show that the oscillating 
part of the state density builds up uniformly in the re- 
gion of the semimetal in proportion to the time of stay 
of the electron on the corresponding section of the 
quasiclassical trajectory (-l/p(x), cf. the analysis in 
Sec. III.2), while in the metal in the region of the con- 
tact with the semimetal the oscillating part attenuates 
over distances of the order of the electron wavelength 
in the metal. 

We note the important fact that when averaged over 
the thickness of the metal the oscillations do not vanish 
only if the potential varies sufficiently rapidly in the re- 
gion of the contact between the metal and semimetal. It 
is seen from (4.13~) that i f  the jump of the potential at 
the metal-semimetal interface i s  equal to zero (p  = k ) ,  
then C = 0 and the oscillations vanish. More accurately, 
if p = k  we can show that the oscillations appear only in 

the approximation that follows the approximation in the 
quasiclassical parameter (4.12), and furthermore only 
in the case when the derivative of the potential has a 
discontinuity. In other words, i t  can be stated that if 
the potential V(x) varies slowly in the region of the con- 
tact between the metal and the semimetal over distances 
of the order of the wavelength of the electron, then the 
averaging of the state density over the metal thickness 
leads to a complete vanishing of the oscillations. In the 
opposite limiting case, when the Fermi momentum in 
the region of the junction changes substantially over 
distances much smaller than the wavelength, i t  is easily 
seen that the oscillations do not vanish upon averaging- 
this case reduces in fact to the potential (4.1) and can be 
treated by perturbation theory. For example, in the 
case a = .o we can obtain 

Here p is a small parameter that characterizes the nar- 
row transition region between the metal and the semi- 
metal. If the potential varies linearly in the region of 
the contact at d  - I < x < d  +I, then this parameter takes 
the form p = vl2/6. 

Thus, oscillations of the averaged state density take 
place only when the potential in the region of the contact 
varies rapidly enough: at distances on the order of the 
wavelength the Fermi momentum should change by a t  
least a value on the order of unity. As already noted by 
us, i t  is precisely this situation that takes place usually 
in metallic contacts. 

The f i rs t  to observe oscillations of the different mea- 
sured quantities a s  functions of the thickness t of the 
semimetal were Mikheeva et al. (for details see Refs. 2 
and 4). 

The author thanks Yu. Kagan for a discussion of the 
various physical aspects of the work. The author thanks 
also M. N. Mikheeva, A.A. Teplov, and M.B. Tsetlin for 
a discussion of the experiments on the oscillations of 
different physical quantities in sandwiches. 
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